PREDIKSI PERGERAKAN NILAI TUKAR RUPIAH TERHADAP MATA UANG ASING MENGGUNAKAN METODE HIDDEN MARKOV MODEL

NUR AMALIA, . (2021) PREDIKSI PERGERAKAN NILAI TUKAR RUPIAH TERHADAP MATA UANG ASING MENGGUNAKAN METODE HIDDEN MARKOV MODEL. Sarjana thesis, UNIVERSITAS NEGERI JAKARTA.

[img] Text
COVER.pdf

Download (2MB)
[img] Text
BAB 1.pdf

Download (317kB)
[img] Text
BAB 2.pdf
Restricted to Registered users only

Download (474kB) | Request a copy
[img] Text
BAB 3.pdf
Restricted to Registered users only

Download (652kB) | Request a copy
[img] Text
BAB 4.pdf
Restricted to Registered users only

Download (1MB) | Request a copy
[img] Text
BAB 5.pdf
Restricted to Registered users only

Download (288kB) | Request a copy
[img] Text
DAFTAR PUSTAKA.pdf

Download (254kB)
[img] Text
LAMPIRAN.pdf
Restricted to Registered users only

Download (1MB) | Request a copy

Abstract

Nilai tukar mata uang (kurs) adalah harga satu unit mata uang asing dalam mata uang domestik. Nilai tukar menjadi penting karena mempunyai dampak yang luas terhadap perekonomian secara keseluruhan. Pada Skripsi Nilai Tukar Rupiah akan diprediksi menggunakan metode Hidden Markov Model data yang digunakan adalah data kurs USD dan CNY dari tanggal 2 November sampai dengan tanggal 7 Desember. Data selisih nilai kurs dibagi menjadi 4 state yaitu S1, S2, S3 dan S4. Peluang barisan observasi 15 hari ke depan diperoleh menggunakan algoritma Forward dan Backward, sedangkan barisan tersembunyi yang optimal diperoleh menggunakan algoritma Viterbi, setelah itu menentukan penaksiran parameter menggunakan algoritma Baum-Welch. Berdasarkan hasil analisis prediksi nilai kurs USD memiliki akurasi 100%, sedangkan pada prediksi nilai kurs CNY memiliki akurasi 93,33%. Kata kunci : Nilai Tukar Rupiah (Kurs), Peramalan, Hidden Markov Model . ************************************ The exchange rate is one unit price of the foreign currency in the domestic money. The exchange rate is essential because they have wide impact to the economy. On this thesis, the value of rupiah exchange will be predicted by using the Hidden Markov Model method that uses USD and CNY exchange rate data on 2 November 2020 until the date of 7 December 2020.The data are divided into the 4 state is S1 , S2 , S3 and S4. Opportunities the observation 15 days ahead obtained using algorithms Forward and Backward, while the optimal hidden obtained using an Viterbi algorithm, after it is determined using algorithm Baum-Welch assessment parameter. Based on the analysis of the prediction of the rupiah exchange rate against USD having 100 % accuracy, while in the prediction of the CNY having 93,33% accuracy. Keywords : Rupiah Exchange Rate, Forecasting, Hidden Markov Model.

Item Type: Thesis (Sarjana)
Additional Information: 1). Prof. Dr. Suyono, M.Si. ; 2). Dra. Widyanti Rahayu, M.Si.
Subjects: Sains > Matematika
Divisions: FMIPA > S1 Matematika
Depositing User: Users 10086 not found.
Date Deposited: 17 Mar 2021 05:06
Last Modified: 17 Mar 2021 05:06
URI: http://repository.unj.ac.id/id/eprint/14807

Actions (login required)

View Item View Item