PEMODELAN DATA THE PROGRAMME FOR INTERNATIONAL STUDENT ASSESSMENT (PISA) SISWA INDONESIA MENGGUNAKAN MULTIVARIATE GENERALIZED LINEAR MODEL

MIRZHA FARADIBA, . (2021) PEMODELAN DATA THE PROGRAMME FOR INTERNATIONAL STUDENT ASSESSMENT (PISA) SISWA INDONESIA MENGGUNAKAN MULTIVARIATE GENERALIZED LINEAR MODEL. Sarjana thesis, UNIVERSITAS NEGERI JAKARTA.

[img] Text
COVER.pdf

Download (1MB)
[img] Text
BAB 1.pdf

Download (191kB)
[img] Text
BAB 2.pdf
Restricted to Registered users only

Download (547kB) | Request a copy
[img] Text
BAB 3.pdf
Restricted to Registered users only

Download (386kB) | Request a copy
[img] Text
BAB 4.pdf
Restricted to Registered users only

Download (581kB) | Request a copy
[img] Text
BAB 5.pdf
Restricted to Registered users only

Download (184kB) | Request a copy
[img] Text
DAFTAR PUSTAKA.pdf

Download (325kB)
[img] Text
LAMPIRAN.pdf
Restricted to Registered users only

Download (652kB) | Request a copy

Abstract

Kualitas pendidikan memiliki peran penting dalam kemajuan suatu negara. Salah satu aspek yang menggambarkan kualitas pendidikan adalah skor The Programme for International Student Assessment (PISA) yang merupakan hasil survei dari Organisation for Economic Cooperation and Development (OECD). Indonesia menduduki peringkat 10 terbawah dari seluruh negara berdasarkan PISA tahun 2018. Hal ini menunjukkan bahwa kualitas pendidikan Indonesia masih tergolong rendah. Penelitian ini bertujuan untuk mengetahui faktor yang memengaruhi skor PISA siswa Indonesia secara serentak meliputi ketiga subjek penilaian PISA yaitu literasi matematika, literasi sains dan literasi membaca. Kompleksitas data PISA dimana melibatkan peubah respon multivariat yang mengasumsikan adanya korelasi antar peubah respon menambah kompleks dalam analisisnya. Salah satu pendekatan yang dapat digunakan adalah Multivariate GLMs dengan metode estimasi Quasi Likelihood. Hasil penelitian ini menunjukkan bahwa faktor-faktor yang memengaruhi skor PISA siswa Indonesia secara serentak yaitu kelas yang sedang ditempuh, pendidikan orang tua, fasilitas yang ada di rumah, kedisiplinan siswa, umpan balik guru saat pembelajaran, umur masuk TK dan pernah tinggal kelas saat SD. Berdasarkan diagnostik model dapat disimpulkan bahwa Multivariate GLMs menghasilkan model yang fit dalam memodelkan skor PISA siswa Indonesia. The quality of education has an important role in the progress of a country. One aspect that describes the quality of education is score of The Programme for International Student Assessment (PISA) which is the result of a survey from the Organization for Economic Cooperation and Development (OECD). Indonesia is ranked in the bottom 10 of all countries based on PISA 2018. This shows that the quality of Indonesian education is still relatively low. This study aims to determine the factors that influence the PISA’s scores of Indonesian students simultaneously covering the three subjects of the PISA assessment, namely mathematics literacy, science literacy and reading literacy. The complexity of PISA data which involves multivariate response variabels which assumes a correlation between response variabels adds to the complexity of the analysis. One approach that can be used is Multivariate GLMs with Quasi Likelihood estimation method. The results of this study indicate that the factors that influence the PISA’s scores of Indonesian students simultaneously are the class being taken, parental education, facilities at home, student discipline, teacher feedback during learning, age of entering kindergarten and failing a grade while elementary school. Based on the diagnostic model, it can be concluded that Multivariate GLMs produce a model that is fitted in modeling the PISA’s scores of Indonesian students.

Item Type: Thesis (Sarjana)
Additional Information: 1). Vera Maya Santi, M.Si. ; 2). Dania Siregar, S.Stat., M.Si.
Subjects: Sains > Matematika
Divisions: FMIPA > S1 Statistika
Depositing User: Users 12049 not found.
Date Deposited: 30 Aug 2021 06:27
Last Modified: 30 Aug 2021 06:27
URI: http://repository.unj.ac.id/id/eprint/18270

Actions (login required)

View Item View Item