ANALISIS KESTABILAN PADA MODEL MATEMATIKA DERADIKALISASI

WIMBO FARI SUSILO, . (2021) ANALISIS KESTABILAN PADA MODEL MATEMATIKA DERADIKALISASI. Sarjana thesis, UNIVERSITAS NEGERI JAKARTA.

[img] Text
COVER.pdf

Download (1MB)
[img] Text
BAB 1.pdf

Download (266kB)
[img] Text
BAB 2.pdf
Restricted to Registered users only

Download (442kB) | Request a copy
[img] Text
BAB 3.pdf
Restricted to Registered users only

Download (270kB) | Request a copy
[img] Text
BAB 4.pdf
Restricted to Registered users only

Download (514kB) | Request a copy
[img] Text
BAB 5.pdf
Restricted to Registered users only

Download (337kB) | Request a copy
[img] Text
DAFTAR PUSTAKA.pdf

Download (263kB)
[img] Text
LAMPIRAN.pdf
Restricted to Registered users only

Download (601kB) | Request a copy

Abstract

Radikalisasi adalah suatu proses dimana individu mengadopsi ideologi politik, sosial, dan agama yang mengarah kepada tindak kekerasan. Perilaku kekerasan dalam proses radikalisasi ini menjadi alasan bahwa paham radikalisme dianggap sebagai penyebab tindakan terorisme. Oleh karena itu, untuk mengurangi proses radikalisasi ini dilakukan program deradikalisasi. Deradikalisasi adalah suatu usaha untuk mengajak para penganut paham radikal untuk meninggalkan paham tersebut. Dalam rangka mengetahui tingkat penyebaran radikalisasi, dibuat model matematika deradikalisasi. Model tersebut terdiri dari empat kompartemen yaitu, Susceptible, Extrimist, Recruiters, dan Treatment. Model dianalisis dengan menentukan titik ekuilibrium dan menentukan bilangan reproduksi dasar (R0). Jika R0 < 1 maka sistem akan stabil asimtotik lokal, dan jika R0 > 1 maka sistem tidak stabil. Simulasi dilakukan dengan data yang telah diperoleh, dengan parameter perpindahan individu dari kompartemen Extrimist ke kompartemen Treatmen bernilai 0,05 dan perpindahan individu dari kompartemen Recruiters ke kompartemen Treatmen bernilai 0,165, hasil simulasi menunjukkan gra�k yang stabil ke titik equilibrium endemik. Sedangkan, jika nilai perpindahan individu dari komartemen Extrimist dan Recruiters ke kompartemen Treatmen adalah 0,5, hasil simulasi menunjukkan gra�k lama kelamaan menuju nol. ********* Radicalization is a process by which individuals adopt political, social, and religious ideologies that lead to violence. Violent behavior in the radicalization process is the reason that radicalism is considered the cause of acts of terrorism. Therefore, to reduce this radicalization process, a deradicalization program is carried out. Deradicalization is an attempt to persuade adherents of radicalism to leave this notion. In order to determine the level of spread of radicalization, a mathematical model of deradicalization was made. The model consists of four compartments, namely, Susceptible, Extrimist, Recruiters, and Treatment. The model is analyzed by determining the equilibrium point and determining the base reproduction number (R0). If R0 < 1 then the system will be locally asymptotically stable, and if R0 > 1 then the system will be unstable. The simulation is carried out with the data that has been obtained, with the individual displacement parameters from the Extrimist compartment to the Treatment compartment with a value of 0.05 and the individual displacement from the Recruiters compartment to the Treatment compartment with a value of 0.165, simulation results show a graph that is stable to the point of endemic equilibrium. Meanwhile, if the value of individual displacement from the Extrimist and Recruiters compartments to the Treatment compartment is 0.5, the simulation results show that the graph gradually goes to zero.

Item Type: Thesis (Sarjana)
Additional Information: 1. Dr. Eti Dwi Wiraningsih, S. Pd., M. Si.; 2. Dr. Lukita Ambarwati, S. Pd., M. Si.;
Subjects: Sains > Matematika
Divisions: FMIPA > S1 Matematika
Depositing User: Users 12668 not found.
Date Deposited: 14 Sep 2021 05:16
Last Modified: 14 Sep 2021 05:16
URI: http://repository.unj.ac.id/id/eprint/19988

Actions (login required)

View Item View Item