PENGARUH SIKLUS KONVERSI KAS, *CAPITAL EXPENDITURE* DAN *LEVERAGE* TERHADAP MODAL KERJA PADA PERUSAHAAN MANUFAKTUR DI BEI TAHUN 2014-2016

LINDA PUSPITA DEWI 8335132401

Skripsi ini Disusun Sebagai Salah Satu Persyaratan Untuk Memperoleh Gelar Sarjana Ekonomi pada Fakultas Ekonomi Universitas Negeri Jakarta

PROGRAM STUDI S1 AKUNTANSI KONSENTRASI AUDIT FAKULTAS EKONOMI UNIVERSITAS NEGERI JAKARTA 2017

THE EFFECT OF CASH CONVERSION CYCLE, CAPITAL EXPENDITURES AND LEVERAGE TOWARD WORKING CAPITAL IN REGISTERED MANUFACTURING CORPORATION ON THE BEI IN 2014-2016

LINDA PUSPITA DEWI 8335132401

Skripsi is Written as Part Of Bachelor Degree in Economics Accomplishment

STUDY PROGRAM OF S1 ACCOUNTING
CONCENTRATION IN AUDITING
FACULTY OF ECONOMIC
UNIVERSITAS NEGERI JAKARTA
2017

ABSTRAK

LINDA PUSPITA DEWI. Pengaruh Siklus Konversi Kas, *Capital Expenditure*, dan *Leverage* terhadap modal kerja. Fakultas Ekonomi Universitas Negeri Jakarta. 2017

Penelitian ini bertujuan untuk mengetahui pengaruh siklus konversi kas, *Capital Expenditure*, dan *Leverage* terhadap modal kerja. Variabel dependen yang digunakan adalah modal kerja yang diukur dengan menggunakan rasio modal kerja terhadap total aset. Siklus Konversi Kas diukur dengan rumus penghitungan siklus konversi kas; *Capital Expenditure* diukur dengan pengurangan aset tetapt dengan aset tetapt dengan aset tetapt dengan populasi seluruh perusahaan manufaktur dengan periode pengamatan selama tiga tahun yaitu tahun 2014-2016. Sampel yang dipilih berdasarkan *purposive sampling* dan diperoleh 38 perusahaan. Penelitian ini menggunakan analisis regresi berganda untuk menguji hipotesis. Hasil uji T menunjukkan bahwa siklus konversi kas berpengaruh positif signifikan terhadap modal kerja, *leverage* berpengaruh negatif signifikan terhadap modal kerja namun *capital expenditure* tidak berpengaruh terhadap modal kerja. Hasil uji F menunjukkan bahwa siklus konversi kas, *capital expenditure*, dan *leverage* secara simultan berpengaruh terhadap modal kerja.

Kata kunci: Modal kerja, siklus konversi kas, capital expenditure, dan leverage

ABSTRACT

LINDA PUSPITA DEWI. The Effect Of Cash Conversion Cycle, Capital Expenditures And Leverage On Working Capital. Fakultas Ekonomi Universitas Negeri Jakarta. 2017

The purpose of this research is to determine the influence of cash conversion cycle, Capital Expenditure, and Leverage to working capital. This working capital (dependent variable) measured by working capital to total assets ratio (WCR). While independent variable are Cash Conversion Cycle which ismeasured by the cash cycle conversion formula; Capital Expenditure which is measured by the reduction of fixed assets_t with fixed assets_{t-1}; Leverage which is measured by debt to asset ratio (DAR). This study uses secondary data with the population of all manufacturing companies with a period of observation for three years 2014-2016. The sample was chosen based on purposive sampling and obtained 38 companies. This study uses multiple regression analysis to test the hypothesis. T test results showed that cash conversion cycle has a significant positive influence on working capital, leverage has a significant negative influence on working capital but capital expenditure has not influence to working capital. F test results showed that the cash conversion cycle, capital expenditure, and leverage has simultantly influence on the working capital.

Keywords: Working Capital, Cash Conversion Cycle, Capital Expenditure, Leverage

LEMBAR PENGESAHAN SKRIPSI

Penanggung Jawab Dekan Fakultas Ekonomi

<u>Dr. Dedi Purwana ES, M.Bus</u> NIP. 19671207 199203 1 001

Nama	Jabatan	Tanda Tangan	Tanggal
<u>Diah Armeliza, SE. M.Ak</u> NIP. 19790429 200501 2 001	Ketua Penguji	Canny 1	24 jui 2017
<u>Tresno Ekajaya, SE, M.Ak</u> NIP. 19741105 200604 1 001	Sekretaris	7	
Petrolis Nusa Perdana, M.Acc NIP. 19800320 201404 1 001	Penguji Ahli	Another .	
<u>Dr. Etty Gurendrawati, M.Si</u> NIP. 19680314 199203 2 002	Pembimbing I		25 Juli 2017
M. Yasser Arafat, SE., MM NIP. 19710413 200112 1 001	Pembimbing II	JAH)	26 Juli 2017
Tanggal Lulus : 17 Juli 2017			

PERNYATAAN ORISINALITAS

Dengan ini saya menyatakan:

1. Skripsi ini merupakan hasil karya asli dan belum pernah diajukan untuk

mendapatkan gelar akademik sarjana, baik di Universitas Negeri Jakarta

maupun di Perguruan Tinggi lain.

2. Skripsi ini belum pernah dipublikasikan, kecuali secara tertulis dengan jelas

dicantumkan sebagai acuan dalam naskah dengan disebutkan nama

pengarang dan dicantumkan dalam daftar pustaka.

3. Pernyataan ini saya buat dengan sesungguhnya dan apabila dikamudian hari

terdapat penyimpangan dan ketidakbenaran, saya bersedia menerima sanksi

akademik berupa pencabutan gelar yang telah diperoleh, serta sanksi lain

sesuai dengan norma yang berlaku di Universitas Negeri Jakarta.

Jakarta, 10 Juli 2017

Yang membuat pernyataan,

Linda Puspita Dewi

No. Reg 8335132401

KATA PENGANTAR

Alhamdulillahirabbil 'alamin, Segala puji dan syukur atas kehadirat Allah SWT karena berkat rahmat dan karunia-Nya Peneliti dapat menyelesaikan Skripsi ini tepat waktu.

Skripsi ini disusun untuk memenuhi salah satu persyaratan untuk memperoleh gelar Sarjana Ekonomi pada program studi S1 Akuntansi Fakultas Ekonomi Universitas Negeri Jakarta.

Peneliti menyadari bahwa tanpa adanya bimbingan, dorongan, dan bantuan dari berbagai pihak, skripsi ini tidak akan dapat selesai tepat waktu. Oleh karena itu penulis mengucapkan terimakasih atas bimbingan, dorongan dan bantuan yang telah diberikan selama proses penulisan skripsi ini. Ucapan terimakasih ditujukan kepada:

- Bapak Dr. Dedi Purwana, E.S., M.Bus, selaku Dekan Fakultas Ekonomi Universitas Negeri Jakarta.
- Ibu Dr. I Gusti Ketut Agung Ulupui, M.Si, Ak, CA, selaku Koordinator Program Studi S1 Akuntansi.
- Ibu Dr. Etty Gurendrawati, M.Si. dan Bapak Muhammad Yasser Arafat,
 SE., Akt., MM, selaku Dosen Pembimbing. Terima kasih atas segala saran dan bimbingannya selama ini.
- 4. Seluruh Dosen Prodi S1 Akuntansi Fakultas Ekonomi Universitas Negeri Jakarta yang telah memberikan ilmu yang bermanfaat selama peneliti menjalani masa studi.

Mamak dan Bapak atas doa dan kasih sayang yang tak berujung. Adikku',
 Alfian yang sering gangguin tapi nggak' bantuin.

6. Yayasan Karya Salemba Empat dan Donatur BPJS TK yang telah membantu Peneliti dalam hal materil melalui dana beasiswa yang diberikan kepada Peneliti pada tahun terakhir masa studi.

7. Seluruh sahabat setia, Reni, Diah, Heni, Ariska, Rizka, Sahabat lingkaran, Lambang si Ahli IT terbaik, Resti tutor eviews, Taufiq Nugroho, Mbak Ririn dan sahabat-sahabat yang tidak dapat disebutkan satu persatu yang telah membantu, menyemangati dan mendoakan peneliti selama pembuatan skripsi ini.

8. Kakak-kakak tingkat-ku di EconoChannel FE UNJ dan prodi S1 Akuntansi UNJ, beswan-beswan KSE UNJ, teman-teman S1 Akuntansi 2013 & Fakultas Ekonomi 2013, terima kasih bantuan dan doanya.

Semua pihak yang tidak dapat disebutkan satu persatu yang telah membantu
 Peneliti dalam menyelesaikan Skripsi ini.

Dengan segala keterbatasan dalam skripsi ini, penulis berharap skripsi ini dapat memberikan manfaat bagi penelitian berikutnya. Kritik dan saran akan penulis terima dengan senang hati. Akhir kata penulis ucapkan terimakasih.

Jakarta, 17 Juli 2017

Linda Puspita Dewi

DAFTAR ISI

JUDULi
ABSTRAKiii
LEMBAR PENGESAHANiv
PERNYATAAN ORISINALITASv
KATA PENGANTARvi
DAFTAR ISIviii
DAFTAR TABELxii
DAFTAR GAMBARxiii
DAFTAR LAMPIRAN xiv
BAB I PENDAHULUAN1
A. Latar Belakang Masalah1
B. Identifikasi Masalah9
C. Pembatasan Masalah
D. Perumusan Masalah
E. Kegunaan Penelitian
BAB II KAJIAN TEORITIK12
A. Deskripsi Konseptual
1. Teori Pecking Order12
2. Trade-Off Theory

	3.	Modal Kerja (Working Capital)	16
	4.	Siklus Konversi Kas (Cash Conversion Cycle)	29
	5.	Capital Expenditures	31
	6.	Leverage	35
	В. На	asil Penelitian yang Relevan	37
	C. Ke	erangka Teoritik	44
	1.	Pengaruh siklus konversi kas terhadap modal kerja	45
	2.	Pengaruh Capital Expenditure terhadap modal kerja	46
	3.	Pengaruh Leverage terhadap modal kerja	48
	D. Pe	erumusan Hipotesis	49
BAB	III M	IETODOLOGI PENELITIAN	51
	A. Tu	ujuan Penelitian	51
	B. Ol	bjek dan Ruang Lingkup Penelitian	51
	C. M	etode Penelitian	51
	D. Po	opulasi dan Sampel	52
	E. O _l	perasionalisasi Variabel Penelitian	52
	1.	Variabel Terikat (Dependent Variable)	53
	2.	Variabel Bebas (Independent Variable)	54
	F. Te	eknik Analisis Data	57
	1.	Statistik Deskriptif	57

	2. Pemilihan model terbaik	. 58
	3. Pengujian Asumsi Klasik	. 59
	4. Uji Hipotesis	. 65
BAB	IV_HASIL PENELITIAN DAN PEMBAHASAN	70
	A. Deskripsi Data	70
	1. Hasil Pemilihan Sample	70
	2. Analisis Statistik Deskriptif	. 72
	B. Pengujian Hipotesis	76
	1. Uji Pemilihan Model Terbaik	. 77
	2. Uji Asumsi Klasik	. 79
	3. Analisis Regresi Linier Berganda	84
	4. Uji Hipotesis	86
	C. Pembahasan	91
	1. Pengaruh siklus konversi kas terhadap modal kerja	91
	2. Pengaruh Capital Expenditure terhadap modal kerja	. 93
	3. Pengaruh <i>Leverage</i> terhadap modal kerja	94
BAB	V KESIMPULAN, IMPLIKASI DAN SARAN	. 97
	A. Kesimpulan	97
	B. Implikasi	98
	C. Saran	90

DAFTAR PUSTAKA	101
LAMPIRAN-LAMPIRAN	106
RIWAYAT HIDUP	135

DAFTAR TABEL

Tabel	Judul Ha	laman
II.1	Ringkasan Hasil Penelitian Relevan	38
III.1	Nilai d	63
IV.1	Perhitungan jumlah sample penelitian	71
IV.2	Hasil Analisis Statistik Deskriptif	73
IV.3	Hasil Uji Chow	78
IV.4	Hasil Uji Hausman	79
IV.5	Hasil Uji Multikolinieritas	81
IV.6	Hasil Uji Autokorelasi	82
IV.7	Hasil Uji Heteroskedastisitas	83
IV.8	Hasil Regresi Fixed Effect Model	84
IV.9	Hasil Uji Signifikansi Parsial (Uji T)	87
IV.10	Hasil Pengujian Koefisien Determinasi (R ²)	89
IV. 11	Hasil Uji Signifikansi Simultan (Uji F)	90

DAFTAR GAMBAR

Gamba	ur Judul	Halaman
II.1	Grafik Rasio Modal Kerja Terhadap Total Aset Beberapa	
	Perusahaan Manufaktur di Indonesia	17
II.2	Macam-macam Modal Kerja	21
II.3	Siklus Konversi Kas	30
II.4	Kerangka Pemikiran	49

DAFTAR LAMPIRAN

Lamp	iran Judul	Halaman
1	Daftar Nama Sampel Perusahaan Manufaktur Di Indonesia	107
2	Daftar Sampel Perusahaan Manufaktur di Indonesia	109
3	Inventory Conversion Period (ICP)	112
4	Average Collection Period (ACP)	115
5	Average Payable Period (APP)	118
6	Siklus Konversi Kas (Cash Conversion Cycle (CCC)	121
7	Capital Expenditure (CAPEX)	124
8	Leverage (LEV)	127
9.1	Analisis Statistik Deskriptif	130
9.2	Uji Chow	130
9.3	Uji Hausman	131
9.4	Model Fixed Effect	132
9.5	Uji Normalitas	132
9.6	Uji Multikolinieritas	133
9.7	Uji Autokorelasi	133
9.8	Uji Heteroskedastisitas	133
9.9	Analisis Regresi	134
9.10	Uji T	134
9.11	Uji F	134
9.12	Uii Koefisien Determinasi (R ²)	134

BABI

PENDAHULUAN

A. Latar Belakang Masalah

Globalisasi memiliki dua mata mata pisau dengan fungsi yang berbeda bagi perusahaan. Dengan adanya globalisasi, perusahaan memiliki peluang untuk berekspansi dan melebarkan sayap usahanya seluas mungkin tanpa khawatir dengan batas-batas teritorial negara maupun jarak antar negara. Namun disisi lain, globalisasi memberikan tantangan tersendiri bagi perusahaan karena persaingan tidak hanya terjadi dengan industri sejenis di sekitar wilayah regional atau negara namun juga dari negara lain. Selain persaingan, perusahaan juga memiliki tantangan untuk dapat terhindar dari berbagai risiko yang dapat mengancam perusahaan. Salah satu risiko yang mungkin dialami oleh perusahaan adalah risiko likuiditas. Jika likuiditas pada suatu perusahaan tidak disiasati dengan baik, maka perusahaan terancam mengalami kebangkrutan.

Di Indonesia, masih terdapat kasus perusahaan yang memiliki masalah dengan likuiditas hingga berakhir dengan kepailitan. Salah satunya adalah Batavia Air yang resmi ditutup tahun 2003 karena tidak mampu melakukan pembayaran atas utangnya dengan jumlah hampir mencapai 2,5 triliun (Sindo, 2016). Selain itu PT United Coal Indonesia, PT Bakrieland Development Tbk, PT. Bakrie Finance Corp., Bakrie Life, PT Bakrie Swasakti utama, PT Meranti Maritime, PT Binamitra dan PT Trilion Glory juga mengalami permasalahan yang sama.

Perusahaan harus mengetahui, memahami dan mengaplikasikan ilmu pengelolaan keuangan yang baik sebagai upaya untuk dapat menguatkan posisi perusahaan agar dapat terhindar dari ancaman kebangkrutan. Salah satu cara untuk melihat kekuatan sebuah perusahaan dalam menghindari risiko likuiditas adalah dengan melihat modal kerjanya.

Modal Kerja memiliki kaitan erat dengan ketersediaan aset lancar yang digunakan perusahaan untuk menjalankan kegiatan operasionalnya. Modal kerja merupakan ranah penting pada manajemen keuangan karena merefleksikan pengelolaan aset jangka pendek dan liabilitas perusahaan dengan jatuh tempo kurang dari satu tahun, serta merepresentasikan komponen utama dari item-item *Balance Sheet* Perusahaan (Asmawi Noor Saarani, 2012).

Manajemen modal kerja merupakan salah satu pengambilan keputusan yang menjadi acuan untuk aktivitas keuangan perusahaan. Keputusan penting dalam bidang manajemen keuangan meliputi tiga hal yakni *Capital budgeting, capital structure*, dam *working capital management*. Manajemen modal kerja diperlukan karena kekurangan modal kerja memungkinkan perusahaan mengalami kesulitan dalam membayar hutang jangka pendeknya dan dampak yang paling ekstrem adalah mengalami kebangkrutan. Sebaliknya, Modal kerja yang terlalu tinggi juga dipandang tidak terlalu baik karena bisa menunjukkan bahwa perusahaan memiliki banyak persediaan atau tidak berinvestasi atas kelebihan kas yang mereka miliki (INVESTOPEDIA, 2017).

Perusahaan perlu mengelola modal kerja pada posisi yang benar untuk dapat memiliki likuiditas yang cukup namun juga tidak memiliki banyak *idle cash*. Dana

yang menganggur (*Idle Cash*) seharusnya dapat digunakan perusahaan untuk melakukan ekspansi modal. Melalui ekspansi dengan pengelolaan modal kerja yang efektif maka hal tersebut dapat meningkatkan pertumbuhan dan nilai perusahaan. Namun apabila perusahaan mengurangi modal kerjanya hingga mencapai angka minus, maka perusahaan dapat mengalami kerugian yang potensial sesuai dengan bagian terikat modal kerja yang dikurangi serta terancam risiko likuiditas. Apabila pengurangan modal kerja dilakukan dalam persediaan maka akan berakibat hilangnya keuntungan atas penjualan potensial. Pengurangan persediaan akan membuat perusahaan berpotensi untuk tidak dapat memenuhi permintaan pelanggannya. Apabila pengurangan modal kerja dilakukan dalam hal ketersediaan kas maka perusahaan terancam mengalami risiko likuiditas. Namun jika perusahaan menjaga ketersediaan kas terlalu tinggi dengan mengurangi arus kas keluar maka terdapat penambahan modal kerja. Hal ini baik jika dilihat dari sisi likuiditas namun mengurangi kesempatan perusahaan untuk mendapatkan profit melalui ekspansi.

Masalah yang cukup penting dalam pengelolaan modal kerja adalah menentukan besar modal kerja yang optimal. Modal kerja dapat dinilai optimal ketika dapat memenuhi segala kebutuhan opersional perusahaan, memiliki likuiditas yang cukup dan tidak banyak menyimpan aset lancar yang menganggur. Menurut (Megarifera, 2013) Jumlah modal kerja harus cukup untuk membiayai operasi perusahaan sehari-hari sehingga perusahaan tidak mengalami kesulitan keuangan dan kegagalan akibat ketidakcukupan dalam modal kerja. Kebutuhan modal kerja setiap perusahaan berbeda tergantung kepada jenis industri dan kondisi

perekonomian negara. Modal kerja dapat menunjukkan tingkat keamanan atau *margin of safety* para kreditor khususnya kreditor jangka pendek.

Perusahaan-perusahaan di Indonesia memiliki tingkat rasio modal kerja terhadap total aset yang beragam. Peneliti mengambil lima perusahaan dari berbagai subsektor yang ada pada sektor manufaktur sebagai sampel untuk mengetahui tinggkat modal kerja terhadap total aset. Perusahaan yang dimaksud adalah PT Astra Internasional Tbk, PT Gudang Garam Tbk, PT Indofood CBP Sukses Makmur Tbk, PT Semen Indonesia Tbk dan PT Krakatau Steel Tbk. Selama lima tahun antara tahun 2011 hingga 2015, kelima perusahaan mengalami penurunan rasio modal kerja terhadap total aset. Beberapa perusahaan memilih untuk memiliki modal kerja yang cukup, mencari zona aman untuk menghindari risiko likuiditas namun masih terdapat pula perusahaan yang memiliki modal kerja minus (aset lancar lebih kecil dari liabilitas lancar) dalam grafik tersebut sebagai sampel adalah PT Krakatau Steel Tbk. Hal itu tentu membuat perusahaan memiliki risiko likuiditas tinggi yang dapat mengancam kelangsungan hidup perusahaan. Terlepas dari berbagai keadaan yang mempengaruhi posisi modal kerja PT Krakatau Steel, penting bagi perusahaan untuk mengetahui faktor-faktor yang dapat meningkatkan modal kerja perusahaan.

Besarnya modal kerja pada perusahaan dipengaruhi oleh beberapa faktor tertentu. Tiap perusahaan memiliki standar penetapan modal kerja yang beragam, bergantung kepada jenis perusahaan, ukuran perusahaan serta tipe perusahaan. Perusahaan dalam bidang industri manufaktur membutuhkan modal kerja yang tinggi karena dalam menggerakkan industrinya, perusahaan manufaktur

membutuhkan investasi bahan baku, barang setengah jadi, serta barang jadi untuk melakukan penjualan. Perusahaan dagang tidak memiliki kebutuhan modal kerja sebesar perusahaan industri karena hanya memerlukan persediaan barang jadi. Demikian pula perusahaan jasa, hanya sedikit memerlukan modal kerja karena investasi yang diperlukan hanya pada modal untuk menyelengarakan jasa dan memiliki rata-rata pencairan piutang yang cukup singkat.

Dewasa ini penelitian mengenai manajemen keuangan atau akuntansi keuangan lebih banyak mengambil topik mengenai pengambilan keputusan modal jangka panjang seperti penganggaran modal (capital budgeting) dan struktur modal, namun belum banyak peneliti mengambil tema penelitian mengenai keputusan modal jangka pendek semisal modal kerja. Modal kerja tidak kalah penting dengan modal jangka panjang karena tak sedikit perusahaan yang mengandalkan modal jangka pendek untuk melangsungkan usahanya. (Suleiman M. Abbadi, 2013) dalam penelitiannya menyarankan agar perusahaan kecil cenderung untuk melakukan penekanan dalam ranah pengelolaan modal kerja, dimana perusahaan tersebut dapat meningkatkan keuntungan dan meningkatkan kinerja bisnisnya. Modal kerja yang efektif dapat menyeimbangkan antara risiko dan profitabilitas perusahaan. Manejemen modal kerja yang optimal dapat dicapai kerika perusahaan mampu mengelola trade-off antara profitabilitas dan likuiditas pada komponen modal kerja (Nor Edi Azhar Binti Mohammad, 2013).

Setiap perusahaan memiliki tujuan untuk mendapatkan keuntungan/profitabilitas semaksimal mungkin dengan modal seminim mungkin. Profitabilitas adalah kemampuan perusahaan memperoleh laba dalam hubungannya

dengan penjualan, total aktiva maupun modal sendiri (Nugroho, 2012). Modal kerja tidak hanya memperlihatkan kekuatan perusahaan namun juga berpengaruh signifikan dengan profitabilitas serta penjualan perusahaan. Sehingga selain untuk menjaga stabilitas perusahaan, pengelolaan modal kerja yang baik dapat berimplikasi baik pula pada pendapatan perusahaan terutama *current income*.

Sebagian besar penelitian yang dilakukan diberbagai negara mengenai modal kerja lebih terfokus pada pengaruh yang diberikan modal kerja tehadap kinerja, nilai, maupun profitabilitas perusahaan. Modal kerja merupakan salah satu faktor yang mempengaruhi tinggi rendahnya profitabilitas. Rajesh et al. (2011) dalam (Lestari, 2014) mengemukakan bahwa terdapat hubungan antara profitabilitas dan rasio modal kerja. Penelitian yang berjudul Impact of Working Capital Management on Firm's Profitability tersebut menghasilkan kesimpulan bahwa mayoritas komponen seperti rasio aktiva lancar, rasio perputaran modal kerja, rasio perputaran persediaan, rasio turnover debitur memiliki hubungan positif signifikan dengan profitabilitas yaitu Return On Assets (ROI). Rasio perputaran modal kerja menunjukkan hubungan antara modal kerja dengan penjualan (Lestari, 2014). Penelitian tersebut membuktikan bahwa modal kerja memiliki pengaruh signifikan terhadap profitabilitas, kinerja maupun nilai perusahaan, namun, belum banyak penelitian yang menelusuri lebih lanjut mengenai faktor-faktor yang mempengaruhi modal kerja.

Salah satu faktor yang dapat meningkatkan modal kerja adalah siklus konversi kas. Siklus konversi kas merupakan tenggat waktu yang diperlukan perusahaan dalam mengkonversikan kas yang digunakan untuk mendapatkan/memproduksi persediaan, kemudian bertransformasi menjadi piutang hingga kembali menjadi kas ketika pelanggan melunasi piutangnya. Semakin kecil siklus konversi kas semakin berpeluang meningkatkan kecepatan modal kerja berupa kas kembali ke perusahaan. (Suleiman M. Abbadi, 2013) dalam penelitiannya yang berjudul *The Determinants of Working Capital Requirements in Palestinian Industrial Corporations* mengungkapkan bahwa terdapat faktor-faktor yang mempengaruhi modal kerja yakni siklus konversi kas, arus kas operasi, ukuran perusahaan, profitabilitas dan *leverage*. Siklus konversi kas berkaitan dengan perputaran persediaan, perputaran piutang dan perputaran utang perusahaan, Semakin baik pengelolaan ketiga indikator modal kerja tersebut maka akan semakin efisien pula modal kerja suatu perusahaan.

Perusahaan membutuhkan *Capital Expenditures* dalam melakukan perluasan usaha, pengembangan usaha maupun ekspansi. Ekspansi merupakan salah satu cara yang dilakukan perusahaan untuk memanfaatkan kas berlebih, namun hal tersebut mengurangi modal kerja. Melalui *capital expenditures*, perusahaan dapat memperoleh aktiva tetap serta memperpanjang masa aktiva tetap yang berimplikasi pada peningkatan efisiensi operasional perusahaan. Beberapa penelitian terdahulu yang dilakukan oleh Appuhami (2009), Javad dan Kobrain (2012), (Raheman A. Muhammad K. S., 2012) dan (Ilyas, 2014) membuktikan bahwa *capital expenditures* berpengaruh terhadap modal kerja.

Leverage merupakan salah satu faktor penting yang mempengaruhi modal kerja karena salah satu komponen dari modal kerja adalah hutang, terutama hutang jangka pendek perusahaan. Rasio Leverage merupakan rasio yang menyangkut

jaminan, mengukur kemampuan perusahaan untuk membayar hutang apabila perusahaan dimasa yang akan datang dilikuidasi atau dibubarkan. Besarnya leverage menentukan porsi dari modal kerja. Semakin tinggi tingkat leverage perusahaan memungkinkan terjadinya penurunan modal kerja. Penelitian yang dilakukan oleh Mohammad dan Elias (2013), (Suleiman M. Abbadi, 2013), (Onaolapo, 2015), (Gill, 2011), (Shaista Wasiuzzaman, 2013), serta (Muhammad Mehtab Azeem, 2015) memiliki hasil penelitian yang serupa yakni terdapat pengaruh leverage terhadap modal kerja. Namun penelitian lain tentang pengaruh Leverage terhadap modal kerja menunjukkan hasil yang tidak konsisten. Penelitian yang dilakukan Nazir dan Afza (2009), (Suleiman M. Abbadi, 2013), (Adekunle A. Onaolapo PhD, 2015), (Shaista Wasiuzzaman, 2013), (Muhammad Mehtab Azeem, 2015) dan Asmawi (2012) menemui hubungan negatif signifikan antara leverage dengan modal kerja. Sementara penelitian yang dilakukan oleh Valipour (2012) dan (Gill, 2011) menunjukkan hasil bahwa leverage berpengaruh positif tidak signifikan terhadap jumlah modal kerja.

Uraian diatas menyimpulkan bahwa terdapat pengaruh antara siklus konversi kas, *Capital Expenditure* dan *leverage* terhadap modal kerja. Namun, penelitian yang telah disebutkan sebelumnya merupakan penelitian yang dilakukan di negara lain, sehingga peneliti tertarik untuk meneliti hal tersebut di Indonesia. Terdapatnya ketidakkonsistenan pada hasil penelitian terdahulu mendorong peneliti untuk melakukan penelitian dengan tema serupa.

Berdasarkan uraian latar belakang masalah diatas, maka penelitian ini mengambil judul "Pengaruh Siklus Konversi Kas, Capital Expenditure, dan Leverage terhadap modal kerja."

B. Identifikasi Masalah

Berdasarkan latar belakang masalah yang telah diuraikan di atas, maka peneliti mengidentifikasikan permasalahan terkait modal kerja yakni tingkat keberagaman rasio modal kerja terhadap total aset perusahaan-perusahaan di Indonesia. Beberapa perusahaan memiliki tingkat modal kerja terhadap total aset yang minus sehingga mengindikasikan bahwa perusahaan memiliki risiko likuiditas yang besar. Hal tersebut yang mendasari diperlukannya penelitian lebih lanjut untuk mengetahui faktor yang dapat meningkatkan modal kerja untuk meningkatkan angka likuiditas perusahaan.

Siklus konversi kas merupakan salah satu faktor yang dapat mengoptimalkan modal kerja, namun masih terdapat perusahaan yang memiliki siklus konversi kas yang panjang sehingga memperlambat perusahaan dalam mendapatkan kas nya kembali. Kas merupakan salah satu aset lancar perusahaan yang menjadi salah satu komposisi modal kerja. Namun penelitian mengenai pengaruh siklus konversi kas terhadap modal kerja di Indonesia belum dilakukan sehingga peneliti memilih siklus konversi kas sebagai variabel independen dalam penelitian ini.

Capital expenditure dalam pelaksanaannya memiliki konsekuensi dua aliran kas yakni aliran kas masuk dan aliran kas keluar. Aliran kas keluar terjadi ketika perusahaan lakukan capital expenditure. Disisi lain, capital expenditure membuat Aliran kas masuk setiap tahunnya karena pembaruan aset tersebut. Peneliti ingin

mengetahui mana yang lebih mempengaruhi modal kerja dari kedua konsekuensi aliran kas tersebut pada perusahaan manufaktur yang ada di Indonesia.

Tingkat utang perusahaan manufaktur di Indonesia beragam. Utang merupakan salah satu alternatif bagi perusahaan untuk mendapatkan modal. Modal kerja memiliki komposisi hutang lancar didalamnya. Namun pembuktian mengenai pengaruh antara keseluruhan utang terutama tingkat utang atas total aset terhadap modal kerja belum banyak diteliti di indonesia, serta sektor yang diteliti peneliti terdahulu dengan objek penelitian di Indonesia masih terbatas.

C. Pembatasan Masalah

Berdasakan latar belakang masalah dan Identifikasi masalah yang telah diungkapkan maka pembatasan penelitian pada penelitian ini adalah:

- Peneliti menggunakan populasi dan sampel perusahaan manufaktur yang terdaftar pada Bursa Efek Indonesia (BEI).
- 2. Periode penelitian selama 3 tahun yaitu sejak 2014 hingga 2016.
- 3. Variabel bebas (independen) yang diuji yaitu siklus konversi kas, *Capital Expenditure* dan *leverage* dengan modal kerja sebagai variabel terikat (dependen).

D. Perumusan Masalah

Berdasarkan pada permasalahan yang dijabarkan pada latar belakang dan identifikasi masalah terdapat adanya permasalahan dan *research* gap. Terdapat fluktuasi dari rasio modal kerja pada beberapa perusahaan yang dijadikan sampel pengamatan. Beberapa peneliti terdahulu dengan pembahasan serupa melakukan

penelitian dengan observasi penelitian diluar Indonesia sehingga diperlukan penelitian lanjutan yang dilakukan di Indonesia untuk mengonfirmasi maupun melengkapi hasil penelitian terdahulu. Karena alasan tersebut, maka peneliti dapat merumuskan beberapa permasalahan terkait modal kerja, yaitu:

- 1. Apakah siklus konversi kas berpengaruh positif terhadap modal kerja?
- 2. Apakah *capital expenditures* berpengaruh positif terhadap modal kerja?
- 3. Apakah *leverage* berpengaruh negatif terhadap modal kerja?

E. Kegunaan Penelitian

Penelitian ini diharapkan memiliki kegunaan sebagai berikut:

1. Kegunaan Teoritis

Penelitian ini diharapkan dapat menambah khasanah pengembangan ilmu pengetahuan khususnya ilmu ekonomi dan keuangan. Serta dapat dijadikan dasar pertimbangan bagi perusahaan dalam menentukan jumlah modal kerja yang optimal.

2. Kegunaan Praktis

Penelitian ini diharapkan dapat memberikan kontribusi dalam pengembangan literatur dibidang ekonomi khususnya akuntansi keuangan dan dapat menjadi referensi penelitian selanjutnya dengan tema serupa serta menambah wawasan bagi pembacanya.

BAB II

KAJIAN TEORITIK

A. Deskripsi Konseptual

1. Teori Pecking Order

Menurut (Myers.s, 1984) dalam (Nor Edi Azhar Binti Mohammad, 2013) teori *Pecking Order* dapat menjelaskan mengenai struktur modal perusahaan yang optimal. Teori ini berfokus pada kecenderungan perusahaan dalam melakukan pembiayaan bisnis menggunakan laba ditahan dibandingkan dengan menggunakan utang. (S. A. Ross, 2010) dalam penelitian (Karina, 2012) menyebutkan bahwa teori *Pecking order* memiliki prinsip bahwa perusahaan sebaiknya menggunakan pembiayaan internal terlebih dahulu sebagai sumber pendanaan. Penerapan teori ini dapat membuat perusahaan cenderung untuk menghindari pendanaan eksternal sebagai pilihan pertama untuk sumber pendanaan modal kerja atau mengalokasikan sedikit pendanaan eksternal sebagai sumber modal kerja.

Menurut Myers (1984), *pecking order theory* merupakan sebuah teori yang menyatakan bahwa "Perusahaan dengan tingkat profitabilitas yang tinggi memiliki tingkat hutang rendah, dikarenakan perusahaan yang profitabilitasnya tinggi memiliki sumber dana internal yang berlimpah.". Namun tidak terdapat ketentuan mutlak berdasarkan angka mengenai struktur modal yang optimal

didalam teori ini. Meski demikian, secara spesifik perusahaan memiliki urutan preferensi (hierarki) dalam penggunaan dana.

Menurut (Dr. Mamduh M. Hanafi, 2011), perusahaan memiliki urutan preferensi dalam penggunaan dana dalam skenario teori *pecking order* yakni sebagai berikut:

- Perusahaan memilih pendanaan internal. Dana internal tersebut diperoleh dari laba (keuntungan) yang dihasilkan dari kegiatan perusahaan.
- 2. Perusahaan menghitung target rasio pembayaran didasarkan pada perkiraan kesempatan investasi. Perusahaan berusaha menghindari perubahan dividen yang tiba-tiba. Dengan kata lain, pembayaran dividen diusahakan konstan atau, kalau boleh berubah terjadi secara gradual dan tidak berubah secara signifikan.
- 3. Karena kebijakan dividen yang konstan, digabung dengan fluktuasi keuntungan dan kesempatan investasi yang tidak bisa diprediksi, akan menyebabkan aliran kas yang diterima oleh perusahaan akan lebih besar dibandingkan dengan pengeluaran investasi pada saat-saat tertentu, dan akan lebih kecil pada saat yang lain. Jika kas tersebut lebih besar, perusahaan akan membayar utang atau membeli surat berharga. Jika kas tersebut lebih kecil maka perusahaan akan menggunakan kas yang dipunyai atau menjual surat berharga.
- 4. Jika pendanaan eksternal diperlukan, perusahaan akan mengeluarkan surat berharga yang paling aman terlebih dahulu. Perusahaan akan

memulai dengan utang, kemudian dengan surat berharga campuran (*hybrid*) seperti obligasi konvertibel, dan kemudian saham sebagai pilihan terakhir.

Pecking order theory menjelaskan mengenai urutan pendanaan. Kebutuhan dana perusahaan ditentukan oleh kebutuhan investasi. Pecking order theory dapat menjelaskan alasan perusahaan yang mempunyai tingkat keuntungan yang tinggi lebih memilih mempunyai tingkat hutang yang kecil. Tingkat utang yang lebih kecil tersebut karena perusahaan dengan tingkat keuntungan yang tinggi sudah tidak membutuhkan dana eksternal karena telah menjadikan dana internal mereka cukup untuk memenuhi kebutuhan investasinya (Dr. Mamduh M. Hanafi, 2011).

2. Trade-Off Theory

Myers (2001) memperkenalkan *trade off theory* pada tahun 2001 yang berbunyi "Perusahaan akan berhutang sampai pada tingkat hutang tertentu, dimana penghematan pajak (*tax shields*) dari tambahan hutang sama dengan biaya kesulitan keunagan (*financial distress*)". Menurut (Dr. Mamduh M. Hanafi, 2011), Biaya kesulitan keuangan (*financial distress*) adalah biaya kebangkrutan (*bankruptcy costs*) atau reorganisasi, dan biaya keagenan (*agency costs*) yang meningkat akibat dari turunnya kredibilitas suatu perusahaan.

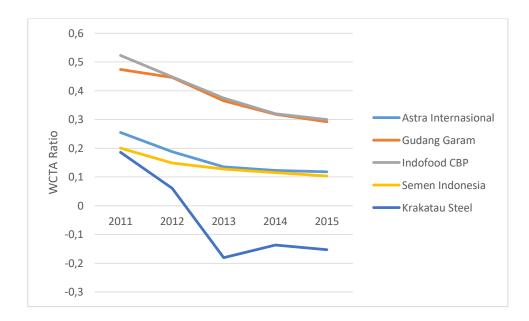
Dalam menentukan struktur modal yang optimal, *trade-off theory* memasukkan beberapa faktor yaitu pajak, biaya keagenan (*agency cost*) dan

biaya kesulitan keuangan (*financial distress*) namun tetap mempertahankan efisiensi pasar dan asimetri informasi sebagai perimbangan dan manfaat dari penggunaan utang. Tingkat utang yang optimal tercapai ketika penghematan pajak (*tax shields*) mencapai jumlah maksimal terhadap biaya kesulitan keuangan (*costs of financial distress*) (Khusnul, 2012).

Teori ini menjelaskan perilaku manajer dalam kerangka *trade-off* antara penghematan pajak dan biaya kesulitan keuangan dalam menentukan struktur modal perusahaan. Perusahaan tidak dapat secara bebas menggunakan hutang sebanyak-banyaknya karena dapat meningkatkan potensi kebangkrutan (Dr. Mamduh M. Hanafi, 2011).

(F. Brigham, 2011) mengemukakan bahwa Teori Pertukaran (*trade-off theory*) merupakan teori struktur modal yang menyatakan bahwa perusahaan menukar manfaat pajak dari pendanaan utang dengan masalah yang ditimbulkan oleh potensi kebangkrutan. Perusahaan memiliki target maupun sasaran rasio utang yang membutuhkan utang kurang dari 100 persen untuk membendung dampak potensi kebangkrutan. Bahkan beberapa perusahaan besar menggunakan jumlah utang yang lebih sedikit dibanding standar yang disarankan oleh teori tersebut agar dapat menghindari risiko kebangkrutan.

Teori *Trade-off* tidak dapat menjadi acuan baku untuk menentukan struktur modal yang optimal dan akurat dari sebuah perusahaan, namun teori ini memungkinkan perusahaan untuk mengoptimalkan penggunaan *leverage*, yaitu ((Mirza, 1996) dalam (Khusnul, 2012)):


- 1. Perusahaan dengan resiko usaha yang lebih rendah dapat meminjam lebih besar tanpa harus terbebani oleh *expected financial distress* sehingga diperoleh keuntungan pajak karena penggunaan utang yang lebih besar.
- 2. Perusahaan dengan aset berwujud dan *marketable assets* seharusnya dapat menggunakan utang lebih besar dari perusahaan yang memiliki nilai terutama aset tidak berwujud seperti paten dan *goodwill*. Hal ini disebabkan karena aset tak berwujud lebih mudah mengalami penurunan nilai ketika terjadi *financial distress* dibandingkan aset berwujud.
- 3. Perusahaan yang berdomisili di negara dengan pajak yang tinggi seharusnya memiliki utang lebih tinggi pada struktur modal daripada perusahaan yang membayar pajak pada level yang lebih rendah karena bunga yang dibayarkan perusahan diakui pemerintah sehingga mengurangi pajak penghasilan.

3. Modal Kerja (Working Capital)

Modal kerja memiliki peranan penting bagi perusahaan baik untuk menjalankan aktivitas operasional maupun terhadap keputusan investasi. Pembahasan mengenai modal kerja erat kaitannya dengan aktiva lancar dan kewajiban lancar. Rata-rata perusahaan manufaktur dapat mengembangkan aktiva lancar hingga melebihi separuh dari total aktivanya. Beberapa perusahaan skala kecil mengandalkan kewajiban jangka pendek sebagai sumber utama dari pendanaan eksternalnya.

Modal kerja memiliki dampak langsung terhadap risiko, pengembalian dan harga saham perusahaan (James C.Van Horne & John M. Wachowicz, 2005).

Modal kerja juga menjadi salah satu indikator dalam memprediksi kesulitan keuangan dengan menggunakan teknik analisis Altman Z Score.

Gambar II.1: Grafik Rasio Modal Kerja Terhadap Total Aset Beberapa Perusahaan Manufaktur di Indonesia

Sumber: www.idx.co.id (data diolah peneliti, 2017)

Melalui grafik tersebut terlihat bahwa tingkat modal kerja terhadap aset tetap perusahaan manufaktur di indonesia beragam dan mengalami penurunan.

a. Pengertian Modal Kerja

Terdapat beberapa pengertian modal kerja menurut para ahli yang dapat mendeskripsikan pengertian dari modal kerja itu sendiri. Menurut (Riyanto, 2010), modal kerja merupakan dana yang dikeluarkan perusahaan untuk membiayai kegiatan operasi perusahaan dengan harapan dapat kembali lagi ke dalam perusahaan dalam waktu singkat melalui hasil penjualan output produksinya. (Arthur J. Keown, 2010) mendefinisikan modal kerja sebagai investasi total perusahaan pada aktiva lancar atau

aktiva yang diharapkan dapat dikonversi menjadi kas dalam waktu satu tahun atau kurang dari satu tahun. Menurut (Wild, 2014) Modal kerja (working capital) merupakan selisih antara aktiva lancar setelah dikurangi oleh kewajiban lancar, sehingga jumlah modal kerja tercermin melalui komposisi aktiva lancar dan utang lancar yang terdapat pada neraca perusahaan (Mardiyanto, 2009).

Modal kerja merupakan jumlah bersih dari sumber daya perusahaan yang relatif lancar, juga merupakan penyangga lancar yang tersedia untuk dapat memenuhi kebutuhan keuangan perusahaan pada siklus operasi (Donald E. Kieso, 2008). Nilai dari modal kerja tidak tersurat dalam laporan keuangan tetapi penting bagi stakeholder terutama bankir dan kreditor sebagai indikasi atas likuiditas jangka pendek perusahaan.

Menurut (Zulia Hanum, 2012) modal kerja adalah seluruh investasi perusahaan kedalam aktiva lancar yang meliputi persediaan, piutang, kas dan surat-surat berharga dimana seluruh investasi diharapkan kembali kedalam perusahaan dalam waktu paling lama satu tahun. Modal terdiri dari item-item yang ada pada sisi kanan suatu neraca yakni hutang, saham biasa, saham preferen, dan laba ditahan.

Berdasarkan pada pengertian yang telah dijabarkan para ahli maka dapat disimpulkan bahwa modal kerja merupakan aset lancar yang telah terbebas dari kewajiban lancar dan akan menjadi penyangga kegiatan operasional perusahaan yang diharapkan akan kembali ke perusahaan dalam tempo yang singkat melalui penjualan produk untuk selanjutnya akan kembali digunakan dalam rangka membiayai kegiatan operasional perusahaan.

Menurut (James C. Van Horne & John M. Wachowicz, 2005) Terdapat dua konsep utama modal kerja yaitu :

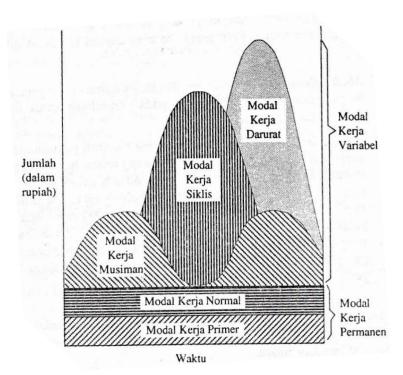
- Modal kerja bersih (net working capital) yang berupa perbedaan nilai uang antara aktiva lancar dan kewajiban jangka pendek.
- 2) Modal kerja kotor (*gross working capital*) yang merupakan investasi perusahaan dalam aktiva lancar seperti kas dan sekuritas yang dapat diperjualbelikan, piutang, dan persediaan.

Konsep modal kerja yang dimiliki oleh (F. Brigham, 2011) memiliki kesamaan dengan konsep diatas namun terdapat tambahan yakni modal kerja operasi bersih. Modal kerja operasi bersih merupakan selisih antara aset lancar dengan kewajiban lancar yang tidak dikenakan bunga (utang usaha dan akrual).

(Riyanto, 2010) mengemukakan konsep pengertian modal kerja yang terdiri dari :

 Konsep Kuantitatif, merupakan konsep yang mendasarkan pada kuantitas dana yang tertanam dalam unsur-unsur aktiva lancar. Aktiva lancar ini merupakan aktiva dimana dana yang tertanam didalamnya akan dapat bebas kembali dalam waktu yang pendek. Modal kerja

- dalam konsep ini bisa disebut dengan modal kerja bruto yang berupa keseluruhan dari jumlah aktiva lancar.
- 2. Konsep kualitatif, yang memiliki nama lain modal kerja neto (net working capital) merupakan pengertian modal kerja yang mempertimbangkan jumlah kewajiban lancar yang harus dilunasi oleh perusahaan. Konsep ini hanya menggolongkan modal kerja sebagai aktiva lancar yang benar-benar dapat digunakan untuk membiayai operasional perusahaan untuk menjaga likuiditasnya. Sehingga modal kerja menurut konsep ini adalah kelebihan aktiva lancar di atas kewajiban lancarnya.
- 3. Konsep Fungsionil, mendasarkan pada fungsi dari dana dalam menghasilkan pendapatan (*income*). Setiap dana yang menghasilkan pendapatan saat ini (*current income*) selama periode akuntansi melalui aktivitas operasi sesuai dengan tujuan perusahaan. Konsep ini hanya mengakui kas dan persediaan serta sebagian piutang sebagai modal kerja yang sesungguhnya.


b. Jenis-jenis modal kerja

Kebutuhan modal kerja perusahaan ditentukan oleh aktifitas produksi dan kapasitas produksi yang dilakukan perusahaan. Perubahan kapasitas industri merubah kebutuhn akan modal kerja. AW Taylor dalam (Ambarwati, 2010) membedakan modal kerja menjadi :

1) Modal kerja permanen (Permanent Working Capital)

Modal kerja permanen merupakan modal kerja yang harus dimiliki dalam memenuhi kebutuhan jangka panjang minimum perusahaan (James C.Van Horne & John M. Wachowicz, 2005). Modal kerja permanen dibedakan menjadi:

- Modal kerja primer (*Primary Working* Capital) yaitu jumlah minimal modal kerja yang harus dimiliki perusahaan agar dapat terus beroperasi
- 2) Modal kerja normal (Normal Working Capital) yaitu modal kerja yang harus ada dalam perusahaan agar dapat beroperasi dalam kapasitas normal

Gambar II.2 Macam-macam modal kerja Sumber: (Riyanto, 2010) Hal.62

- 2) Modal kerja variabel (Variable Working Capital)
 Modal kerja variabel merupakan modal kerja yang berubah setiap
 waktu sesuai dengan proporsional perubahan kapasitas produksi.
 Modal kerja variabel terdiri dari:
 - Modal kerja musiman (Seasonal Working Capital), yakni modal kerja yang jumlahnya dapat berubah sesuai dengan perubahan/fluktuasi musim atau permintaan
 - 2) Modal kerja siklis (*Cyclical Working Capital*), yakni modal kerja yang berubah akibat fluktuasi konjungtor
 - 3) Modal kerja darurat (*Emergency Working Capital*), yaitu modal kerja yang berubah sesuai dengan keadaan yang terjadi diluar kendali dan kemampuan perusahaan.

c. Sumber Modal Kerja

Modal kerja meningkat disebabkan oleh sumber-sumbernya yang lebih besar dibanding penggunaannya sehingga mempunyai efek neto yang positif terhadap modal kerja (Riyanto, 2010).

(Richard A. Brealey, 2008) dalam bukunya yang berjudul "Dasardasar Manajemen Keuangan Perusahaan" menjelaskan bahwa peningkatan modal kerja adalah investasi sehingga menyiratkan arus kas negatif sedangkan penurunan modal kerja menyiratkan arus kas positif. Arus kas diukur dengan perubahan modal kerja bukan tingkat modal kerja.

(Kasmir, 2016) dalam (Zulia Hanum, 2012) menyebutkan bahwa kebutuhan modal kerja mutlak untuk disediakan oleh perusahaan dalam bentuk apapun, untuk penyediaannya diperlukan sumber-sumber modal kerja yang dapat dicari dari berbagai sumber yang tersedia. Pemilihan sumber daya yang digunakan untuk modal kerja harus diperhatikan untung ruginya bagi modal kerja itu sendiri agar tidak menjadi beban di masa depan maupun masalah yang tidak diinginkan oleh perusahaan. Adapun sumber-sumber modal kerja yang dapat digunakan menurut (Kasmir, 2016) yakni sebagai berikut;

- 1. Hasil operasi perusahaan
- 2. Keuntungan penjualan surat-surat berharga
- 3. Penjualan saham
- 4. Penjualan aktiva tetap
- 5. Penjualan obligasi
- 6. Memperoleh pinjaman
- 7. Dana hibah, dan
- 8. Sumber lainnya.

d. Penggunaan Modal Kerja

Modal kerja digunakan perusahaan untuk berbagai hal yang berkaitan dengan kegiatan operasional perusahaan. Penggunaan modal kerja memiliki keterkaitan dengan sumber perolehan modal kerja. Penggunaan modal kerja dapat mempengaruhi jumlah modal kerja yang dimiliki oleh perusahaan. Penggunaan dana untuk modal kerja dapat diperoleh dari

kenaikan aktiva dan menurunnya pasiva (Kasmir, 2016). Menurut (Kasmir, 2016), pada umunya penggunaan modal kerja biasa dilakukan perusahaan untuk:

- 1. Pengeluaran untuk gaji, upah, biaya operasi perusahaan lainnya;
- 2. Pengeluaran untuk membeli bahan baku atau barang dagangan;
- 3. Menutupi kerugian akibat pembelian surat berharga;
- 4. Pembentukan dana;
- 5. Pembelian aktiva tetap;
- 6. Pembayaran utang jangka panjang;
- 7. Pembelian atau penarikan kembali saham yang beredar;
- Pengambilan uang atau barang untuk kepentingan pribadi atau dividen, dan;
- 9. Penggunaan lainnya.

Penggunaan modal kerja dapat merubah jumlah modal kerja namun tidak semua pengeluaran yang disebutkan diatas dapat merubah komposisi modal kerja. Ketika pengeluaran dilakukan untuk mendapatkan sesuatu yang tidak merubah aktiva maka hal tersebut tidak mengubah modal kerja.

e. Faktor – faktor yang mempengaruhi modal kerja

Kadar modal kerja disetiap perusahaan beragam, bergantung pada faktor-faktor yang ada pada perusahaan yang mempengaruhi modal kerja itu sendiri. Adapun faktor-faktor yang mempengaruhi modal kerja menurut (Kasmir, 2016) adalah :

1) Jenis Perusahaan

Jenis perusahaan dalam praktiknya meliputi dua macam, yakni perusahaan yang bergerak dalam bidang jasa dan non jasa. Perusahaan industri berpeluang untuk mengaami kelebihan modal kerja lebih banyak dibanding perusahan jasa. Hal itu disebabkan oleh jumlah investasi dalam bidang kas, piutang dan persediaan yang lebih besar dibanding perusahaan jasa.

2) Syarat Kredit

Penjualan kredit memberikan kemudahan bagi konsumen untuk membayar pembelian dengan angsuran. Terdapat beberapa hal yang penting untuk diperhatikan, Pertama adalah syarat pembelian barang baku dan barang dagangan yang dapat mempengaruhi modal kerja. Syarat kredit mempengaruhi pengeluaran kas, jika persyaratan kredit lebih mudah maka akan sedikit kas yang diperlukan. Kedua adalah mengenai penjualan barang. Apabila syarat pembelian kredit lebih lunak, maka modal kerja yang dibutuhkan akan semakin besar.

3) Waktu Produksi

Waktu produksi merupakan jangka waktu atau lamanya produksi suatu barang. Semakinlama waktu yang digunakan untuk memprodksi suatu barang maka makin besar modal kerja yang digunakan.

4) Tingkat Perputaran Persediaan

Tingkat perputaran persediaan yang semakin rendah akan semakin memperbesar kebutuhan modal kerja. Dibutuhkan perputaran

persediaan yang cukup tinggi untuk menurunkan risiko kerugian akibat penurunan harga barang sera menghemat biaya penyimpanan dan pemeliharaan.

Menurut (Riyanto, 2010), jumlah modal kerja bergantung kepada dua faktor yaitu periode perputaran atau periode terikatnya modal kerja dan pengeluaran kas rata-rata setiap harinya. Semakin besar jumlah pengeluaran kas mengindikasikan kebutuhan modal kerja yang semakin besar.

f. Strategi Pembiayaan Modal Kerja

Menurut Brigham & Houston (2004) dalam (Karina, 2012), kebijakan modal kerja berkaitan dengan target dari masing-masing komponen modal kerja yakni yakni aset lancar dan bagaimana pembiayaan atas aset lancar tersebut. Pada umumnya, pengelolaan modal kerja dapat menguntungkan bagi perusahaan ketika memiliki peluang investasi aset jangka pendek dengan pembiayaan jangka pendek. Menurut Emery *et al.* (2007) dalam (Karina, 2012), pembiayaan jangka pendek lebih menguntungkan dari segi biaya yang lebih terjangkau dibandingkan dengan pembiayaan jangka panjang. Menurut (Karina, 2012), terdapat tiga strategi fundamental sebagai dasar pengambilan keputusan pengelolaan modal kerja dengan penjelasan lebih lanjut dibawah ini:

1) Maturity-Matching/Moderate Approach

Pendekatan ini membuat perusahaan meminimalisasi risiko likuiditas perusahaan dengan menyesuaikan jatuh tempo aset dan kewajiban. Perusahaan membiayaai aset lancar dalam variasi musiman dengan kewajiban jangka pendek yang sama jatuh temponya. Pinjaman jangka pendek dalam pendekatan ini mencapai titik nol pada titik terendah musiman. Sebaliknya perusahaan membiayai komponen aset lancar permanen dan aset tetap dengan kewajiban jangka panjang dan modal.

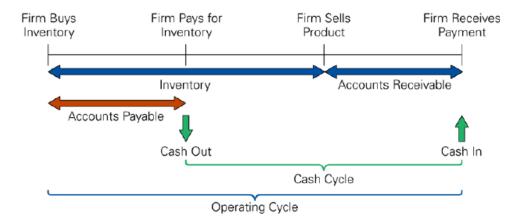
Pendekatan ini menggunakan strategi moderat (*moderate strategy*) yakni perusahaan menjaga keseimbangan jumlah kas, surat-surat berharga, dan persediaan. Kebijakan kredit pun dijalamkan demi menghasilkan jumlah piutang yang seimbang.

2) Conservative/Relaxed/Flexible Approach

Pendekatan ini mengasumsikan bahwa perusahaan akan selalu mendapatkan dana. Pada saat perusahaan mengalami kesulitan akibat kondisi ekonomi memburuk, dana akan tersedia tetapi dengan biaya yang lebih tinggi. Pendekatan ini mengandalkan pembiayaan jangka panjang yang lebih banyak untuk mencegah risiko kredit tersebut dan menggunakan pembiayaan jangka pendek yang lebih sedikt dari pada *maturyty-matching approach*.

Pembiayaan jangka panjang digunakan utnuk membiayai aset tetap, aset lancar permanen, dan sebagian aset lancar Ketika kebutuhan sementara. aset tinggi, perusahaan menggunakan pembiayaan jangka pendek dan saat sebaliknya perusahaan menggunakan pembiayaan jangka panjang dan menginyestasikan kelebihan dana pada surat-surat berharga sehingga perusahaan membentuk safety margin. Pendekatan ini menggunakan strategi fleksibel (*flexible strategy*) yakni keadaan dimana perusahaan memiliki kas, surat-surat berharga, dan persediaan yang besar. Kebijakan kredit lebih longgar membuat jumlah piutang yang lebih besar.

3) Aggressive/Restricteve-Approach


Masalah dari kedua metode yang telah dijelaskan sebelumnya adalah dana jangka panjang yang lebih mahal dibanding dana jangka pendek. Melalui pendekatan ini, perusahaan lebih banyak menggunakan pembiayaan jangka pendek dibanding dengan pembiayaan jangka panjang dengan tujuan untuk meningkatkan profitabilitas. Pendekatan ini menggunakan restrictive strategy dimana perusahaan menjaga kas, surat-surat berharga, dan persediaan dalam jumlah yang minimal. Kebijakan kredit diperketat agar jumlah piutang menjadi minim.

Modal kerja diukur menggunakan rasio modal kerja terhadap total aset atau *Working Capital to Total Aset Ratio* (*WCR*). Penggunaan rasio tersebut mengacu pada penelitian yang telah dilakukan sebelumnya oleh (Suleiman M. Abbadi, 2013), (Adekunle A. Onaolapo PhD, 2015), (Gill, 2011), (Muhammad Mehtab Azeem, 2015), (Shaista Wasiuzzaman, 2013) dan (Megarifera, 2013) dengan rumus sebagai berikut:

$$WCR = \frac{\text{Aset Lancar} - \text{Liabilitas Lancar}}{\text{Total Aset}}$$

4. Siklus Konversi Kas (Cash Conversion Cycle)

Setiap perusahaan menjalani suatu siklus modal kerja dengan tahap awal membeli atau memproduksi persediaan baik dengan transaksi tunai maupun kredit, menyimpan persediaan barang dan menjual persediaan tersebut kepada konsumen baik secara tunai atau kredit hingga akhirnya mendapatkan kas. Menurut (F. Brigham, 2011), cash conversion cycle atau siklus konversi kas merupakan jeda waktu antara pembayaran untuk modal kerja dan penagihan kas dari penjualan persediaan yang didalamnya terdapat modal kerja. Dengan demikian siklus konversi kas yang semakin sempit akan mempermudah perusahaan untuk mendapatkan kas secara cepat sehingga mengembalikan jumlah modal kerja yang ada pada perusahaan.

Gambar II.3 Siklus Konversi Kas

Sumber: (www.finbrain-itc.be, 2015)

Menurut (James C.Van Horne & John M. Wachowicz, 2005), *Cash conversion cycle* memiliki komponen penting yang terdiri :

1. Periode konversi persediaan (*Inventory Conversion Period*), merupakan rata-rata waktu yang dibutuhkan untuk mengubah bahan mentah menjadi barang jadi dan menjualnya. Formula yang digunakan untuk mendapatkan periode konversi persediaan adalah:

$$ICP = \frac{Persediaan}{Harga Pokok Penjualan/360}$$

2. Periode penerimaan rata-rata (*Average Collection Period-ACP*), adalah waktu yang diberikan kepada pelanggan untuk membayar barang setelah penjualan dalam arti lain merupakan rata-rata waktu yang dibutuhkan untuk mengubah piutang perusahaan menjadi kas atau untuk menagih kas setelah terjadi penjualan. Menurut (F. Brigham, 2011) dan (Ebrahim Manoori, 2012) periode penerimaan

rata rata (ACP) atau yang juga dapat disebut dengan jumlah hari penjualan belum tertagih (*day sales outstanding-DSO*) didapatkan dengan rumus periode penerimaan rata-rata adalah sebagai berikut;

$$ACP = \frac{\text{Piutang Usaha}}{\text{Penjualan/365}}$$

3. Periode penagihan utang (Average Payable Period)

Periode penagihan utang yang juga dapat disebut sebagai *payables* deferral period, merupakan waktu rata-rata antara pembelian bahan baku dan tenaga kerja dengan pembayaran kasnya.

$$APP = \frac{\text{Utang Usaha}}{\text{Harga Pokok Penjualan/365}}$$

Ketiga komponen ini dapat dibentuk menjadi sebuah formula untuk mengetahui *cash conversion cycle* seperti yang tertera didalam buku "Dasar-dasar Manajemen Keuangan" karya (F. Brigham, 2011) dengan rumus sebagai berikut:

$$ICP + ACP - APP = CCC$$

5. Capital Expenditures

Capital Expenditures merupakan pengeluaran-pengeluaran yang harus dicatat sebagai aktiva (dikapitalisir). Berbagai pengeluaran yang akan mendatangkan manfaat lebih dari suatu periode akuntansi termasuk kedalam kategori tersebut disebut dengan Capital Expenditure. Demikian pula dengan pengeluaran-pengeluaran yang akan menabah efisiensi, perpanjangan umur

aktiva atau meningkatkan kapasitas maupun mutu produksi (Soemarso, 2006).

Menurut (Jerry J. Weygandt, 2009), capital expenditure merupakan biaya penambahan dan peningkatan kualitas yang dikeluarkan untuk meningkatkan efisiensi operasional, kapasitas produksi, atau masa manfaat aset tetap yang terjadi secara insidental. Penambahan dan peningkatan kualitas ini akan meningkatkan investasi perusahaan dalam fasilitas produksi.

Capital Expenditure menurut (Mulyadi, 2012) merupakan biaya yang mempunyai manfaat lebih dari satu periode akuntansi dengan keperluan yang melibatkan jumlah besar dan dicatat sebagai aktiva.

Melalui beberapa pengertian diatas dapat disimpulkan bahwa *capital expenditure* merupakan biaya yang dikeluarkan oleh perusahaan dalam rangka menambah masa manfaat aset yang dapat bermanfaat untuk meningkatkan kegiatan operasional perusahaan dan memiliki masa manfaat lebih dari satu periode akuntansi.

Terdapat beberapa kriteria yang menentukan sebuah pengeluaran untuk dapat diklasifikasikan sebagai *capital expenditures* menurut (Soemarso, 2006) yaitu:

- a. Meningkatkan masa manfaat yang akan dirasakan lebih dari satu periode akuntansi;
- b. Meningkatkan kualitas produksi atau jasa;
- c. Meningkatkan kuantitas produksi atau jasa;

d. Perlakukan akuntansi untuk capital expenditure adalah dengan kapitalisasi.

Menurut (Soemarso, 2006) dalam bukunya yang berjudul "Akuntansi Suatu Pengantar", *capital expenditure* memiliki jenis-jenis dengan penjabaran sebagai berikut:

- a. Penambahan (*Addition*) merupakan pengeluaran untuk menambah aktiva tetap yang telah ada (lama) dengan yang baru.
- b. Penggantian (*Replacement*) adalah penggantian sebagian dari suatu aktiva tetap yang pada umumnya disebabkan oleh bagian (komponen) yang diganti tersebut sudah dalam keadaan rusak.
- c. Perbaikan besar-besaran (*Betterment and improvement*) ialah pengeluaran untuk perbaikan insidental suatu aktiva tetap yang mungkin mengalami kerusakan dengan maksud tidak hanya sekedar membuat aktiva tetap menjalankan fungsi dengan sebagaimana mestinya tetapi lebih kepada menambah nilai atau memperpanjang usia pengunaan aktiva tetap tersebut.
- d. Perbaikan rutin (*Repair*) merupakan pengeluaran untuk memperbaiki aktiva tetap yang mengalami kerusakan sebagian besar atau seluruhnya agar dapat dipergunakan/difungsikan kembali.
- e. Pemeliharaan (*Maintenance*) adalah pengeluaran untuk memelihara agar aktiva tetap tersebut tidak mudah rusak atau usang dimakan usia.

Capital Expenditure memiliki tujuan dalam penggunaannya. Menurut (Rina, 2009) dalam penelitiaan (Dewanto, 2009), tujuan dari capital expenditure adalah sebagai berikut:

- Agar pelaksanaan investasi benar-benar sesuai dengan rencana yang dibuat dalam anggaran.
- b. Untuk memanfaatkan pendayagunaan dana perusahaan seoptimal mungkin agar tercapai tingkat efisiensi yang tinggi dengan mengukur skala prioritas baik dari segi pendanaan maupun segi waktu.
- Menjaga efisiensi dengan cara menyeleksi permintaan investasi sesuai dengan cost dan benefitnya.

Perencanaan *capital expenditure* yang baik dan matang akan menjadikan sebuah investasi yang tepat pada masa yang akan datang seiring dengan pertumbuhan dari perusahaan itu sendiri.

Investasi pada aktiva tetap yang disebut sebagai *capital expenditure* merupakan *budgeting* atau pengalokasian dana oleh sebuah perusahaan untuk melakukan sebuah pembelian aktiva tetap. Pembelian aktiva tetap tidak terlepas dari biaya penggantian maupun perbaikannya. investasi pada aset tetap ini menjadi penting karena dapat menjamin kelangsungan hidup perusahaan pada masa yang akan datang. Dengan *capital expenditure*, perusahaan dapat memaksimalkan penggunaan dan pemanfaatan aktiva tersebut dengan baik untuk menghasilkan laba yang besar dari aktiva. Hal tersebut tentu menjadi prospek yang baik untuk pertumbuhan perusahaan. Aktiva tetap tersebut bisa menjadi *earning power* bagi sebuah perusahaan

selain dari tingginya laba yang dapat diperoleh dari efisiensi penggunaannya. Aktiva tetap yang prima membuat proses produksi maupun segala proses yang dapat menunjang kegiatan operasional perusahaan akan berjalan dengan baik. *Capital expenditure* perusahaan dapat meminimalisir risiko ketidaklancaran proses produksi (Sintaasih, 2010). Rumus yang digunakan untuk mendapatkan *capital expenditure* berdasarkan penelitian sebelumnya yang dilakukan oleh (Hamidi, 2015) adalah :

$$CAPEX = Total \ Fix \ Assets_t - Total \ Fix \ Assets_{t-1}$$

6. Leverage

Menurut (F. Brigham, 2011), *Leverage* keuangan (*Financial leverage*) merupakan tingkat sejauh mana efek dengan pendapatan tetap (utang dan saham preferen) digunakan dalam struktur modal suatu perusahaan.

Leverage Keuangan merupakan praktik pendanaan sebagian aktiva perusahaan dengan sekuritas yang menanggung beban pengembalian tetap dengan harapan bisa meningkatkan pengembalian akhir bagi pemegang saham (Arthur J. Keown, 2010). Tingkat leverage memiliki hubungan erat dengan risiko terhadap pemegang saham, khususnya pemegang saham biasa (common stock) akibat dari keputusan pendanaan melalui hutang atas komposisi struktur modal perusahaan. Pengunaan leverage memiliki dampak positif yaitu peningkatan laba per saham namun disisi lain juga dapat meningkatkan risiko (F. Brigham, 2011).

Keberhasilan perusahaan dalam mengelola hutang dapat meningkatkan pendapatan pemilik perusahaan disebabkan oleh pengembalian dari dana (utang) tersebut melebihi bunga yang harus dibayar. Kelebihan dana yang menjadi hak pemilik tersebut memiliki arti yang sama dengan peningkatan ekuitas pemilik perusahaan. Pendanaan menggunakan utang berpotensi meningkatkan proyeksi tingkat pengembalian suatu investasi namun juga meningkatkan risiko bagi para pemilik perusahaan terutama pemilik saham biasa.

Leverage ratio yang merupakan ukuran atas besarnya penggunaan utang dalam pembelanjaan perusahan menurut (Sudana, 2011) memiliki beberapa rasio yang dapat digunakan yakni :

1. Debt ratio

Rasio ini mengukur proporsi dana yang bersumber dari utang untuk membiayai aktiva perusahaan. semakin besar rasio menunjukkan bahwa perusahaan semakin banyak mengandalkan utang untuk membiayai investasi pada aktivanya. Tingginya tingkat rasio ini menunjukkan risiko keuangan perusahaan.

$$Debt \ Ratio = \frac{Total \ Debt}{Total \ Assets}$$

2. Time Interest earned ratio

Rasio ini mengukur kemampuan perusahaan untuk membayar beban tetap berupa bunga dengan menggunakan EBIT (*Earning Berfore Interest and Taxes*). Semakin besar rasio menandakan bahwa

kemampuan perusahaan untuk membayar bunga semakin baik dan peluang untuk mendapatkan pinjaman semakin tinggi.

$$Times\ Interest\ Earned\ Ratio = \frac{EBIT}{Interest}$$

3. Long Term debt to equity ratio

Rasio ini mengukur besar kecilnya penggunaan utang jangka panjnag dibandingkan dengan modal sendiri perusahaan. Semakin besar rasio mencerminkan risiko Keuangan perusahaan yang semakin tinggi.

$$Long term debt to equity ratio = \frac{Long debt}{Equity}$$

Rasio yang digunakan dalam penelitian ini untuk mengukur *leverage* adalah dengan menggunakan *debt ratio*.

B. Hasil Penelitian yang Relevan

Penelitian ini merupakan penelitian kuantitatif yang mengulas mengenai modal kerja dengan menggunakan variabel siklus konversi kas (cash conversion cycle), capital expenditures dan leverage yang belum banyak diteliti oleh peneliti sebelumnya di Indonesia. Penelitian serupa lebih banyak dilakukan oleh peneliti asing dengan objek penelitian di negara yang berbeda. Hasil dari penelitian terdahulu pun masih bersifat fluktuatif sehingga penelitian ini penting untuk dikaji ulang terutama dengan mengambil objek di Indonesia.

Dalam melakukan penelitian ini peneliti mengacu pada penelitian sebelumnya yang telah teruji secara empiris sehingga dapat menguatkan hasil penelitian ini, adapun penelitian yang dimaksud adalah:

Penelitian yang dilakukan oleh (Suleiman M. Abbadi, 2013) mengemukakan adanya pengaruh signifikan antara siklus konversi kas (*cash conversion cycle*) dengan modal kerja.

Penelitian yang dilakukan oleh (Nor Edi Azhar Binti Mohammad, 2013) dan (Ismail Celik, 2013) mengemukakan adanya pengaruh negatif signifikan antara capital expenditure dengan modal kerja (working capital). Namun hasil berbeda dikemukakan oleh (Ilyas, 2014), (Y. Vaicondam, 2016) dan (Teimoor Hosseini Assi, 2014) bahwa terdapat pengaruh signifikan namun positif antara capital expenditure terhadap modal kerja.

Penelitian yang dilakukan oleh (Suleiman M. Abbadi, 2013), (Onaolapo, 2015), (Shaista Wasiuzzaman, 2013), dan (Muhammad Mehtab Azeem, 2015) menemukan adanya pengaruh signifikan negatif antara *leverage* dengan modal kerja. Namun penelitian (Gill, 2011) memberikan hasil yang berbeda yakni terdapat pengaruh positif antara *leverage* dengan modal kerja.

Hasil penelitian-penelitian terdahulu yang dijadikan acuan oleh peneliti tercantum dalam tabel ringkasan hasil penelitian relevan yang berkaitan dengan modal kerja pada Tabel II.1 sebagai berikut:

Tabel II.1
Ringkasan Hasil Penelitian Relevan

	Jurnal	Metode Penelitian	Hasil Penelitian
No.			
1	Nor Edi Azhar Binti	Sampel: 150	1. Terdapat pengaruh
	Mohammad & Siti	Perusahaan yang	siginifikan positif antara <i>capital</i>
	Balqis Elias. An	terdaftar di Bursa	expenditure dengan cash
	Assessment on	Malaysia tahun	convertion cycle dan pengaruh
	Determinant of	2002-2011	negatif signifikan antara arus
	Working Capital	Variabel	kas bebas dengan Working
	Management from	Dependen : Siklus	Capital Requirement
	Malaysian Public	Konversi Kas,	2. Terdapat pengaruh
	Listed Companies.	Working Capital	siginifikan negatif antara arus
	INTERNATIONAL	Requirement	kas bebas dengan <i>cash</i>
	JOURNAL OF	Variabel	convertion cycle dan pengaruh
	ACADEMIC	Independen :	positif signifikan antara arus kas
	RESEARCH IN	Tingkat Hutang,	bebas dengan Working Capital
	ACCOUNTING,	Capital	Requirement
	FINANCE AND	Expenditures, Arus	3. Tidak terdapat pengaruh
	MANAGEMENT.	Kas Bebas, Gross	antara PDB dan Pertumbuhan
	Vol. 3, No. 4, Oktober	Domestic Product,	Perusahaan baik dengan <i>cash</i>
	2013	Pertumbuhan	convertion cycle maupun
		Perusahaan, Debt.	dengan Working Capital
			Requirement
			4. Terdapat pengaruh signifikan
			negatif antara tingkat hutang
			hutang dengan cash convertion
			cycle maupun working capital
			requirement.

Suleiman M. Abbadi Sampel: 11 1. Terdapat pengaruh Perusahaan yang & Rasha T. Abbadi. siginifikan antara cash terdaftar di conversion cycle dengan The Determinants of Palestine Securities Working Capital Ratio Working Capital 2. Terdapat pengaruh Requirements in Exchange tahun siginifikan positif antara Palestinian Industrial 2004-2011 Variabel profitabilitas dengan Working Corporations. **INTERNATIONAL Dependen:** Capital Ratio 3. Terdapat pengaruh signifikan JOURNAL OF Working Capital **ECONOMICS AND** Ratio positif antara arus kas operasi FINANCE. Vol. 5, Variabel dengan Working Capital Ratio No.1, 2013 **Independen**: Cash 4. Terdapat pengaruh signifikan negatif antara ukuran conversion cycle, Arus kas operasi, perusahaan dengan working ukuran perusahaan, capital ratio Profitabilitas, Terdapat pengaruh signifikan Leverage, Real negatif atntara *Leverage* dengan GDP Growth Rate, working capital ratio Interest rate on 6. Tidak terdapat pengaruh Loans and signifikan antara Real GDP growth rate dengan Interest Advance Rate terhadap working capital ratio 3 Onaolapo, Adekunle Sampel: 30 1. Terdapat pengaruh positif A, PhD. Kajola, perusahaan non signifikan antara ukuran **Sunday O.** What are keuangan yang perusahaan terhadap modal Determinants of terdaftar pada 2. kerja. Working Capital Nigerian Stock Terdapat pengaruh negatif Requirements of Exchange antara signifikan antara leverage tahun 2004-2011 Nigerian Firms? dengan modal kerja. Variabel 3. Terdapat pengaruh positif RESEARCH JOURNAL OF **Dependen**: Net signifikan antara ROA dengan FINANCE AND working capital modal kerja. 4. Terdapat ACCOUNTING, Vol. Variabel pengaruh positif signifikan 6, No. 6, 2015 **Independen**: size, antara siklus operasi terhadap leverage, growth, modal kerja 5. Terdapat pengaruh positif level of economic signifikan antara klafisikasi activity, klasifikasi sektor industi terhadap modal indusri, ROA dan siklus perasi kerja. 6. Terdapat hubungan negatif tidak sinifikan antara tingkat pertumbuhan dan tingkat kegiatan ekonomi dengan modal kerja.

Muhammad Ilyas Sampel: 109 1. Terdapat hubungan positif perusahaan dengan signifikan antara Capital The Impact of Capital Expenditures on sektor berbeda Expenditure dengan working Working Capital yang terdaftar pada capital requirement. Pakistani Karachi 2. Terdapat hubungan negatif Management of Listed Firm (Karachi Stock stock market. signifikan antara capital Exchange) in Variabel expenditure terhadap net Pakistan. JOURNAL liquidity balance. **Dependen:** Working Capital **OF ECONOMICS** AND SUSTAINABLE Requirement & Net DEVELOPMENT, Liquidity Balance Vol. 5, No. 22, 2014 Variabel **Independen:** Capital **Expenditures** Ismail Celik & Sampel: 141 Terdapat hubungan negatif antara capital expenditure Namika Boyacioglu. perusahaan yang dengan kedua variabel y yaitu The Impact of Fixed terdaftar pada net liquidity balance dan Assets Expenditures on industrial index Working Capital Istanbul Stock working capital requirement. Management: An Exchange tahun Application on 2007-2011 Manufacturing Variabel Enterprises In Istanbul **Dependen**: Net Stock Exchange. Liquidity Balance JOURNAL OF & Working Capital **SULEYMAN** Requirement Variabel DEMIREL UNIVERSITY **Independen: INSTITUTE OF** Capital SOCIAL SCIENCES. Expenditures Variabel Control: Vol.1, No.17 2013 Operating Expenditure, Financial Expenditure, Debt Ratio, Cash Received from Operating Activity, Growth Rate of Sales

Amarjit Gill. Factors **Sampel**: 166 1. Terdapat hubungan positif That Influence perusahaan yang antara *operating cycle* dengan Working Capital working capital requirement. terdaftar pada Requirement in Toronto stock 2. Terdapat hubungan positif Canada. ECONOMIC Exchange tahun antara ROA dengan working AND FINANCE 2008-2010 capital requirement. REVIEW Vol.1(3) pp. Variabel 3. Terdapat hubungan positif antara internasionalisasi 30-40, May, 2011 Dependen: Working Capital perusahaan pada working Requirement capital requirement. Variabel 4. Terdapat hubungan negatif antara pertumbuhan perusahaan **Independen:** Operating Cycle, dengan working capital Cash Flow, Firm requirement. 5. growth, Return on Terdapat hubungan negatif Assets, Tobin's Q, antara ukuran perusahaan Leverage, Firm dengan working capital Size. requirement. Internationalizm of 6. Terdapat hubungan positif Firm, Industry antara leverage dengan working capital requirement. 7. Terdapat hubungan negatif antara Tobin's Q dengan modal kerja. Y. Vaicondam, M. A. Sampel: 23 1. Terdapat pengaruh signifikan Anuar & S. perusahaan negatif antara capital Ramakrishnan. teknologi yang investment dengan net liquidity listing di Bursa Impact of Capital balance. 2. Terdapat Investment on Working Malaysia pada pengaruh signifikan positif Capital Management. tahun 2007-2011 antara capital investement JOURNAL OF Variabel dengan working capital **ADVANCED Dependen:** requirement. 3. Working Capital Terdapat pengaruh positif RESEARCH IN SOCIAL AND Management signifikan antara capital **BEHAVIOURAL** Efficiency expenditure dengan working SCIENCES, Vol.3, Variabel capital requirement. No.1, Pages 20-30, **Independen**: 2016 Capital Expenditure, **Operating** Expenditures, Financial Expenditure

8 Shaista **Sampel**: 192 1. Tidak terdapat pengaruh perusahaan yang signifikan antara profitabilitas, Wasiuzzaman & terdaftar pada board size dan board Veeri Chettiar Bursa Malaysia independence terhadap modal Arumugam. tahun 1996-2007 Determinant of kerja. Variabel Working Capital 2. Terdapat hubungan negatif Investment: A Study of **Dependen:** Net signifikan antara leverage operating working dengan modal kerja. Malaysian 3. Terdapat pengaruh negatif PublicListed Firms. capital **AUSTRALIAN** Variabel signifikan antara asimetri ACCOUNTING, **Independen:** informasi dengan modal kerja. **BUSINESS AND** Leverage, 4. Terdapat pengaruh negatif Immediate Growth antara volatilitas pendapatan **FINANCE** JOURNAL. Vol.7, No. Opportunities, dengan modal kerja. 5. Terdapat pengaruh signifikan 2, 2013 Assymmetric positif antara arus kas operasi Information, Size or capital market dengan modal kerja. access, Revenue 6. Terdapat hubungan negatif Volatility, Age, antara ukuran perusahaan Profitability, dengan investasi modal kerja. **Operating Cash** 7. Terdapat hubungan negatif Flow, Board Size, signifikan antara board **Board** independence dengan investasi Independence, modal kerja. **Economic** Terdapat pengaruh signifikan Condition antara kondisi ekonomi dengan investasi modal kerja. **Muhammad Mehtab** 1. Terdapat hubungan negatif Sampel: Azeem & Akin Perusahaan non antara suklus operasi, return on Marsap. Determinant keuangan yang aset, leverage, ukuran terdaftar pada perusahaan dan tingkat aktivitas factor and Working Capital Requirement. Karachi Stock ekonomi dengan kebutuhan **INTERNATIONAL** Exchange untuk modal kerja. 2. periode 2004-2009 JOURNAL OF Terdapat hubungan positif Variabel antara operasi arus kas dan **ECONOMICS AND** pertumbuhan penjualan dengan FINANCE. Vol.7, Dependen: No.2. 2015 Working Capital kebutuhan modal kerja. Requirement Defalted by Total Assets Variabel **Independen:** Siklus operasi, Operating Cash Flow, Tingkat Aktivitas Ekonomi,

		Pertumbuhan,	
		ROA, leverage,	
		ukuran perusahaan.	
10	Teimoor Hosseini	Sampel: 123	Terdapat hubungan positif
	Assi, Monireh Shoja,	perusahaan yang	antara capital expenditure
	Shahram Begzadeh,	terdaftar pada	dengan modal kerja dan <i>net</i>
	Bahman Isazadeh.	Tehran Stock	liquidity balance namun lemah.
	The Impact of Firms'	Exchange tahun	Hal ini disebabkan karena
	Capital Expenditure	2004-2008	dampak variabel lain yang tidak
	on Working Capital	Variabel	terkontrol dalam penelitian.
	Management in the	Dependen: Net	
	Tehran Stock	Liquidity Balance	
	Exchange. JOURNAL	& Working Capital	
	OF APPLIED	Requirement	
	ENVIRONTMENTAL	Variabel	
	AND BIOLOGICAL	Independen:	
	SCIENCES, Vol.4,	Capital	
	No.11, 2014	Expenditures &	
		Operational	
		Expenditure	

Sumber: data sekunder yang diolah peneliti, 2017

C. Kerangka Teoritik

Penelitian kuantitatif merupakan penelitian yang identik dengan pendekatan deduktif sehingga membutuhkan landasan teori untuk melakukan penelitian (Masyuri, 2008). Landasan penelitian ini berupa teori yang telah ada dan penelitian terdahulu yang relevan. Berdasarkan hasil penelitian yang menjadi terdapat research menunjukkan adanya acuan, gap yang ketidakseragaman dan inkonsisten antar hasil penelitian dengan tema yang sama sehingga perlu dilakukan penelitian lanjutan dengan variabel independen (independent variable) siklus konversi kas (cash conversion cycle), capital expenditure, leverage dan modal kerja sebagai variabel terikat (dependent variable).

1. Pengaruh siklus konversi kas terhadap modal kerja

Siklus konversi kas merupakan salah satu indikator yang menentukan efisiensi dari modal kerja. Siklus konversi kas yang rendah menandakan bahwa perusahaan membutuhkan waktu relatif singkat untuk dapat melepaskan ikatan modal kerja dari persediaan dan piutang sehingga cenderung memudahkan perusahaan untuk mendapatkan kas secara cepat. Hal itu membuat perusahaan semakin mudah untuk dapat meningkatkan modal kerja dan mengandalkan modal sendiri dalam melakukan usahanya.

Dalam penelitian (Suleiman M. Abbadi, 2013), disimpulkan bahwa siklus konversi kas berpengaruh positif dan signifikan terhadap modal kerja. Dalam penelitian tersebut dikatakan bahwa perusahaan yang mempertahankan modal kerja yang tinggi disebabkan oleh siklus konversi kas yang panjang sehingga perlu melakukan kebijakan konservatif. Hal ini sesuai dengan pecking order theory, perusahaan yang memiliki prospek yang baik maka akan memiliki manajemen modal kerja yang baik. Pengelolaan modal kerja yang baik membuat perusahaan tidak memerlukan pendanaan selain dari hasil operasional perusahaan seperti dengan utang maupun penerbitan saham baru. Semakin tinggi siklus konversi kas maka semakin besar kebutuhan modal kerja untuk membiayai kegiatan operasional perusahaan karena banyak modal kerja yang terikat pada persediaan maupun piutang.

H1: Siklus konversi kas berpengaruh positif terhadap modal kerja

2. Pengaruh Capital Expenditure terhadap modal kerja

Keputusan investasi pada aset tetap berupa perencanaan *capital expenditure* merupakan proses analisis bisnis investasi jangka panjang yang membutuhkan aset lancar untuk merealisasikannya. Menurut (Ismail Celik, 2013) investasi aset tetap dan manajemen modal kerja merupakan dua perencanaan keuangan besar yang berinteraksi satu sama lain dan hubungan keduanya patut untuk diteliti lebih lanjut.

Perusahaan yang memiliki rencana untuk melakukan investasi yang besar pada umumnya akan membuat cadangan kas untuk menjaga kelangsungan pengerjaan investasinya. Cadangan kas merupakan salah satu komponen modal kerja, sehingga dengan kenaikan capital expenditure juga akan berakibat pada kenaikan modal kerja untuk meminimalisir risiko. Berdasarkan hal tersebut dapat terlihat bahwa perusahaan memiliki kebutuhan dana lebih besar untuk membiayai kegiatan operasional maupun kegiatan ekspansinya. Manfaat yang diperoleh perusahaan atas investasi berupa capital expenditure tersebut berbanding lurus dengan pengorbanan perusahaan berupa arus kas keluar (aset lancar) atau penambahan utang yang digunakan untuk capital expenditure itu sendiri. Penelitian yang dilakukan oleh (Nor Edi Azhar Binti Mohammad, 2013) dan (Raheman A. Muhammad K. S., 2012) berkesimpulan bahwa capital expenditure berpengaruh signifikan negatif terhadap modal kerja. Hal itu disebabkan bahwa perusahaan tidak dapat meningkatkan aset yang paling likuid saat melakukan *capital expenditure* dan cenderung mengurangi modal kerjanya.

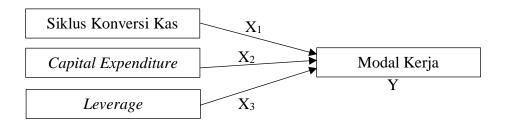
Hal tersebut disebabkan karena perubahan aset lancar akibat bertambahnya arus kas keluar atau penambahan utang yang berimplikasi langsung dengan modal kerja.

Capital Expenditure dimaksudkan untuk mengurangi kelebihan dana perusahaan yang menganggur sehingga dapat menghasilkan laba. capital expenditure yang dilakukan perusahaan memberikan manfaat ekonomis bagi perusahaan berupa percepatan siklus operasi perusahaan dan peningkatan kualitas yang berimplikasi pada peningkatan modal kerja. capital expenditure merupakah salah satu cara perusahaan untuk mendapatkan keuntungan dari hasil operasi yang nantinya akan digunakan untuk modal kerja perusahaan. Menurut (Riyanto, 2010), Setiap usul *capital* expenditure selalu mengandung dua macam aliran kas (cash flow), yaitu pertama aliran kas keluar netto yang diperlukan untuk investasi baru dan kedua aliran kas masuk tahunan atau yang sering disebut juga sebagai net cash proceeds sebagai hasil dari investasi baru tersebut. Hal ini sesuai dengan pecking order theory, karena perusahaan berusaha untuk mendapatkan modalnya dari hasil operasinya terlebih dahulu. Hasil penelitian yang berbeda dari sebelumnya dikemukakan oleh (Ilyas, 2014), (Y. Vaicondam, 2016) dan (Teimoor Hosseini Assi, 2014) yakni terdapat pengaruh positif signifikan antara capital expenditure dan modal kerja.

H2: Capital Expenditure berpengaruh positif terhadap modal kerja

3. Pengaruh Leverage terhadap modal kerja

Tingkat *leverage* perusahaan menandakan orietasi struktur modal perusahaan. Perusahaan yang mengandalkan utang dalam struktur modalnya memiliki risiko lebih besar untuk mengalami kebangkrutan. Perusahaan yang memiliki tingkat *leverage* yang rendah memiliki tujuan untuk menukar manfaat hutang atas pajak dengan masalah yang ditimbulkan oleh potensi kebangkrutan dengan cara mengandalkan ekuitas yang dimiliki oleh perusahaan (Teori *Trade-Off*), dalam hal ini merupakan aset perusahaan. *Leverage* yang tinggi berkaitan erat dengan modal kerja yang berada dibawah batas wajar. Perusahaan yang menggaplikasikan *trade-off theory* memiliki tingkat modal kerja dalam batas aman untuk menghindari risiko likuiditas.


Pengelolaan modal kerja mencerminkan likuiditas perusahaan, memberi dampak terhadap profitabilitas dan dapat menciptakan nilai tambah bagi perusahaan. Perusahaan dinilai efektif dalam pengelolaan modal kerja ketika perusahaan memiliki batas minimum pada modal kerjanya untuk mendapatkan keuntungan maksimal nemun tetap menjaga likuiditas perusahaan.

Pendanaan modal kerja bersumber dari pendanaan eksternal dan internal yang dipilih berdasarkan kebijakan perusahaan (Karina, 2012). Menurut teori *Pecking Order*, perusahaan cenderung menggunakan pendanaan internal (yang diperoleh dari keuntungan yang dihasilkan dari kegiatan perusahaan) terlebih dulu sebelum menggunakan pendanaan

eksternal. Perusahaan dengan prospek yang baik tentu lebih memilih untuk mendanai usahanya dengan modal kerja yang dimiliki bukan dari luar perusahaan yang berakibat pada tingkat utang yang tinggi. Perusahaan dengan tingkat *leverage* yang tinggi mengindikasikan modal kerja yang rendah. Dengan tingkat *leverage* yang tinggi seharusnya perusahaan lebih memperhatikan efisiensi dari modal kerja untuk menghindari banyaknya modal yang terikat dalam piutang dan persediaan (Megarifera, 2013).

H₃: Leverage berpengaruh negatif terhadap modal kerja

Berdasarkan kerangka teoritik diatas, maka dapat digambarkan kerangka konseptual sebagai berikut:

Gambar II.4:Kerangka Pemikiran

Sumber: data diolah peneliti, 2017

Penelitian ini tetap menggunakan uji signifikansi simultan (Uji F) untuk mengantisipasi jika hasil penelitian menunjukan tingkat signifikansi yang baik. Sehingga walaupun tidak tergambar didalam kerangka pemikiran, uji F tetap dijabarkan dalam BAB 3 penelitian ini.

D. Perumusan Hipotesis

Berdasarkan kerangka teoretik dan hasil penelitian terdahulu yang relevan maka penelitian ini merumuskan hipotesis sebagai berikut:

H1: Siklus konversi kas (X_1) berpengaruh positif terhadap modal kerja (Y).

H2: Capital Expenditure (X2) berpengaruh positif terhadap modal kerja (Y).

 $H3: Leverage(X_3)$ berpengaruh negatif terhadap modal kerja (Y).

BAB III

METODOLOGI PENELITIAN

A. Tujuan Penelitian

Berdasarkan pada rumusan masalah yang telah dijabarkan pada bab 1, maka peneliti dapat meyimpulkan beberapa tujuan penelitian sebagai berikut:

- Untuk mengetahui apakah siklus konversi kas berpengaruh positif terhadap modal kerja.
- 2. Untuk mengetahui apakah *capital expenditure* berpengaruh positif terhadap modal kerja.
- 3. Untuk mengetahui apakah *leverage* berpengaruh negatif terhadap modal kerja.

B. Objek dan Ruang Lingkup Penelitian

Penelitian "Pengaruh siklus konversi kas, *capital expenditure* dan *leverage* terhadap modal kerja" menggunakan objek data sekunder berupa laporan keuangan tahunan perusahaan manufaktur dari Bursa Efek Indonesia (BEI).

C. Metode Penelitian

Penelitian ini mengunakan data sekunder untuk variabel modal kerja, siklus konversi kas (*cash conversion cycle*), *capital expenditures*, dan *leverage* diperoleh dari laporan keuangan yang ada pada *website* Bursa Efek Indonesia. Metode yang digunakan dalam penelitian ini adalah metode kuantitatif dengan menggunakan angka, perhitungan, pengukuran, dan menggunakan data berbentuk numerik.

Penelitian ini menggunakan analisis regresi linier berganda dengan data panel. Tujuan dari analisis ini adalah untuk mengetahui seberapa besar pengaruh yang diberikan variabel bebas (*independent variable*) terhadap variabel terikat (*dependen variable*).

D. Populasi dan Sampel

Populasi merupakan seluruh objek yang menjadi masalah sasaran pada penelitian (Masyuri, 2008). Penelitian ini mengambil populasi perusahaan manufaktur yang terdaftar pada Bursa Efek Indonesia (BEI) dari tahun 2014-2016. Teknik pengambambilan sampel menggunakan metode *purposive sampling* sesuai dengan kriteria berikut ini :

- Perusahaan mempublikasikan laporan tahunan secara lengkap selama periode 2014-2016;
- 2. Laporan keuangan perusahaan dengan akhir periode tanggal 31 Desember.
- Memiliki modal kerja pada tingkat medium dengan keseluruhan populasi sebagai pembanding.
- 4. Memiliki total aset lebih dari Rp1.000.000.000,- (Satu triliun rupiah).
- 5. Kemampuan mengkonversi kas tidak terlalu tinggi maupun terlalu rendah.

Penerapan kriteria diatas memperkecil jumlah populasi yang akan menjadi sampel dalam penelitian ini.

E. Operasionalisasi Variabel Penelitian

Penelitian ini memiliki empat variabel, yaitu *cash conversion cycle* (variabel X_1), *capital expenditure* (variabel X_2), dan *leverage* (varibel X_3) dengan modal

kerja (variabel Y). Penelitian ini menganalis pengaruh antara variabel independen, cash conversion cycle, capital expenditure, dan leverage dengan modal kerja sebagai variabel yang dipengaruhi oleh ketiga variabel lainnya.

1. Variabel Terikat (Dependent Variable)

Variabel terikat (*dependen variable*) dengan sebutan lain berupa variabel output, kriteria atau konsekuen merupakan merupakan variabel yang dipengaruhi atau yang menjadi akibat karena adanya variabel bebas (Sugiono, 2011). Variabel terikat yang digunakan dalam penelitian ini adalah modal kerja (*working capital*).

a. Definisi Konsepual

Modal kerja merupakan modal jangka pendek perusahaan yang digunakan untuk mendanai kegiatan operasional perusahaan. Modal kerja merupakan salah satu penilai likuiditas sebuah perusahaan. Tingkat modal kerja perusahaan mengambarkan besarnya risiko likuisitas perusahaan. Modal kerja yang terlalu kecil meningkatkan risiko likuiditas perusahaan namun jumlah modal kerja yang terlalu banyak dapat meningkatkan jumlah *idle cash* serta mengabaikan peluang perusahaan dalam berekspansi.

g. Definisi Operasional

Modal kerja diukur menggunakan rasio modal kerja. Penggunaan rasio tersebut mengacu pada penelitian yang telah dilakukan sebelumnya oleh (Suleiman M. Abbadi, 2013), (Adekunle A. Onaolapo PhD, 2015), (Gill,

2011), (Muhammad Mehtab Azeem, 2015), (Shaista Wasiuzzaman, 2013) dan (Megarifera, 2013) dengan rumus sebagai berikut :

$$WCR = \frac{Aset Lancar - Liabilitas Lancar}{Total Aset}$$

2. Variabel Bebas (Independent Variable)

Variabel bebas yang memiliki nama lain variabel *stimulus*, *prediktor*, atau *antecedent* merupakan variabel yang mempengaruhi atau yang menjadi sebab perubahannya atau timbulnya variabel dependen (Sugiono, 2011). Penelitian ini memiliki tiga variabel bebas yaitu siklus konversi kas, *capital expenditure* dan *leverage*.

a. Siklus Konversi Kas (Cash Conversion Cycle)

1) Deskripsi Konseptual

Siklus konversi kas (*Cash Conversion Cycle*) merupakan sebuah siklus yang menunjukkan panjang waktu (hari) yang diperlukan untuk mengkonversi uang yang diinvestasikan dalam aktiva lancar menjadi kas melalui penjualan (Nor Edi Azhar Binti Mohammad, 2013).

2) Deskripsi Operasional

Siklus konversi kas dihitung dengan menjumlahkan periode ratarata pengumpulan piutang dengan perputaran persediaan dikurangi dengan periode rata-rata pembayaran utang (Abdul Raheman, 2007). Penelitian yang dilakukan oleh (Suleiman M. Abbadi, 2013), dan (F. Brigham, 2011) dalam bukunya yang berjudul "Dasar-dasar

Manjemen Keuangan" menjabarkan bahwa siklus konversi kas diperoleh dengan :

$$ICP + ACP - APP = CCC$$

a) Perolehan jumlah siklus konversi kas membutuhkan tiga rumus sebagai berikut: Periode konversi persediaan (*inventory conversion period*), merupakan rata-rata waktu yang dibutuhkan untuk mengubah bahan mentah menjadi barang jadi dan menjualnya. Formula yang digunakan untuk mendapatkan periode konversi persediaan adalah:

$$ICP = \frac{Persediaan}{Harga Pokok Penjualan/360}$$

b) Periode penerimaan rata-rata (average collection period-ACP), adalah waktu yang diberikan kepada pelanggan untuk membayar barang setelah penjualan dalam arti lain merupakan rata-rata waktu yang dibutuhkan untuk mengubah piutang perusahaan menjadi kas atau untuk menagih kas setelah terjadi penjualan. Rumus periode penerimaan rata-rata menurut (F. Brigham, 2011) dan (Ebrahim Manoori, 2012) adalah sebagai berikut;

$$ACP = \frac{\text{Piutang Usaha}}{\text{Penjualan/365}}$$

c) Periode penagihan utang (payables deferral period) atau Average

Payment Period, merupakan waktu rata-rata antara pembelian

bahan baku dan tenaga kerja dengan pembayaran kasnya. Rumus periode penagihan menurut (F. Brigham, 2011) dan (Ebrahim Manoori, 2012) adalah sebagai berikut;

$$APP = \frac{\text{Utang Usaha}}{\text{Harga Pokok Penjualan/365}}$$

b. Capital Expenditure

1) Deskripsi Konseptual

Menurut (Jerry J. Weygandt, 2009), capital expenditure merupakan biaya penambahan dan peningkatan kualitas yang dikeluarkan untuk meningkatkan efisiensi operasional, kapasitas produksi, atau masa manfaat aset tetap yang terjadi secara insidental. Biaya yang dikeluarkan oleh perusahaan dalam rangka menambah masa manfaat aset ini selain dapat bermanfaat untuk meningkatkan kegiatan operasional perusahaan juga memiliki masa manfaat lebih dari satu periode akuntansi.

2) Deskripsi Operasional

Penelitian ini mengukur *capital expenditure* berdasarkan rumus yang digunakan oleh peneliti sebelumnya yakni penelitian yang dilakukan oleh (Hamidi, 2015) dan (Aini Farida, 2016). Adapun rumus yang dimaksud adalah:

 $CAPEX = Total \ Fix \ Assets_t - Total \ Fix \ Assets_{t-1}$

c. Leverage

1) Deskripsi Konseptual

Leverage Keuangan merupakan praktik pendanaan sebagian aktiva perusahaan dengan sekuritas yang menanggung beban pengembalian tetap dengan harapan bisa meningkatkan pengembalian akhir bagi pemegang saham (Arthur J. Keown, 2010).

2) Deskripsi Operasional

Penelitian ini menggunakan *debt ratio* untuk mengukur *leverage*. Rumus *debt ratio* yang ada dalam buku "Manajemen keuangan perusahaan teori dan praktik" karya (Sudana, 2011), serta mengacu pada penelitian yang dilakukan oleh (Megarifera, 2013), (Gill, 2011), dan (Muhammad Mehtab Azeem, 2015) adalah sebagai berikut:

$$Debt \ Ratio = \frac{Total \ Debt}{Total \ Assets}$$

F. Teknik Analisis Data

Data penelitian ini dianalisis menggunakan metode analisis statistik deskriptif, uji pemilihan model terbaik, uji asumsi klasik, analisis regresi linier berganda, dan selanjutnya pengujian hipotesis. Berikut ini dijelaskan secara rinci terkait dengan metode analisis tersebut :

1. Statistik Deskriptif

Statistik deskriptif adalah statistik yang berfungsi untuk mendiskripsikan atau memberikan gambaran terhadap obyek yang diteliti melalui data sampel atau populasi sebagaimana adanya tanpa melakukan analisis dan membuat

kesimpulan yang berlaku untuk umum (Sugiyono, 2013). Analisis statistik

deskriptif dalam penelitian ini digunakan untuk memberikan gambaran

mengenai suatu data yang diamati melalui nilai rata-rata (mean), nilai tertinggi,

nilai terendah, dan standar deviasi.

Uji statistik deskriptif dilakukan agar distribusi data baik dari variabel

dependen maupun variabel independen dapat diketahui. Uji analisis statistik

deskriptif dilakukan sebelum menganalisis data menggunakan model regresi.

Metode analisis data dilakukan dengan bantuan program aplikasi *Econometric*

Views (Eviews) versi 8.

2. Pemilihan model terbaik

Sebelum melakukan uji asumsi klasik, apabila menggunakan aplikasi

eviews, peneliti harus terlebih dahulu memilih model terbaik yang akan

digunakan untuk analisis regresi. Uji pemilihan model terbaik dilakukan

dengan menggunakan uji *chow* dan uji *Hausman*. Uji chow diperlukan untuk

menguji model yang paling cocok untuk penelitian dengan dua pilihan yakni

antara model common effect dan model fixed effect. Uji Hausman digunakan

untuk memilih model yang paling cocok untuk penelitian dengan dua pilihan

diantaranya fixed effect atau random effect. Sebelum diuji chow dan hausman,

data terlebih dahulu diregresi dengan menggunakan model common effect dan

fixed effect lalu kemudian dibuat hipotesis untuk diuji. Hipotesis yang

dimaksud adalah:

Ho: maka digunakan model *common effect* (model *pool*)

Ha : maka digunakan model *fixed effect* dan dilanjutkan dengan uji *Hausman*

Pedoman yang digunakan untuk mengambil kesimpulan dalam uji chow

adalah sebagai berikut:

1. Jika nilai probability F 0,05 artinya Ho diterima; maka model common

effect.

2. Jika nilai *probability* F < 0,05 artinya Ho ditolak ; maka model *fixed*

effect, lalu dilanjutkan dengan uji Hausman untuk memilih antara

menggunakan model fixed effect atau metode random effect.

Selanjutnya untuk menguji uji *Hausman* data juga di regresikan dengan

model random effect, kemudian dibandingkan antara fixed effect dengan

membuat hipotesis:

Ho: maka, digunakan model random effect

Ha: maka, digunakan model fixed effect

Pedoman yang digunakann untuk pengambilan kesimpulan uji

Hausman adalah:

1. Jika nilai *probability* Chi-Square ≥ 0.05 , maka Ho diterima,

sehingga yang terpilih adalah model random effect.

2. Jika nilai *probability* Chi-Square < 0,05, maka Ho diterima, yang

artinya model fixed effect yang terpilih.

3. Pengujian Asumsi Klasik

Uji asumsi klasik dilakukan untuk menguji data apakah telah memenuhi

asumsi klasik. Uji ini dimaksudkan untuk menghindari terjadinya bias data yang

dapat terjadi karena tidak semua data dapat diterapkan pada model regresi. Pengujian asumsi klasik yang dilakukan diantaranya adalaj uji normalitas, uji multikolinearitas, uji autokorelasi dan uji heteroskedastisitas.

a. Uji Normalitas

Uji normalitas bertujuan untuk menguji apakah nilai residual yang telah distandarisasi pada model regresi berdistribusi normal atau tidak. Nilai residual dapat dikatakan berdistribusi normal ketika nilai residual terstandarisasi tersebut sebagian besar mendekati nilai rata-ratanya (Suliyantoro, 2011). Menurut (Ghozali, 2011), Uji normalitas bertujuan untuk menguji apakah dalam model regresi variabel independen, variabel dependen atau keduanya mempunyai distribusi normal atau tidak. Model regresi yang baik adalah memiliki distribusi data normal atau mendekati normal.

Pengujian normalitas yang dilakukan pada program *Eviews* adalah dengan menggunakan uji jarque-bera. Uji jarque-bera adalah uji statistik untuk mengetahui apakah data berdistribusi normal (Winarno, 2011 hal. 5.37). Uji Jarque-Bera mempunyai nilai chi-square. Jika hasil uji jarque-bera lebih besar dari nilai chi square pada $\alpha = 5\%$, maka hipotesis nol diterima. Hal itu menandalan bahwa data berdistribusi normal. Sebaliknya, jika hasil uji jarque-bera lebih kecil dari nilai chi square pada $\alpha = 5\%$, maka hipotesis nol ditolak yang artinya data tidak berdistribusi normal.

b. Uji Multikoliniearitas

Uji multikolinearitas bertujuan untuk menguji apakah dalam regresi terdapat adanya korelasi antar variabel independen. Model regresi yang baik seharusnya tidak terjadi korelasi di antara variabel independen. Jika variabel independen saling berkorelasi, maka variabel-variabel ini tidak ortogonal. Variabel ortogonal adalah variabel independen yang nilai korelasi antar sesama variabel independen sama dengan nol.

Menurut (Winarno, 2011) untuk mendeteksi terdapat atau tidaknya multikolinearitas di dalam model regresi adalah sebagai berikut :

- Nilai R² tinggi, tetapi variabel independen banyak yang tidak signifikan mempengaruhi variabel dependen.
- Dengan menghitung koefisien korelasi antarvariabel independen.
 Apabila koefisien rendah, maka tidak terdapat multikolinearitas.
- 3. Dengan melakukan regresi *auxiliary*. Regresi ini dapat digunakan untuk mengetahui hubungan antara dua (atau lebih) variabel independen yang secara bersama-sama mempengaruhi satu variabel independen lainnya. Regresi ini akan dilakukan beberapa kali dengan cara memberlakukan satu variabel independen sebagai variabel dependen dan variabel independen lainnya tetap menjadi variabel independen. Masing-masing persamaan akan dihitung nilai F-nya. Jika nilai Fhitung> Fkritis pada α dan derajat kebebasan tertentu, maka model kita mengandung unsur multikolinearitas.

c. Uji Autokorelasi

Menurut (Ariefanto, 2012) Autokorelasi menunjukkan sifat regresi yang tidak bebas dari satu observasi ke observasi lainnya. Autokorelasi timbul dari spesifikasi yang tidak tepat terhadap hubungan antara variabel endogenus dengan variabel penjelas. Autokorelasi dapat berdampak terhadap inferensi. Menurut (Firdaus, 2011) Autokorelasi dapat disebabkan oleh:

- Tidak diikutsertakannya seluruh variabel bebas yang relevan dalam model regresi yang diduga;
- 2. Kesalahan menduga bentuk matematik model yang digunakan;
- 3. Pengolahan data yang kurang baik, dan;
- 4. Kesalahan spesifikasi variabel gangguan.

Autokorelasi yang terjadi pada model persamaan regresi menyebabkan:

- Penduga-penduga koefisien regresi yang diperoleh tetap merupakan penduga-penduga yang tidak bias.
- Varian variabel gangguan menjadi tidak efisien, jika dibandingkan dengan tidak adanya autokorelasi.

Uji autokorelasi bertujuan untuk menguji apakah terdapat korelasi antara kesalahan pengganggu pada periode t dengan kesalahan pada periode sebelumnya didalam suatu model regresi linear. Menurut (Winarno, 2011), data yang bersifat runtut waktu lebih mudah timbul autokorelasi karena berdasarkan sifatnya, data masa sekarang dipengaruhi oleh data pada masa

sebelumnya. Pada penelitian ini uji autokorelasi dilakukan dengan menggunakan Uji Durbin-Watson (DW). Terdapat atau tidaknya autokorelasi dapat diketahui dari nilai d (koefisien DW) yang digambarkan pada tabel III.1.

Tabel III.1 Nilai d

	Tolak Ho → ada korelasi positif	Tidak dapat diputuskan	Tidak menolak Ho → tidak ada korelasi	Tidak dapat diputuskan	Tolak Ho → ada korelasi negatif
0	d _I		l _U 4-0		-d _L 4

Sumber: Wing Wahyu Winarno, 2011

Autokorelasi dapat dihilangkan dengan menggunakan beberapa alternatif berikut (Winarno, 2011) :

- 1. Metode Generalized difference equation
- 2. Metode diferensi tingkat pertama,
- 3. Metode OLS
- 4. Metode Cochrane-Orcutt

d. Uji Heteroskedastisitas

Heteroskedastisitas merupakan keadaan dimana varians residual tidak memenuhi asumsi Gauss Markov dalam penggunaan analisis regresi berganda. Varians dari residual tidak berubah dengan berubahnya satu atau lebih variabel bebas. Menurut (Firdaus, 2011), Heterokedastisitas dapat terjadi karena sifat variabel yang diikutsertakan ke dalam model dan sifat data yang digunakan dalam analisis. Keadaan heteroskedastisitas akan mengakibatkan penduga OLS yang diperoleh tetap memenuhi persyaratan

tidak bias dan varian yang diperoleh menjadi tidak efisien. Varian yang cenderung membesar sehingga tidak lagi merupakan varian terkecil yang akan mengakibatkan uji hipotesis yang dilakukan tidak akan memberikan hasil yang baik (tidak valid).

Uji heteroskedastisitas dilakukan dengan tujuan untuk menguji apakah dalam regresi terjadi ketidaksamaan varian dari residual satu pengamatan ke pengamatan yang lain. Model regresi yang baik adalah yang bersifat homokedastisitas, yaitu varian residual konstan satu pengamatan ke pengamatan lain. Akan tetapi, nilai residual sulit memiliki varian yang konstan, terutama pada data cross section. Menurut (Winarno, 2011 hal. 5.8) ada beberapa metode yang dapat digunakan untuk mengidentifikasi ada tidaknya masalah heteroskedastisitas. Metode tersebut adalah :

- a. Metode grafik
- b. Uji Park
- c. Uji Glejser
- d. Uji Korelasi Spearman
- e. Uji Goldfeld-Quandt
- f. Uji Breusch-Pagan-Godfrey
- g. Uji White

Penelitian ini menguji heteroskedastisitas dengan menggunakan uji white. Uji white menggunakan residual kuadrat sebagai variabel dependen, dan variabel independennya terdiri atas variabel independen

yang sudah ada, ditambah dengan kuadrat variabel independen, ditambah lagi dengan perkalian dua variabel independen (Winarno, 2011). Pada penelitian ini, uji white dilakukan dengan bantuan program Eviews 8 yang akan memperlihatkan nilai probabilitas Obs*Rsquare. Nilai tersebut akan dibandingkan dengan tingkat signifikansi (alpha). Jika nilai probabilitas Obs*Rsquare signifikansinya di atas 0,05 maka dapat disimpulkan tidak terjadi heteroskedastisitas. Namun sebaliknya, jika nilai probabilitas Obs*Rsquare signifikansinya di bawah 0,05 maka terdapat heteroskedastisitas.

4. Uji Hipotesis

Pengujian hipotesis dilakukan secara *multivariate* dengan menggunakan uji regresi model yang dijelaskan pada tahap sebelumnya. Analisis regresi model digunakan untuk menguji pengaruh dua atau lebih variabel independen terhadap variabel dependen (H. Imam Ghozali, 2013). Uji hipotesis ini dilakukan dengan tahapan sebagai berikut:

- a) Menentukan laporan tahunan yang dijadikan objek penelitian,
- b) Menghitung proksi dari masing-masing variabel,
- c) Melakukan uji regresi model

Penelitian ini menggunakan analisis regresi berganda yang memiliki tujuan untuk mengetahui besarnya hubungan antara variabel bebas dan terikat, mengetahui arah hubungan, serta menentukan diterima atau tidaknya hipotesis akternatif.

a. Analisis Regresi Linear Berganda

Analisis regresi berganda dilakukan apabila terdapat beberapa variabel independen dalam sebuah penelitian (Winarno, 2011). Analisis regresi dalam penelitian ini digunakan untuk mengetahui hubungan antara ketiga variabel bebas dengan variabel terikat. Analisis regresi dapat memberikan hasil mengenai besarnya pengaruh setiap variabel bebas terhadap variabel terikatnya. Pengambilan hipotesis dapat dilakukan dengan melihat nilai probabilitas signifikansi masing-masing variabel yang terdapat pada output hasil analisis regresi yang menggunakan Eviews 8. Jika angka signifikansi lebih kecil dari α (0,05) maka dapat disimpulkan bahwa terdapat pengaruh yang signifikan antara variabel bebas terhadap variabel terikat.

Penelitian ini menggunakan analisis regresi linier berganda yang dirumuskan sebagai berikut:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + e$$

Dimana:

Y = Rasio Modal Kerja Terhadap Total Aset

α = Bilangan Konstanta

 β_1 - β_3 = Koefisien Regresi dari masing-masing variabel independen, merupakan besarnya perubahan variabel terikat akibat perubahan tiap-tiap unit variabel bebas.

 $X_1 = Cash\ Convertion\ Cycle$

 $X_2 = Capital Expenditures$

 $X_3 = Leverage$

e = Variabel Residual (tingkat error)

1) Uji Signifikansi Parameter Individual (Uji Statistik t)

Uji statistik t pada menunjukkan seberapa jauh pengaruh satu variabel independen secara individual dalam menerangkan variasi variabel dependen (Ghozali, 2011). Pengujian dilakukan dengan menggunakan tingkat signifikansi 0,05 (α =5%). Penerimaan atau penolakan hipotesis dilakukan dengan kriteria sebagai berikut:

- Jika nilai signifikansi t > 0,05 maka hipotesis ditolak (koefisien regresi tidak signifikan). Ini berarti bahwa secara parsial variabel independen tersebut tidak mempunyai pengaruh yang signifikan terhadap variabel dependen.
- Jika nilai signifikansi t ≤ 0,05 maka hipotesis diterima (koefisien regresi signifikan). Ini berarti secara parsial variabel independen tersebut mempunyai pengaruh yang signifikan terhadap variabel dependen.

2) Koefisien Determinasi (R²)

Koefisien determinasi (R^2) digunakan untuk mengukur kesesuaian model penelitian yang digunakan serta menilai kemampuan model dalam menerangkan variasi variabel independen. Nilai R^2 adalah $0 < R^2 < 1$. Semakin tinggi (mendekati satu) nilai R^2

maka semakin kuat hubungan variabel dependen dan variabel independen serta model yang digunakan telah sesuai. Dengan demikian, kemampuan variabel independen semakin tinggi dalam menentukan perubahan variabel dependen. Sebaliknya, apabila nilai R² semakin kecil, maka kemampuan variabel independen dalam menjelaskan variabel dependen terbatas.

3) Uji Signifikiasi Simultan (Uji F)

Uji F merupakan salah satu pengujian hipotesis regresi berganda yang dilakukan untuk mengetahui pengaruh variabel-variabel independen terhadap variabel dependen secara bersama-sama (simultan). Uji ini bertujuan untuk melihat pengaruh siklus konversi kas, *Capital Expenditure* dan leverage secara bersama-sama terhadap modal kerja. Hipotesis pengujian ini adalah:

Ho: Variabel-variabel independen tidak secara bersama-sama berpengaruh signifikan terhadap variabel dependen.

Ha: Variabel-variabel independen secara bersama-sama berpengaruh signifikan terhadap variabel dependen.

Kriteria pengujian ini dapat dilihat melalui dua cara, yaitu:

a) Perbandingan F-statistik (F_{hitung}) dengan F_{tabel} (α , k, n-k-1)

 $\label{eq:ho} \mbox{Ho : Ditolak jika $F_{hitung} > F_{tabel}$, berarti berpengaruh secara} \\ \mbox{bersama-sama.}$

Ha: Diterima jika Fhitung < Ftabel, berarti tidak berpengaruh secara bersama-sama.

Nilai F_{hitung} diperoleh dari:

$$F_{hitung} = \frac{MSR}{MSE} = \frac{SSR/k}{SSE/(n-k-1)}$$

Keterangan:

MSR = Mean Square Regression

MSE = Mean Square Error

SSR = Sum of Square Regression

SSE = Sum of Square Error

k = jumlah observasi

n = jumlah variabel yang dipakai

b) Berdasarkan probabilitas (ρ)

Ho : Ditolak jika $\rho < \alpha$, berpengaruh secara bersama-sama.

Ha : Diterima jika $\rho > \alpha$, berarti tidak berpengaruh secara bersama-sama.

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

A. Deskripsi Data

1. Hasil Pemilihan Sample

Penelitian ini membahas tentang pengaruh siklus konversi kas, *capital expenditire* dan *leverage* sebagai variabel independen terhadap modal kerja sebagai variabel dependen. Populasi yang digunakan dalam penelitian ini adalah perusahaan manufaktur yang terdaftar pada Bursa Efek Indonesia yang telah beroperasi sebelum tahun 2013 hingga 2016. Pemilihan perusahaan manufaktur sebagai populasi didasari pada terdapatnya proses produksi yang didalamnya terdapat persediaan sehingga dapat mendukung hasil penelitian. Selain itu perusahaan manufaktur lebih banyak membutuhkan modal kerja untuk usahanya sehingga hasil penelitian akan lebih tepat sasaran.

Objek dalam penelitian "Pengaruh Siklus Konversi Kas, *Capital Expenditure* dan *Leverage* Terhadap Modal Kerja" merupakan data sekunder yang diperoleh dari laporan keuangan tahunan perusahaan manufaktur pada tahun 2014-2016 yang telah dipublikasi oleh Bursa Efek Indonesia. Peneliti menggunakan teknik *purposive* dalam pengambilan sampel berdasarkan beberapa ketentuan sebagai berikut:

 Perusahaan mempublikasikan laporan tahunan secara lengkap selama periode 2014-2016

- Laporan keuangan perusahaan dengan akhir periode tanggal 31
 Desember.
- Memiliki modal kerja pada tingkat medium dengan keseluruhan populasi sebagai pembanding.
- 4. Memiliki total aset lebih dari Rp1.000.000.000.000,- (Satu triliun rupiah).
- Kemampuan mengkonversi kas tidak terlalu tinggi maupun terlalu rendah.

Melalui kriteria yang telah disebutkan diatas maka jumlah populasi yang sesuai akan menjadi sampel dalam penelitian ini yakni 38 sampel perusahaan manufaktur dengan waktu pengamatan selama 3 tahun. Berdasarkan keterangan tersebut maka jumlah observasi yang didapat adalah 114 (38x3) observasi. Rincian perhitungan jumlah sample penelitian tertera pada Tabel 4.1 sebagai berikut:

Tabel IV.1
Perhitungan Jumlah Sample Penelitian

No.	Keterangan	Jumlah
1.	Perusahaan mempublikasikan laporan	123
	tahunan secara lengkap selama periode	
	2014-2016	
2.	Laporan keuangan perusahaan dengan	(3)
	akhir periode tanggal 31 Desember	

3.	Memiliki modal kerja pada tingkat	(13)
	medium dengan keseluruhan populasi	
	sebagai pembanding	
4.	Memiliki total aset lebih dari	(47)
	Rp1.000.000.000.000,- (Satu triliun	
	rupiah)	
5.	Kemampuan dalam mengkonversi kas	(22)
	tidak terlalu tinggi maupun terlalu rendah	
	Jumlah Sampel	38
	Jumlah Observasi Selama 3 (2014-	114
	2016)	

Sumber: data diolah peneliti, 2017

2. Analisis Statistik Deskriptif

Analisis statistik deskriptif dilakukan pada variabel siklus konversi kas, capital expenditure, dan leverage sebagai variabel independen terhadap modal kerja sebagai variabel independen. Penelitian ini menggunakan alat analisis economic views (Eviews) versi 8. Analisis statistik deskriptif terlebih dahulu dilakukan sebelum melakukan regresi berganda pada variabel penelitian untuk meringkas informasi agar lebih mudah untuk dipahami. Analisis deskriptif memuat informasi mengenai minimum, maksimum, mean, dan standar deviasi. hasil analisis statistik deskriptif dijabarkan pada tabel 4.2.

Tabel IV.2

Hasil Analisis Statistik Deskripstif

	WCR	CCC	CAPEX	LEV
Mean	0.204825	1.846734	539890.9	0.458503
Median	0.174466	3.209229	178238.0	0.474517
Maximum	0.604014	164.2585	4184357.	0.843510
Minimum	-0.256183	-184.6461	-1537040.	0.066187
Std. Dev.	0.194279	66.38919	968866.6	0.178496
Observations	114	114	114	114

Sumber: Eviews 8, data diolah peneliti, 2017

Tabel 4.2 menununjukkan hasil statistik mengenai informasi jumlah minimum, maksimun, *mean*, dan standar deviasi dari masing-masing variabel yang diuji pada penelitian ini. Penjelasan lebih lanjut mengenai analisis statistik deskriptif pada penelitian ini adalah sebagai berikut:

a. Variabel Dependen

a) Modal Kerja

Modal kerja pada penelitian ini diproksikan dengan working capital to total aset ratio (WCR), yang merupakan hasil pembagian antara selisih aset lancar dan liabilitas lancar dengan total aset. Melalui 114 observasi yang dilakukan dalam penelitian ini ditemukan bahwa terdapat jumlah minimum yakni sebesar -0,256183 yang dimiliki oleh PT Unilever Tbk. Hal ini menunjukkan bahwa modal kerja yang

dimiliki PT Unilever Tbk pada tahun 2016 masih pada tingkat rendah. Perusahaan memiliki lebih banyak utang lancar dari jumlah aset lancar yang dimilikinya.

Nilai maksimum rasio modal kerja terhadap total aset (*WCR*) menujukkan angka 0,604014 yang dimiliki oleh PT Darya Varia Laboratoria Tbk. Hal ini menggambarkan bahwa modal kerja yang dimiliki oleh PT Darya Varia Laboratoria Tbk cukup tinggi dengan jumlah total aset lancar yang lebih besar dari liabilitas lancarnya. Nilai *mean* yang ada sejumlah 2,204825 menunjukkan bahwa tingkat modal kerja terhadap total aset rata-rata sample yang ada berada pada tingkat yang cukup baik karena tidak memiliki jumlah minus. Standar deviasi menunjukkan angka sebesar 0,174466. Nilai standar deviasi yang lebih kecil dibandingkan dengan nilai *mean* menunjukkan bahwa simpangan data modal kerja perusahaan manufaktur di indonesia tahun antara tahun 2014 hingga 2016 cukup baik serta terdapat variasi.

b. Variabel Independen

1) Siklus Konversi Kas (Cash Conversion Cycle)

Siklus konversi kas dihitung dengan menggunakan penjumlahan periode konversi persediaan dengan periode penangguhan piutang ratarata kemudian dikurangi dengan periode penangguhan utang lancar. Periode konversi persediaan didapatkan dengan cara membagi jumlah persediaan perusahaan dengan harga pokok penjualan per hari. Periode pennagguhan piutnag rata-rata didapatkan dengan membagi jumlah

piutang dengan jumlah penjualan per hari. Periode penagihan utang lancar didapatkan dengan membagi utang lancar perusahaan dengan harga pokok perusahaan per hari. Nilai siklus konversi kas tertinggi dimiliki oleh PT Wismilak Inti Makmur Tbk yakni sebesar 164.2585 pada tahun 2016. Nilai tinggi pada kas konversi kas tidak bermakna baik karena perusahaan membutuhkan waktu 164 hari untuk kembali mendapatkan kas mereka setelah selama hari tersebut terpaut pada persediaan dan piutang. Perusahaan yang memiliki siklus konversi kas yang paling rendah adalah PT Holcim Indonesia yakni senilai - 184,6461. Nilai *mean* menunjukkan angka 1,846734 yang bermakna bahwa perusahaan manufaktur di Indonesia selama tahun 2014 hingga 2016 memiliki masa konversi kas 1,846734 hari. Standar deviasi sebesar 66,38919 lebih besar dari nilai *mean*-nya menunjukkan bahwa simpangan data pada siklus konversi kas kurang baik dan tidak terdapat variasi dalam siklus konversi kas.

2) Capital Expenditure

Capital expenditure diproksikan dengan selisih antara aset tetap tahun_t dengan aset tetap tahun_{t-1}. Satuan yang digunakan pada variabel ini adalah jutaan rupiah. Nilai tertinggi *capital expenditure* sebesar 4184657 dimiliki oleh PT Gudang Garam Tbk pada tahun 2014. Pada tahun 2014 PT Gudang Garam Tbk menambahkan aset tetap sejumlah 4,18 Triliun Rupiah. Nilai terendah dimiliki oleh PT Pabrik Kertas Tjiwi Kimia Tbk sejumlah -1537040 pada tahun 2016. Nilai standar

deviasi dan *mean* secara berurutan sebesar 968866,6 dan 539890,9. Standar deviasi yang lebih besar dari nilai meannya menunjukkan bahwa simpangan data kurang baik dan tidak terdapat variasi dalam *capital expenditure*.

3) Leverage

Leverage pada penelitian ini menggunakan proksi total utang dibagi dengan total aset. Nilai Leverage tertinggi sejumlah 0,843510 dimiliki oleh PT Mulia Industrindo Tbk tahun 2015. Hal ini menunjukkan bahwa kompoisi struktur modal PT Mulia Industrindo Tbk memiliki utang lebih banyak dibandingkan dengan modal yang dimiliki sendiri. Nilai leverage terendah senilai 0,066187 yang dimiliki oleh PT Industri Jamu dan Farmasi Sido Muncul Tbk tahun 2014 menunjukkan bahwa perusahaan lebih memilih menggunakan modal sendiri dibandingkan dengan modal dari pihak ketiga (utang). Nilai rata-rata leverage sampel perusahaan manufaktur di Indonesia antara tahun 2014-2016 sejumlah 0.458503 dengan standar deviasi 0,0178496 yang berarti bahwa simpangan data leverage perusahaan manufaktur di indonesia tahun antara tahun 2014 hingga 2016 cukup baik serta terdapat variasi.

B. Pengujian Hipotesis

Penelitian ini memiliki tujuan untuk mengetahui bagaimana pengaruh siklus konversi kas, *capital expenditure*, dan *leverage* terhadap modal kerja perusahan manufaktur yang ada di Indonesia selama periode 2014 hingga

2016. Penlitian ini menggunakan uji pemilihan modal terbaik, uji asumsi klasik, analisis regresi linier berganda dan uji hipotesis dalam melakukan pengujian untuk mendapatkan hasil penelitian. Adapun hasil pengujian yang telah dilakukan adalah sebagai berikut:

1. Uji Pemilihan Model Terbaik

Penelitian ini menggunakan data panel yang memiliki tiga model regresi yakni *common effect model, fixed effect model,* dan *random effect model.* Uji pemilihan model terbaik dalam penelitian ini dilakukan untuk mengetahui model regresi data panel yang paling cocok digunakan untuk menguji hipotesis model penelitian yang telah dikembangkan. Untuk memilih model terbaik di antara ketiga model tersebut, diperlukan tahap uji Chow dan uji Hausman. Pemilihan tersebut dilakukan dengan Eviews 8. Proses yang dilakukan untuk menguji pemilihan model terbaik adalah sebagai berikut:

a. Uji Chow

Uji chow digunakan untuk memilih model yang paling cocok untuk digunakan antara *common effect model* dan *fixed effect model*.

Uji chow menggunakan kriteria pengujian yakni apabila (*p-value* > 0,05) maka *common effect model* yang terpilih namun jika (*p-value* < 0,05) maka *fixed effect model* dan lanjut uji Hausman. Berikut hasil pengujian uji chow yang tunjukkan pada tabel 4.3:

Tabel IV.3 Hasil Uji Chow

Effects Test	Statistic	d.f.	Prob.
Cross-section F Cross-section Chi-square	33.141495 328.214174	(37,73) 37	0.0000

Sumber: Eviews 8, data diolah peneliti, 2017

Hasil uji chow yang tertera pada tabel 4.3 menunjukkan bahwa *p-value* dan *chi-square* menunjukkan angka signifikan (p-value < 5%). Hal ini sesuai dengan kriteria pengujian yang telah dijabarkan sebelumnya. Pada tabel tersebut terlihat bahwa hasil dari *uji chow* yaitu *cross-section chi-square* sebesar 0,0000 lebih kecil dari 0,05 atau *p-value* sebesar 0,0000 lebih kecil dari 0,05. Dengan demikian Ha diterima, sehingga digunakan model *fixed effect*. Kemudian uji Hausman dilakukan untuk memilih antara *fixed effect model* atau *random effect model* sebagai model regresi yang cocok. Hasil uji *chow* secara lengkap dapat dilihat pada (lampiran 9.2).

b. Uji Hausman

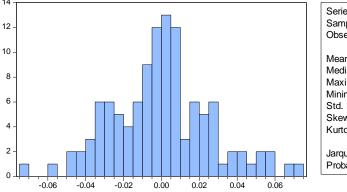
Uji Hausman dilakukan untuk memilih antara model *fixed effect* dan model *random effect*. Kriteria yang digunakan untuk melakukan uji Hausman adalah apabila *chi-square* atau p-value $\geq 0,05$ maka model yang terpilih adalah *random effect*, namun jika *chi-square* atau p-value < 0,05 maka model yang terpilih adalah *fixed effect*. Hasil uji Hausman tersaji pada tabel 4.4 sebagai berikut:

Tabel IV.4 Hasil Uji Hausman

Test Summary	Chi-Sq. Statistic	Chi-Sq. d.f.	Prob.
Cross-section random	23.555055	3	0.0000

Sumber: Eviews 8, data diolah peneliti, 2017

Melalui hasil pengujian yang tunjukkan oleh tabel 4.4, diketahui bahwa *chi-square* signifikan lebih besar dari 0,05. Hal ini sesuai dengan kriteria pengujian yang telah dijabarkan. Terlihat bahwa hasil dari uji Hausman yaitu *cross-section random* sebesar 0,0000 lebih kecil dari 0,05. Maka Ho ditolak, sehingga model *fixed effect* terpilih sebagai model regresi yang terbaik untuk dikembangkan. *Fixed Effect Model* merupakan model regresi yang dapat menunjukkan perbedaan konstanta antar objek walaupun dengan koefisien regresor yang sama. Efek tetap ini bermakna bahwa satu objek mempunyai konstanta yang sama besarnya untuk berbagai periode waktu serta koefisien regresinya tetap besarnya dari waktu ke waktu (time invariant) sehingga untuk membedakan satu objek dengan onjek lain digunakan variabel semu (Winarno, 2011). Hasil pengujian Hausman lengkap dapat dilihat pada (lampiran 9.3).


2. Uji Asumsi Klasik

Setelah diketahui model terbaik yang akan digunakan untuk menganalisis hipotesis penelitian, tahap selanjutnya adalah melakukan uji asumsi klasik. Uji ini dilakukan untuk menganalisis model regresi dapat digunakan sebagai alat prediksi yang baik serta untuk memastikan bahwa model regresi yang dikembangkan untuk menguji hipotesis penelitian ini tidak memiliki masalah. Tahapan pengujian asumsi klasik yang dilakukan adalah sebagai berikut:

a. Uji Normalitas

Uji normalitas merupakan pengujian yang bertujuan untuk mengetahui distribusi dari variabel independen dan variabel dependen normal atau tidak dalam model regresi. Penelitian ini menggunakan uji jarque-bera untuk menguji normalitas data. Uji jarque-bera mempunyai nilai *probability* yakni jika hasil uji jarque-bera lebih besar dari nilai probability pada signifikan 0,05 maka data berdistribusi normal. Jika hasil uji jarque-bera lebih kecil dari nilai *probability* signifikan 0,05 artinya data tidak berdistribusi normal.

Gambar 4.1 Hasil Uji Normalitas

Series: Standardized Residuals Sample 2014 2016 Observations 114 1.52e-18 Mean Median -0.000287 0.074974 Maximum Minimum -0.070474 Std. Dev. 0.026402 Skewness 0.267039 Kurtosis 3.339384 Jarque-Bera 1.901995 0.386355 Probability

Sumber: Eviews 8, data diolah peneliti, 2017

Hasil pengujian yang tunjukkan oleh gambar 4.1 memperlihatkan bahwa *probability* signifikan lebih besar dari 0,05. Artinya data telah sesuai dengan kriteria pengujian. Hasil dari uji normalitas dilihat dari *probability* sebesar 0,386355 yang lebih besar dari 0,05. Maka dapat diambil kesimpulan bahwa data berdistribusi normal.

b. Uji Multikolinearitas

Uji multikolinearitas memiliki tujuan untuk mengetahui ada atau tiadanya korelasi antar variabel independen dalam model regresi. Dalam penelitian ini, peneliti untuk melakukan pengujian multikolinearitas menggunakan *Pearson Correlation*. Kriteria *Pearson Correlation* untuk uji multikolinearitas adalah jika nilai koefisien korelasinya melebihi 0,9 sesuai dengan Gujarati (2009) yang mengungkapkan untuk mendeteksi ada atau tidaknya multikolinieritas yaitu, "The R2 situation may be so high, say in excess of 0,9 that on the basis of the F one can convincingly reject the hypothesis. Indeed, this is one of the signals of multicolinearity insignificant to values but a high overall R2." maka data tersebut terdapat multikolinearitas.

Hasil uji multikolinearitas tersaji pada tabel 4.5 sebagai berikut:

Tabel IV.5
Hasil Uji Multikolinearitas

	CCC	CAPEX	LEV
CCC	1.000000	-0.117821	-0.581531
CAPEX	-0.117821	1.000000	0.108176
LEV	-0.581531	0.108176	1.000000

Sumber: Eviews 8, data diolah peneliti, 2017

Berdasarkan hasil pengujian, diketahui bahwa nilai koefisien korelasi antar variabel lebih kecil dari 0,9. Hal ini bermakna bahwa model regresi telah sesuai dengan kriteria pengujian *Pearson Correlation*. Maka kesimpulannya adalah data tidak memiliki masalah multikolinearitas.

c. Uji Autokorelasi

Tujuan uji autokorelasi adalah untuk mengetahui didalam suatu model regresi linier apakah terdapat korelasi antara kesalahan pengganggu pada periode t dengan kesalahan pada periode sebelumnya. Penelitian ini menggunakan uji Durbin-Watson dalam mendeteksi masalah autokorelasi. Terdapat atau tidaknya autokorelasi dapat diketahui dari nilai d (koefisien DW) yang digambarkan pada tabel 3.1 dalam bab 3. Hasil uji autokorelasi disajikan pada tabel 4.6 sebagai berikut:

Tabel IV.6 Hasil Uji Autokolerasi

R-squared Adjusted R-squared S.E. of regression	0.981531 0.971411 0.032849	Mean dependent var S.D. dependent var Akaike info criterion	0.204825 0.194279 -3.720229
Sum squared resid Log likelihood	0.078771 253.0530	Schwarz criterion Hannan-Quinn criter.	-2.736157 -3.320849
F-statistic Prob(F-statistic)	96.99089 0.000000	Durbin-Watson stat	2.453887

Sumber: Eviews 8, data diolah peneliti, 2017

Hasil pengujian yang tunjukkan oleh tabel 4.6 menunjukkan bahwa nilai koefisien Durbin-Watson sebesar 2,453887. Hal ini sesuai dengan kriteria pengujian nilai koefisien Durbin-Watson ada pada tabel 3.2 bahwa hasil dari uji autokorelasi nilai koefisien 2,453887 berada dalam rentang

nilai koefisien d_u sampai 4-d_u yang berarti tidak menolak H₀. Sehingga dapat disimpulkan bahwa data tidak memiliki masalah autokorelasi.

d. Uji Heteroskedastisitas

Uji heteroskedastisitas bertujuan untuk mengetahui dalam model regresi terjadi ketidaksamaan varian dari residual satu pengamatan ke pengamatan yang lain atau tidak. Penelitian ini menggunakan uji white untuk menguji heteroskedastisitas. Ada atau tidaknya heteroskedastisitas dapat diketahui dari nilai probabilitas Obs*Rsquare yang dibandingkan dengan tingkat signifikansi. Apabila nilai probabilitas signifikansi berada pada tingkat di atas 0,05 maka dapat disimpulkan tidak terjadi heteroskedastisitas. Hasil pengujian heteroskedastisitas tersaji pada tabel 4.7 sebagai berikut:

Tabel IV.7 Hasil Uji Heteroskedastisitas

Heteroskedasticity Test: White

1.628962	Prob. F(9,104)		0.1165
14.08483	Prob. Chi-Square(9)		0.1193
10.88331	Prob. Chi-Square(9)		0.2838
	14.08483	1.628962 Prob. F(9,104) 14.08483 Prob. Chi-Square(9) 10.88331 Prob. Chi-Square(9)	14.08483 Prob. Chi-Square(9)

Sumber: Eviews 8, data diolah peneliti, 2017

Hasil pengujian tersebut menunjukkan bahwa nilai probabilitas Obs*R-square sebesar 0,1193. Sesuai dengan kriteria uji heteroskedastisitas dengan uji white yang telah dijabarkan sebelumnya, terlihat bahwa hasil dari uji white memiliki nilai probabilitas Obs*R-square lebih besar daripada signifikansi (0,1193>0,05). Maka dapat disimpulkan bahwa data tidak memiliki masalah heteroskedasitas.

3. Analisis Regresi Linier Berganda

Melalui serangkaian proses uji chow dan uji hausman untuk pemilihan model terbaik, maka terpilihlah model *fixed effect* yang dianggap paling cocok untuk menguji hipotesis penelitian. Sebelum melanjutkan ke tahap uji hipotesis, data terlebih dahulu melalui serangkian uji asumsi klasik sehingga pada akhirnya uji hipotesis yang dilakukan akan menghasilkan *output* yang dapat di percaya. Analisis regresi diperlukan untuk menguji hipotesis, yakni hubungan antara variabel independen dengan variabel dependen. Penelitian ini menggunakan siklus konversi kas (CCC), *capital expenditure* (CAPEX) dan *leverage* (LEV) sebagai variabel independen dan modal kerja (WCR) sebagai variabel dependen. Hasil regresi menggunakan *fixed effect model* disajikan pada taebl 4.8 sebagai berikut:

Tabel IV.8
Hasil Regresi Fixed Effect Model

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.335937	0.034971	9.606066	0.0000
CCC	0.000446	0.000155	2.874197	0.0053
CAPEX	-5.53E-09	4.32E-09	-1.278989	0.2050
LEV	-0.281241	0.076327	-3.684693	0.0004

Sumber: Eviews 8, data diolah peneliti, 2017

Hasil regresi *fixed effect* secara utuh dapat dilihat pada (lampiran 9.4). Berdasarkan hasil pengujian pada tabel 4.8, maka persamaan regresi linear berganda yang digunakan dalam penelitian ini adalah:

$$WCR = 0.3356937 + 0.000446.CCC - 5.52886787.CAPEX$$

- $0.281241.LEV + \varepsilon$

Keterangan:

WCR = Modal Kerja

CCC = Siklus Konversi Kas

CAPEX= Capital Expenditure

LEV = Leverage

Melalui persamaan regresi linier berganda tersebut dapat dijelaskan sebagai berikut:

- Konstanta sebesar 0,335937 menunjukkan bahwa rasio modal kerja terhadap aset tetap (WCR) akan bernilai 0,335937 jika semua variabel independen berada pada titik awal atau konstan.
- Koefisien siklus konversi kas (CCC) sebesar 0,000446 menunjukkan bahwa siklus konversi kas (CCC) berpengaruh positif terhadap modal kerja (WCR). Dengan demikian, jika CCC naik satu satuan dengan asumsi variabel lain tetap maka akan menaikkan modal kerja sebesar 0,000446.
- 3. Koefisien *capital expenditure* (CAPEX) sebesar -5.53 menandakan bahwa *capital expenditure* berpengaruh negatif terhadap modal kerja. Dengan demikian, jika CAPEX naik satu satuan dengan asumsi variabel lain tetap maka akan menurunkan modal kerja sebesar 5.53. Namun karena nilai probabilitas berada diatas 0,05 maka pengaruh yang ada tidak signifikan.

4. Koefisien *leverage* (LEV) sebesar -0,281241 menandakan bahwa *leverage* berpengaruh negatif terhadap modal kerja. Dengan demikian, jika *leverage* naik satu satuan dengan asumsi variabel lain tetap maka akan menurunkan modal kerja sebesar 0,281241.

4. Uji Hipotesis

Pengujian hipotesis dalam penelitian ini dilakukan menggunakan tiga alat yaitu : uji statistik t, uji koefisien determiansi (R²), dan uji statistik f.

a. Uji Statistik t

Uji statistik t bertujuan untuk mengetahui pengaruh variabelvariabel independen terhadap variabel dependen secara parsial. Pengujian ini dilakukan dengan menggunakan kriteria berdasarkan pembandingan nilai t-statistik (thitung) dari masing-maing koefisien variabel independen terhadap nilai ttabel dan juga berdasarkan probabilitas (ρ). Pada penelitian ini, df (n-k-1) adalah sebesar 110 (114-3-1) dimana n adalah jumlah observasi sebesar 114, k adalah variabel independen berjumlah 3. Dengan nilai df 110 dan signifikansi 0.05, maka nilai ttabel adalah 1,981 untuk *two tail* dan 1,65870 untuk *one tail*. Untuk mengetahui pengaruh signifikan antara variabel independen dengan dengan dependen digunakan kriteria pengujian jika (thitung > ttabel) atau (*p-value* < 0.05) maka variabel ndependen berpengaruh terhadap variabel dependen. Hasil uji t disajikan pada tabel berikut:

Tabel IV.9 Hasil Uji Signifikansi Parsial (Uji T)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C CCC CAPEX LEV	0.335937 0.000446 -5.53E-09 -0.281241	0.034971 0.000155 4.32E-09 0.076327	9.606066 2.874197 -1.278989 -3.684693	0.0000 0.0053 0.2050 0.0004

Sumber: Eviews 8, data diolah peneliti, 2017

Berdasarkan pada tabel diatas, maka dapat dijelaskan pengaruh masing-masing variabel independen terhadap variabel dependen sesuai dengan hipotesis yang ada dalam penelirian ini. Berikut penjelasan mengenai pengujian hipotesis tersebut:

1) Pengujian hipotesis 1

Hipotesis pertama pada penelitian ini menyatakan bahwa siklus konversi kas (CCC) berpengaruh positif terhadap modal kerja (WCR). Tabel 4.9 menunjukkan bahwa nilai t_{hitung} siklus konversi kas (CCC) senilai 2,874197 lebih tinggi dari t_{tabel} yang memiliki nilai 1,98157. Tingkat signifikansi siklus konversi kas (CCC) yang berjumlah 0,0053 lebih kecil dari 0,05 sehingga dapat disimpulkan bahwa siklus konversi kas berpengaruh positif dan signifikan terhadap modal kerja.

2) Pengujian hipotesis 2

Hipotesis kedua pada penelitian ini menyatakan bahwa *capital expenditure* (CAPEX) berpengaruh positif terhadap modal kerja (WCR). Tabel 4.9 menunjukkan bahwa nilai t_{hitung} *capital expenditure* (CAPEX) senilai -1,278989 lebih besar dari t_{tabel} yang memiliki nilai -1,98157. Tingkat signifikansi *capital expenditure* (CAPEX) yang berjumlah 0,2050 lebih besar dari 0,05 sehingga dapat disimpulkan bahwa *capital expenditure* (CAPEX) tidak berpengaruh signifikan terhadap modal kerja.

3) Pengujian Hipotesis 3

Hipotesis ketiga pada penelitian ini menyatakan bahwa *leverage* (LEV) berpengaruh negatif terhadap modal kerja (WCR). Tabel 4.9 menunjukkan bahwa nilai t_{hitung} *leverage* (LEV) senilai -3,684693 lebih kecil dari t_{tabel} yang memiliki nilai -1,98157. Tingkat signifikansi *leverage* (LEV) yang berjumlah 0,0004 lebih kecil dari 0,05 sehingga dapat disimpulkan bahwa *leverage* (LEV) berpengaruh negatif dan signifikan terhadap modal kerja.

b. Koefisien determinasi

Koefisien determinasi (R2) bertujuan untuk mengetahui seberapa jauh variabel independen dapat menerangkan variabel dependen. Pengujian ini dilakukan dengan menggunakan *Adjusted R-Squared* pada persamaan regresi yang mencerminkan besarnya pengaruh perubahan variabel dependen yang disebabkan oleh berubahan variabel

independen. Semakin kuat hubungan antara variabel dependen dengan independen dilihat dengan semakin besarnya nilai *Adjusted R-Squared* tersebut. Hasil pengujian koefisien determinasi (R2) dapat dilihat pada tabel 4.10.

 $\label{eq:tabel_equation} Tabel \ IV.10$ Hasil Pengujian Koefisien Determinasi (R^2)

R-squared	0.981531	Mean dependent var	0.204825
Adjusted R-squared	0.971411	S.D. dependent var	0.194279
S.E. of regression	0.032849	Akaike info criterion	-3.720229
Sum squared resid	0.078771	Schwarz criterion	-2.736157
Log likelihood	253.0530	Hannan-Quinn criter.	-3.320849
F-statistic	96.99089	Durbin-Watson stat	2.453887
Prob(F-statistic)	0.000000		

Sumber: Eviews 8, data diolah peneliti, 2017

Pada tabel 4.10 terlihat jumlah *Adjusted R-Squared* sebesar 0,971411. Dengan demikian, ketiga variabel independen yakni siklus konversi kas (CCC), *capital expenditure* (CAPEX), dan *leverage* (LEV) dapat menerangkan perubahan pada modal kerja (WCR) yang merupakan variabel dependen dari penelitian ini karena memiliki nilai koefisien determinasi (R²) sebesar 97%, dan 3% lainnya dapat dijelaskan dengan variabel lain.

c. Uji signifikansi Simultan (UJI F)

Uji signifikansi simultan (Uji F) memiliki tujuan untuk mengetahui pengaruh variabel independen terhadap variabel dependen secara bersamaan (simultan). Pengujian ini dilakukan dengan menggunakan kriteria berdasarkan pembandingan nilai F-statistik

 (F_{hitung}) dari masing-maing koefisien variabel independen terhadap nilai F_{tabel} serta berdasarkan pada probabilitas (ρ). Pada penelitian ini, df 1 (k-1) adalah 3. Kemudian, df 2 (n-k-1) adalah sebesar 111 (114-4-1) dimana n adalah jumlah observasi sebesar 114, k adalah variabel berjumlah 4. Dengan nilai df₁ sebesar 3 dan df₂ sebesar 111 dan signifikansi 0.05, maka nilai F_{tabel} adalah 2,69. Pengaruh signifikan antara variabel independen dengan dengan dependen dapat diketahui dengan menggunakan kriteria pengujian jika $(F_{hitung} > F_{tabel})$ atau (p-value < 0.05) maka variabel ndependen berpengaruh terhadap variabel dependen. Hasil uji F disajikan pada tabel berikut:

Tabel IV.11 Hasil Uji Signifikansi Simultan (Uji F)

D. carrend	0.004504	Maan dan an dant war	0.204025
R-squared	0.981531	Mean dependent var	0.204825
Adjusted R-squared	0.971411	S.D. dependent var	0.194279
S.E. of regression	0.032849	Akaike info criterion	-3.720229
Sum squared resid	0.078771	Schwarz criterion	-2.736157
Log likelihood	253.0530	Hannan-Quinn criter.	-3.320849
F-statistic	96.99089	Durbin-Watson stat	2.453887
Prob(F-statistic)	0.000000		

Sumber: Eviews 8, data diolah peneliti, 2017

Tabel 4.11 menunjukkan bahwa F_{hitung} sebesar 96.99098 dengan signifikansi sebesar 0,000000. Dengan demikian F_{hitung} lebih besar dari F_{tabel} dengan nilai 2,69 dan signifikansinya lebih kecil dari 0,05. Oleh karena itu dapat disimpulkan bahwa variabel independen berupa siklus konversi kas (CCC), *capital expenditure* (CAPEX) dan *leverage* (LEV)

mempengaruhi variabel dependennya yakni modal kerja (WCR) secara bersamaan (simultan).

C. Pembahasan

1. Pengaruh siklus konversi kas terhadap modal kerja

Hasil dari penelitian ini menunjukkan bahwa siklus konversi kas berpengaruh positif secara signifikan terhadap modal kerja. Hal ini dibuktikan dengan uji statistik yang menunjukkan bahwa nilai t_{hitung} siklus konversi kas (CCC) senilai 2,874197 lebih tinggi dari t_{tabel} yang memiliki nilai 1,98157. Tingkat signifikansi siklus konversi kas (CCC) yang berjumlah 0,0053 lebih kecil dari 0,05 sehingga dapat disimpulkan bahwa siklus konversi kas berpengaruh positif dan signifikan terhadap modal kerja. Dengan demikian hipotesis 1 (H1) diterima.

Siklus konversi kas yang merupakan siklus modal kerja, diawali dengan pembelian bahan baku kemudian memproduksi persediaan dan menjual persediaan itu melalui penjualan tunai maupun piutang. Modal kerja terikat pada persediaan ketika persediaan itu masih dalam proses produksi maupun pada persediaan yang telah disimpan didalam gudang. Maka, semakin lama persediaan disimpan dalam gudang akan meningkatkan periode konversi persediaan. Periode konversi persediaan yang panjang tersebut menandakan lamanya modal kerja terikat pada persediaan. Setelah persediaan terjual, modal kerja akan kembali kedalam bentuk kas namun ketika penjualan dilakukan

menggunakan piutang maka modal kerja akan kembali terikat pada piutang tersebut hingga pelanggan membayar piutangnya. Semakin lama *Average Collection Period* maka lamanya modal kerja yang terpaut pada piutang akan semakin panjang. Komponen yang ada pada siklus konversi kas terdapat pada modal kerja sehingga pengaruh yang diberikan siklus konversi kas sangat besar terhadap modal kerja. Semakin panjang siklus konversi kas akan memperbesar modal kerja yang dimiliki perusahan.

Hasil penelitian ini sejalan dengan penelitian terdahulu yang dilakukan oleh (Suleiman M. Abbadi, 2013). Pada penelitian tersebut ditemukan bahwa bahwa siklus konversi kas berpengaruh positif dan signifikan terhadap modal kerja. Perusahaan yang mempertahankan modal kerja yang tinggi disebabkan oleh siklus konversi kas yang panjang sehingga perlu melakukan kebijakan konservatif. Semakin tinggi siklus konversi kas maka semakin besar kebutuhan modal kerja untuk membiayai kegiatan operasional perusahaan karena banyak modal kerja yang terikat pada persediaan maupun piutang.

Peneliti menemukan fakta yang mendukung hasil penelitian ini. PT Gajah Tunggal Tbk memiliki siklus konversi kas selama tiga tahun berturut-turut yaitu 35,449, 24,636 dan 28,923. Kenaikan dan penurunan siklus konversi kas sejalan dengan kenaikan dan penurunan modal kerja. Pada tahun 2014 PT Gajah Tunggal Tbk memiliki tingkat modal kerja terhadap total aset sebesar 0,185, sesuai dengan siklus

konversinya, pada tahun 2015 tingkat modal kerja menurun menjadi 0,165 dan kembali meningkat pada tahun 2016 menjadi 0,170. Beberapa perusahaan yang memperlihatkan fakta serupa adalah PT Gudang Garam Tbk, PT Indofood Sukses Makmur Tbk, dan PT Chandra Asri Petrochemical Tbk. Fakta tersebut memperkuat hasil dari penelitian ini yakni terdapat pengaruh positif signifikan antara sikus konversi kas dengan modal kerja.

2. Pengaruh Capital Expenditure terhadap modal kerja

Hasil penelitian ini menunjukkan bahwa *capital expenditure* tidak memiliki pengaruh signifikan terhadap modal kerja. Hal ini diketahui melalui uji statistik yakni nilai t_{hitung} capital expenditure (CAPEX) senilai -1,278989 lebih besar dari t_{tabel} yang memiliki nilai -1,98157. Tingkat signifikansi capital expenditure (CAPEX) yang berjumlah 0,2050 lebih besar dari 0,05 sehingga dapat disimpulkan bahwa capital expenditure (CAPEX) tidak berpengaruh terhadap modal kerja.

Capital Expenditure merupakan pengeluaran yang dilakukan perusahaan yang akan mendapatkan manfaat lebih bagi perusahaan pada masa yang akan datang. Dengan capital expenditure, aset tetap perusahaan mengalami peningkatan kualitas sehingga akan meningkatkan kapasitas dan/atau kualitas produksi. Namun, capital expenditure yang dilakukan perusahaan pada tahun tersebut tidak secara langsung meningkatkan output perusahaan yang akan berdampak pada peningkatan penjualan. Peningkatan penjualan

tersebut berimplikasi pada salah satu komponen modal kerja yaitu aset lancar yang berlangsung secara bertahap namun konsisten. Sehingga *capital expenditure* tidak berpengaruh secara signifikan terhadap modal kerja.

Penelitian ini tidak mendukung penelitian terdahulu yakni penelitiaan yang dilakukan oleh (Ilyas, 2014), (Y. Vaicondam, 2016), (Teimoor Hosseini Assi, 2014) yakni terdapat pengaruh positif signifikan antara capital expenditure dan modal kerja. (Nor Edi Azhar Binti Mohammad, 2013), (Appuhami, 2008) dan (Raheman A. Muhammad K. S., 2012). Penelitian yang dilakukan oleh (Ilyas, 2014), (Y. Vaicondam, 2016), (Teimoor Hosseini Assi, 2014) menghasilkan pengaruh positif signifikan atas capital expenditure terhadap modal kerja. Namun, pengaruh antara capital expenditure dengan modal kerja di indonesia tidak mengalami pengaruh yang signifikan. Hal ini dikarenakan perbedaan negara serta terdapat perbedaan objek penelitian yakni jumlah perusahaan sample, sektor yang berbeda dan periode penelitian yang panjang. Penelitian yang dilakukan oleh (Raheman A. Muhammad K. S., 2012) hanya memasukkan sektor industri semen, gula dan energi sebagai objek penelitian serta periode penelitian tujuh tahun yakni 2004-2010.

3. Pengaruh Leverage terhadap modal kerja

Hasil penelitian ini memperlihatkan bahwa *leverage* berpengaruh negatif secara signifikan terhadap modal kerja. Hal tersebut dibuktikan

dengan nilai t_{hitung} *leverage* (LEV) senilai -3,684693 lebih kecil dari t_{tabel} yang memiliki nilai 1,98157. Tingkat signifikansi *leverage* (LEV) yang berjumlah 0,0004 lebih kecil dari 0,05 sehingga dapat disimpulkan bahwa Hipotesis ketiga yakni *leverage* (LEV) berpengaruh negatif dan signifikan terhadap modal kerja, diterima.

Pendanaan modal kerja bersumber dari pendanaan eksternal dan internal yang dipilih berdasarkan kebijakan perusahaan (Karina, 2012). Utang merupakan salah satu sumber pendanaan yang dapat menjadi opsi bagi perusahaan. Menurut teori Pecking Order, perusahaan cenderung menggunakan pendanaan internal (yang diperoleh dari keuntungan yang dihasilkan dari kegiatan perusahaan) terlebih dulu sebelum menggunakan pendanaan eksternal. Perusahaan dengan prospek yang baik tentu lebih memilih untuk mendanai usahanya dengan modal kerja yang dimiliki bukan dari luar perusahaan yang berakibat pada tingkat utang yang tinggi. Leverage merupakan rasio yang memperlihatkan tingkat utang terhadap total aset yang dimilikinya. Perusahaan dengan tingkat leverage yang tinggi mengindikasikan modal kerja yang rendah. Dengan tingkat leverage yang tinggi seharusnya perusahaan lebih memperhatikan efisiensi dari modal kerja untuk menghindari banyaknya modal yang terikat dalam piutang dan persediaan (Megarifera, 2013). Selain itu, terdapat kesamaan komponen leverage pada modal kerja, sehingga keterkaitan antara keduanya cukup besar. Dalam mengukur leverage terdapat total utang, didalam total utang itu terdapat utang lancar. Utang lancar merupakan salah satu komponen yang membentuk modal kerja. Hal ini mendukung besarnya pengaruh antara *leverage* terhadap modal kerja.

Penelitian ini mendukung hasil penelitian terdahulu yakni penelitian yang dilakukan oleh (Nor Edi Azhar Binti Mohammad, 2013), (Suleiman M. Abbadi, 2013), (Megarifera, 2013), (Adekunle A. Onaolapo PhD, 2015), dan (Shaista Wasiuzzaman, 2013) dengan hasil penelitian terdapat pengaruh negatif secara signifikan antara *leverage* dengan modal kerja.

Peneliti menemukan fakta yang mendukung penelitian ini bahwa leverage berpengaruh negatif secara signifikan terhadap modal kerja. Hal itu bermakna bahwa setiap kenaikan leverage akan menurunkan modal kerja. sebaliknya, jika leverage meningkat maka modal kerja akan menurun. PT Astra Internasional Tbk memiliki tingkat leverage tahun 2014 hingga tahun 2015 secara berurut adalah sebesar 0,490, 0,484 dan 0,813. Pergerakan jumlah modal kerja mengikuti arah sebaliknya yakni tahun 2014 sebesar 0,100, tahun 2015 sejumlah 0,118 dan tahun 2016 senilai 0,081. Selain PT Astra Internasional Tbk, beberapa perusahaan lain yang memiliki hasil serupa adalah PT Gudang Garam Tbk, PT Chaeron Pokphand Indonesia Tbk, dan PT Japfa Comfeed Indonesia Tbk. Hal ini memperkuat hasil bahwa tingkat leverage berpengaruh negatif secara signifikan terhadap modal kerja.

BAB V

KESIMPULAN, IMPLIKASI DAN SARAN

A. Kesimpulan

Penelitian ini bertujuan untuk mengetahui pengaruh antara siklus konversi kas, *capital expenditure*, dan *leverage* terhadap modal kerja. Objek pada penelitian ini adalah perusahaan manufaktur yang terdaftar di BEI periode 2014-2016. Penggunaan teknik *purposive sampling* membuat sampel penelitian ini berjumlah 38 sampel sehingga total observasi yang digunakan berjumlah 114 observasi.

Berdasarkan pada pembahasan sebelumnya, maka kesimpulan dari penelitian ini adalah:

- 1. Terdapat pengaruh positif secara signifikan antara siklus konversi kas dan modal kerja. Sesuai dengan Hipotesis pertama (H1), Hal ini disebabkan karena dengan semakin besar angka siklus konversi kas maka perusahaan akan melakukan kebijakan konservatif dengan menambah modal kerja kebih banyak. Hal tersebut dilakukan karena semakin tinggi angka siklus konversi kas maka semakin lama kas perusahaan terpaut pada persediaan dan piutang sehingga membahayakan likuiditas perusahaan.
- 2. Tidak terdapat pengaruh antara *Capital expenditure* terhadap modal kerja. Hal tersebut disebabkan karena manfaat dari *capital*

expenditure tidak dapat dirasakan secara langsung melainkan bertahap untuk tahun-tahun setelah dilaksanakannya capital expenditure sehingga tidak berpengaruh langsung terhadap modal kerja pada saat dilakukannya capital expenditure. Dengan tidak adanya pengaruh signifikan tersebut maka hipotesis kedua (H2) ditolak.

3. Leverage berpengaruh signifikan negatif terhadap modal kerja. Semakin kecil tingkat leverage perusahaan maka semakin tinggi tingkat modal kerjanya. Perusahaan dengan leverage tinggi akan mengoptimalkan segala aset yang dimilikinya termasuk diantaranya aset lancar yang merupakan komponen dari modal kerja untuk dapat lebih maksimal dalam menghasilkan laba agar tidak ada aset yang menganggur dan perusahaan dapat membayar utang serta beban bunganya. Perusahaan dengan tingkat leverage rendah lebih memilih untuk menggunakan modal internalnya termasuk didalamya adalah modal kerja. Dengan demikian, hipotesis ketiga (H3) diterima.

B. Implikasi

Modal kerja merupakan salah satu pengukuran likuiditas perusahaan dan merupakan salah satu sumber yang dilihat oleh kreditor dalam memberikan pinjamannya kepada perusahaan. Semakin tinggi tingkat modal kerja suatu perusahaan maka tingkat likuiditas perusahaan semakin baik sehingga terhindar dari risiko kebangkrutan akibat permasalahan

likuiditas. Selain itu, stakeholder seperti investor dapat menilai likuiditas untuk menjamin pembagian dividen melalui jumlah modal kerja perusahaan.

Mengingat pentingnya modal kerja bagi perusahaan baik untuk mendapatkan kreditor, mendapatkan penanam modal baru dan untuk menghindari risiko likuiditas maka manajer diharapkan dapat lebih memahami modal kerja baik untuk meningkatkan dan untuk pengelolaannya yang lebih baik melalui penurunan tingkat leverage, dan menurunkan siklus konversi kas dengan menerapkan berbagai kebijakan pembelian persediaan dan kebijakan piutang penjualan agar modal kerja tidak terlalu lama tertahan dalam persediaan dan hutang.

C. Saran

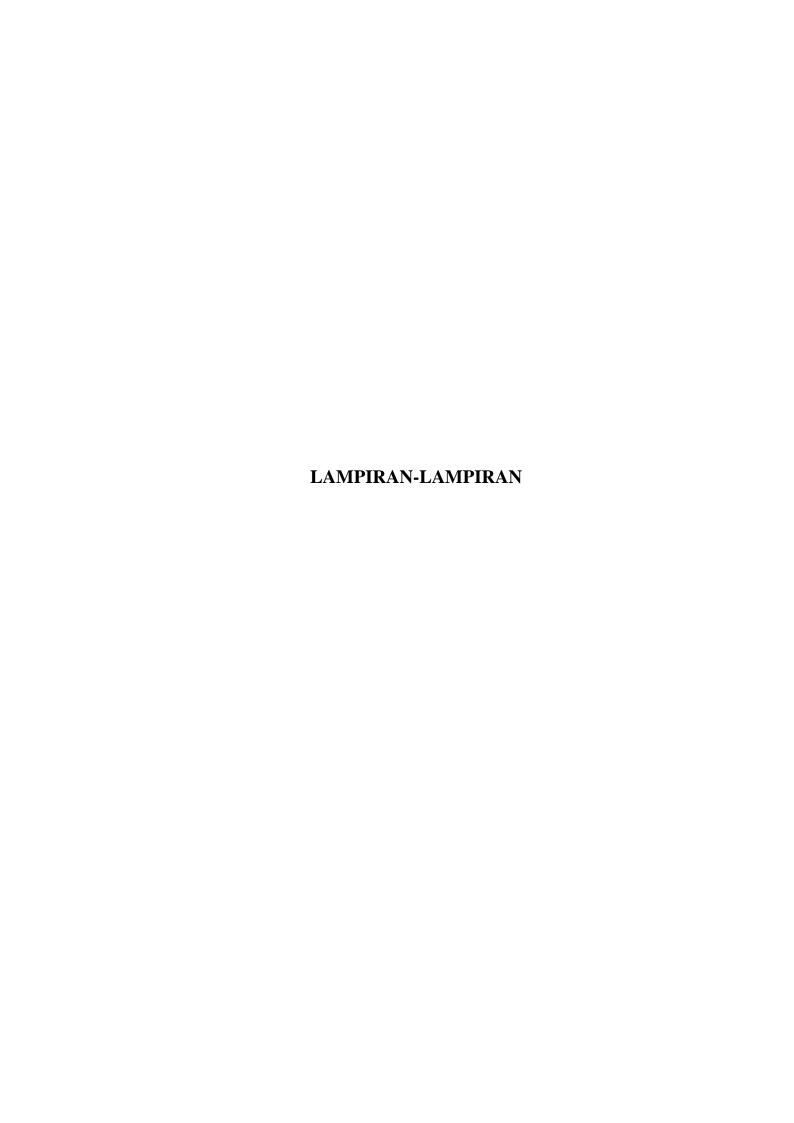
Berdasarkan hasil penelitian yang telah dilaksanakan, terdapat beberapa keterbatasan yaitu:

- Sampel pada penelitian ini hanya terbatas pada perusahaan manufaktur saja sehingga kurang menggambarkan kondisi seluruh perusahaan dari berbagai sektor di Indonesia.
- 2. Periode penelitian hanya tiga tahun yakni tahun 2014 hingga 2016.
- 3. Variabel Independen yang digunakan masih terbatas yakni hanya tiga; siklus konversi kas, *capital expenditure* dan *leverage*.

Berdasarkan keterbatasan diatas, maka saran yang dapat diberikan bagi peneliti selanjutnya adalah:

- Menambah sektor lain seperti menggunakan sektor manufaktur dan ditambahkan dengan sektor pertanian.
- 2. Memilih sampel pada sektor lainnya. Jika menggunakan capital expenditure sebagai variabel independen, peneliti selanjutnya dapat menggunakan perusahaan teknologi karena lebih berpengaruh terhadap modal kerja perusahaan tersebut berdasarkan penelitian terdahulu di negara lain.
- 3. Menambah periode penelitian menjadi lebih dari tiga tahun agar hasil penelitian yang didapat akan lebih baik.
- 4. Menggunakan proxy lain selain *Working capital to total aset ratio* (rasio modal kerja terhadap total aset) untuk modal kerja.

DAFTAR PUSTAKA


- Abbadi, Suleiman M. dan Rasha T. Abbadi. "The Determinants of Working Capital Requirements in Palestinian Industrial Corporation", Canadian Center of Sciences and Education. No. 1, Vol. 5, 2013.
- Adi, Dimas Kusuma dan Dul Muid. "Analisis Faktor-Faktor Yang Mempengaruhi *Capital Expenditure*: Dengan Pendekatan *Pecking Order Theory* (Studi Empiris pada Perusahaan Manufaktur di BEI)", **Diponegoro Journal Of Accounting**. 4: Vol. 2. 2013.
- Ambarwati, Sri Dwi Ari. **Manajemen Keuangan Lanjut**. Yogyakarta: Graha Ilmu, 2010.
- Ariefanto, Moch. Doddy. Ekonometrika: esensi dan aplikasi dengan mengunakan EViews. Jakarta: Penerbit Erlangga, 2012.
- Assi, Teimoor Hosseini, et al. "The Impact of Firms' Capital Expenditure on Working Capital Management in the Tehran Stock Exchange" Journal of Applied Environtmental and Biological Sciences. No. 11, Vol. 4, 2014.
- Azeem, Muhammad Mehtab dan Akin Marsap. "Determinant Factor and Working Capital Requirement", Canadian Center of Science and Education, No. 2, Vol. 7, 2015.
- Brealey, Richard A., Stewart C. Myers, dan Alan J. Marcus. **Dasar-dasar Manajemen Keuangan Perusahaan**. Vol. 1. Terjemahan Yelvi Andri Zaimur. Jakarta: Penerbit Erlangga, 2008.
- Brigham, F. dan Joel F. Houston. **Dasar-dasar Manajemen Keuangan**. Vol. 2. Terjemahan Yulianto Ali Akbar. Jakarta : Salemba Empat, 2011.
- Celik, Ismail dan Namika Boyacioglu. "The Impact of Fixed Assets Expenditures on Working Capital Management: An Application on Manufacturing Enterprises In Istanbul Stock Exchange", Journal of Suleyman Demirel University Institute of Social Sciences. No. 17, Vol. 1, 2013.

- Dewanto, Eko. **Pengaruh Capital Expenditure Terhadap Laba Pada Perusahaan Manufaktur Periode 1999-2007**. Skripsi Sarjana (tidak diterbitkan). Depok: Manajemen FE UI, 2009.
- Farida, Aini dan Andi Kartika "Analisis PEngaruh Internal Caash Flow, Insider Ownership, Profitabilitas, Kesempatan Investasi dan Pertumbuhan Penjualan Terhadap Capital Expenditure", **Jurnal Bisnis dan Ekonomi (JBE).** Maret 2016.
- Firdaus, Muhammad. **Ekonometrika: Suatu Pendekatan Aplikatif**. Jakarta: PT Bumi Aksara, 2011.
- Ghozali, Imam. **Aplikasi Analisis Multivariate Dengan Program IBM SPSS 19**. Semarang : BP UNDIP, 2011.
- Gill, Amarjit. "Factors That Influence Working Capital Requirements in Canada", **Economics and Finance Review**. No. 3, Vol. 1., 2011. hal. 30-40.
- Ghozali, H. Imam dan Dwi Ratmono. Analisis Multivariat dan Ekonometrika: Teori, Konsep, dan Aplikasi dengan Eviews 8. Semarang: Badan Penerbit Universitas Diponegoro, 2013.
- Hanafi, Mamduh M. Manajemen Keuangan. Yogyakarta: BPFE-Yogyakarta, 2011.
- Hamidi, Masyhuri. "Determinants of Cpital Expenditure Decisions In The Malaysian Companies", Proceedings of The Australasian Conference on Business and Social Sciences. Sydney: 2015.
- Hanum, Zulia. "Pengaruh Profitabilitas Terhadap Modal Kerja Pada Perusahaan Makanan dan Minuman yang Terdaftar di Bursa Efek Indonesia", **Jurnal Manajemen & Bisnis**. No. 2, Vol. 11. April 2012.
- Horne, James C.Van dan John M. Wachowicz JR. Prinsip Prinsip Manajemen Keuangan. Edisi 12. Terjemahan Dewi Fitriasari S.S., M.Si., Ak. & Deny Aros Kwary, M.Hum.. Jakarta: Penerbit Salemba Empat, 2005.
- Ilyas, Muhammad. "Impact of Capital Expenditures on Working Capital Management of Listed Firm (Karachi Stock Exchange) in Pakistan", Journal of Economics and Sustainable Development. No. 22, Vol. 5, 2014.

- International Treasury Consult sprl. **Cash Conversion Cycle**. 2015. http://www.finbrain-itc.be/?attachment_id=534. (Diakses pada 04 Mei 2017).
- INVESTOPEDIA. **Working Capital**. 2017 http://www.investopedia.com. (Diakses tanggal 8 Maret 2017).
- Karina, Adisti Dwi. **Pengaruh Karakteristik Perusahaan Terhadap Kebutuhan Modal Kerja.** Tesis (Tidak Diterbitkan). Jakarta: Fakultas Ekonomi Universitas Indonesia, 2012.
- Kasmir. **Pengantar Manajemen Keuangan**. Jakarta : PT RajaGrafindo Persada, 2016.
- Keown, Arthur, et al. **Manajemen Keuangan.** Vol. 2. Terjemahan Marcus Prihminto Widodo M.A. Jakarta: Indeks, 2010.
- Khusnul, Fatkhiatur. **Analisis Pengaruh** *Capital Expenditure, Sales Growth, Provitability, Size,* **dan** *Rating Premium* **Terhadap Struktur Modal.** Skripsi Sarjana (Tidak diterbitkan). Semarang: FEB Universitas Diponegoro, 2012.
- Kieso, Donald E., Jerry J. Weygandt, dan Terry D. Warfield. **Intermediate Accounting**. Vol. 1. Jakarta: Penerbit Erlangga, 2008.
- Manoori, Ebrahim dan Datin Dr Joriah Muhammad. "Determinants of Working Capital Management; Case of Singapore Firm", Research Journal of Finance and Accounting, 11: Vol. 3, 2012.
- Mardiyanto, Handono. Intisari Manajemen Keuangan. Jakarta : Grasindo, 2009.
- Masyuri, MP. dan M. Zainudin. **Metodologi Penelitian pendekatan praktis dan aplikatif.** Bandung: PT Rafika Aditama, 2008.
- Megarifera, Livia Nadya. **Analisis Pengaruh Ukuran Perusahaan, Profitabilitas,** *Operating Cycle, Leverage*, **dan Pertumbuhan Penjualan Terhadap Jumlah Modal Kerja**. Skripsi Sarjana (Tidak diterbitkan). Semarang: Fakultas Ekonomi dan Bisnis Universitas Diponegoro, 2013.
- Mulyadi. Akuntansi Biaya. Yogyakarta : UPP STIM YKPN, 2012.

- Murhadi, Werner R. "Hubungan Capital Expenditures, Risiko Sistematis, Struktur Modal, Tingkat Kemampulabaan Terhadap Nilai Perusahaan", **Jurnal Manajemen dan Bisnis**. Surabaya: academia.edu, 2008.
- Mohammad, Nor Edi Azhar Binti dan Siti Balqis Elias. "An Assessment on Determinant of Working Capital Management from Malaysian Public Listed Companies", Internetional Journal of Academic Research in Accounting, Finance and Management Sciences. No. 4, Vol. 3. HRmars, 2013.
- Muhammad K. S, Raheman A., et al. "Impact of Capital Expenditure on Working Capital Mangement in Selected Listed Pakistani Firms", American Journal of Scientific Research. 2012. 53.
- Nugroho, Setyo Budi. "Analisis Pengaruh Efisiensi Modal Kerja, Likuiditas dan Solvabilitas Terhadap Profitabilitas (Studi Kasus Pada PT. Telekomunikasi Indonesia, Tbk)", **Jurnal Ilmu Administrasi Bisnis**. No. 1: Vol. 1. Semarang: Universitas Diponegoro, 2012.
- Onaolapo, Adekunle A. PhD dan Sunday O. Kajola. "What are the Determinants of Working Capital Requirements of Nigerian Firms?", Research Journal of Finance and Accounting. Vol. 6. www.iiste.org, 2015.
- **Perusahaan Besar Bangkrut di Indonesia**. Sindonews.com. 17 Februari 2016. https://ekbis.sindonews.com/read/1085897/39/perusahaan-besar-bangkrut-di-indonesia-1455640928/13. (Diakses pada tanggal. 10 Mei 2017)
- Raheman, Abdul dan Mohamed Nasr. "Working Capital Management and Profitability Case of Pakistani Firms", International Review of Business Research Papers. 2007. No.1, Vol. 3, hal. 279-300.
- Riyanto, Bambang. **Dasar-dasar Pembelanjaan Perusahaan Edisi 4.** Yogyakarta : BPFE-Yogyakarta, 2010.
- Saarani, Asmawi Noor dan Faridah Shahadan. "Analyzing the Validity of Working Capital Determinant Factors of Enterprise 50 (E50) Firm in Malaysia using Partial Least Square Structural Equation Modelling", Prosiding Perkem VII. Vol. 1. 2012.
- Satriya, I Made Dian dan Putu Vivi Lestari. "Pengaruh Perputaran Modal Kerja Terhadap Profitabilitas Perusahaan", **E-Jurnal Manajemen Universitas Udayana.** No.7, Vol. 3. Bali: Jurusan Manajemen Fakultas Ekonomi Universitas Udayana, 2014.

- Silvana, Silvia. "Pengaruh Internal Cash Flow, Intensitas Modal, Insider Ownership, dan Ukuran Perusahaan terhaadap Capital Expenditure pada Industri Manufaktur yang terdaftar di BEI Periode 2009-2011". **Jurnal Ilmiah Mahasiswa Manajemen.** Vol. 2, No. 3, 2013.
- Sintaasih, Desak Ketut. "Pengaruh Struktur Modal dan Capital Expenditures Terhadap Nilai Perusahaan", **Jurnal Akuntansi dan Bisnis**, 2010.
- Soemarso. **Akuntansi Suatu Pegantar**.Vol. 2. Jakarta : Penerbit Salemba Empat, 2006.
- Sudana, I Made. **Manajemen Keuangan Perusahaan Teori dan Praktik**. Jakarta: Penerbit Erlangga, 2011.
- Sugiono. **Metode Penelitian Kuantitatif, Kualitatif, dan R&D**. Bandung: ALFABETA, CV, 2011.
- Suliyantoro. **Ekonometrika Terapan Teori dan Aplikasi dengan SPSS**. Yogyakarta: Penerbit ANDI, 2011.
- Subramanyam, K.R. dan John J. Wild. **Analisis Laporan Keuangan**. Vol. 2. Terjemahan Dewi Yanti. Jakarta: Salemba Empat, 2014.
- Vaicondam, Y., M. A. Anuar, dan S. Ramakrishnan. "Impact of Capital Investment on Working Capital Management", **Journal Of Advanced Research In Social And Behavioural Sciences**. No.1, Vol. 3, 2016.
- Wasiuzzaman, Shaista dan Veeri Chettiar Arumugam, "Determinant of Working Capital Investment: A Study of Malaysian PublicListed Firms", Australian Accounting, Business And Finance Journal. No. 2, Vol. 7, 2013.
- Weygandt, Jerry J., Donald E. Kieso, dan Paul D. Kimmel. **Pengantar Akuntansi**, Vol. 1. Jakarta: Penerbit Salemba Empat, 2009.
- Winarno, Wing Wahyu. **Analisis Ekonometrika dan Statistika Dengan Eviews. Edisi 3**. Yogyakarta: Sekolah Tinggi Ilmu Manajemen YKPN, 2011.

Lampiran 1 Daftar Nama Sampel Perusahaan Manufaktur di Indonesia

No.	Kode Perusahaan	Nama Perusahaan
1	ASII	Astra International Tbk
2	GGRM	Gudang Garam Tbk
3	BRPT	Barito Pasific Tbk
4	TKIM	Pabrik Kertas Tjiwi Kimia Tbk
5	INTP	Indocement Tunggal Prakasa Tbk
6	ICBP	Indofood CBP Sukses Makmur Tbk
7	TPIA	Chandra Asri Petrochemical Tbk
8	CPIN	Charoen Pokphand Indonesia Tbk
9	SMCB	Holcim Indonesia Tbk
10	JPFA	Japfa Comfeed Indonesia Tbk
11	GJTL	Gajah Tunggal Tbk
12	UNVR	Unilever Indonesia Tbk
13	KLBF	Kalbe Farma Tbk
14	AUTO	Astra Auto Part Tbk
15	MYOR	Mayora Indah Tbk
16	INDR	Indo Rama Synthetic Tbk
17	PBRX	Pan Brothers Tbk
18	FASW	Fajar Surya Wisesa Tbk
19	MLIA	Mulia Industrindo Tbk
20	ADMG	Polychem Indonesia Tbk
21	KAEF	Kimia Farma Tbk
22	INRU	Toba Pulp Lestari Tbk
23	TFCO	Tifico Fiber Indonesia Tbk
24	ULTJ	Ultrajaya Milk Industry and Trading Company Tbk
25	BRAM	Indo Kordsa Tbk
26	MAIN	Malindo Feedmill Tbk
27	IPOL	Indopoly Swakarsa Industry Tbk
28	TRST	Trias Sentosa Tbk
29	SIDO	Industri Jamu dan Farmasi Sido Muncul Tbk
30	BUDI	Budi Acid Jaya Tbk
31	тото	Surya Toto Indonesia Tbk
32	SCCO	Supreme Cable Manufacturing and Commerce Tbk
33	KBLI	KMI Wire and Cable Tbk
34	NIPS	Nippres Tbk
35	DVLA	Darya Varia Laboratoria Tbk
36	CEKA	Cahaya Kalbar Tbk

37	INAF	Indofarma Tbk
38	WIIM	Wismilak Inti Makmur Tbk

Lampiran 2 Daftar Sampel Perusahaan Manufaktur di Indonesia

No	Kode	Tahun	WCR	ССС	CAPEX	LEV
1	ASII	2014	0,100	-27,593	3388000	0,490
2	ASII	2015	0,118	-38,270	452000	0,484
3	ASII	2016	0,081	-66,802	1535000	0,813
4	GGRM	2014	0,253	85,771	4184357	0,429
5	GGRM	2015	0,292	88,684	1133216	0,402
6	GGRM	2016	0,322	107,322	392462	0,372
7	BRPT	2014	0,086	-25,431	2253379	0,546
8	BRPT	2015	0,019	-48,444	4011551	0,469
9	BRPT	2016	0,072	-57,128	-604726	0,437
10	TKIM	2014	0,187	-45,043	229935	0,656
11	TKIM	2015	0,093	-88,021	2958829	0,644
12	TKIM	2016	0,068	-46,087	-1537040	0,624
13	INTP	2014	0,444	-4,705	2838640	0,149
14	INTP	2015	0,378	8,924	1670260	0,136
15	INTP	2016	0,373	5,020	829803	0,133
16	ICBP	2014	0,296	-21,377	994436	0,396
17	ICBP	2015	0,300	-18,334	716817	0,383
18	ICBP	2016	0,315	-10,712	558628	0,360
19	TPIA	2014	0,098	-24,364	2240321	0,548
20	TPIA	2015	0,021	-45,747	3816210	0,524
21	TPIA	2016	0,112	-38,101	-352750	0,464
22	CPIN	2014	0,265	47,731	2867165	0,467
23	CPIN	2015	0,255	37,508	2052918	0,487
24	CPIN	2016	0,269	22,005	-75781	0,415
25	SMCB	2014	-0,088	-24,501	2537240	0,491
26	SMCB	2015	-0,079	-127,809	-477483	0,514
27	SMCB	2016	-0,070	-184,646	2181041	0,536
28	JPFA	2014	0,241	23,362	1089501	0,664
29	JPFA	2015	0,248	27,003	447339	0,644
30	JPFA	2016	0,305	22,679	703120	0,513
31	GJTL	2014	0,185	35,449	1195638	0,627
32	GJTL	2015	0,165	24,636	1122472	0,692
33	GJTL	2016	0,170	28,923	397072	0,687
34	UNVR	2014	-0,177	-104,786	473848	0,678
35	UNVR	2015	-0,223	-124,206	972892	0,693
36	UNVR	2016	-0,256	-124,732	1208559	0,719
37	KLBF	2014	0,462	80,721	478910	0,210

					0,201
					0,181
					0,295
					0,293
					0,279
	2014	0,330	-6,876	470683	0,602
MYOR	2015	0,379	35,523	185684	0,542
MYOR	2016	0,376	39,516	88724	0,515
INDR	2014	0,029	-45,330	632708	0,590
INDR	2015	0,047	-29,680	1257869	0,631
INDR	2016	0,047	-22,382	211835	0,646
PBRX	2014	0,575	60,642	252711	0,442
PBRX	2015	0,506	68,860	752495	0,513
PBRX	2016	0,546	69,189	-36733	0,562
FASW	2014	-0,008	-20,734	-61994	0,705
FASW	2015	0,016	-6,002	1182999	0,650
FASW	2016	0,018	-27,770	1355624	0,632
MLIA	2014	0,023	-16,290	-58748	0,817
MLIA	2015	-0,032	-35,971	23183	0,844
MLIA	2016	-0,034	-41,681	522259	0,791
ADMG	2014	0,224	41,481	-179908	0,367
ADMG	2015	0,219	48,931	66675	0,362
ADMG	2016	0,161	35,578	-409256	0,355
KAEF	2014	0,400	22,906	59295	0,390
KAEF	2015	0,294	4,801	116550	0,401
KAEF	2016	0,262	-19,503	332256	0,508
INRU	2014	0,000	-79,360	48481	0,612
INRU	2015	0,004	-61,524	202775	0,625
INRU	2016	-0,053	-146,976	-148460	0,521
TFCO	2014	0,118	39,278	-3917	0,155
TFCO	2015	0,151	76,211	220886	0,094
TFCO	2016	0,184	65,508	-184840	0,095
ULTJ	2014	0,395	65,340	37254	0,224
ULTJ	2015	0,436	61,151	157483	0,210
ULTJ	2016	0,538	59,254	-118640	0,177
BRAM	2014	0,104	2,532	728854	0,421
BRAM	2015	0,156	40,501	143494	0,373
BRAM	2016	0,179	59,497	-175428	0,332
MAIN	2014	0,038	-60,395	448031	0,695
MAIN	2015	0,128	-49,681	245498	0,609
MAIN	2016	0,101	-32,921	134950	0,531
	INDR INDR INDR PBRX PBRX PBRX FASW FASW FASW MLIA MLIA ADMG ADMG ADMG ADMG KAEF KAEF INRU INRU INRU INRU INRU INCO TFCO TFCO ULTJ ULTJ ULTJ ULTJ BRAM BRAM BRAM BRAM MAIN	KLBF 2016 AUTO 2014 AUTO 2016 MYOR 2014 MYOR 2015 MYOR 2016 INDR 2014 INDR 2015 INDR 2016 PBRX 2016 PBRX 2016 FASW 2014 FASW 2016 MLIA 2015 FASW 2016 MLIA 2015 ADMG 2014 ADMG 2015 ADMG 2016 KAEF 2016 INRU 2015 INRU 2016 TFCO 2014 TFCO 2015 TFCO 2016 ULTJ 2016 BRAM 2014 BRAM 2015 BRAM 2016 MAIN 2014 MAIN 2015	KLBF 2016 0,477 AUTO 2014 0,089 AUTO 2015 0,082 AUTO 2016 0,113 MYOR 2014 0,330 MYOR 2015 0,379 MYOR 2016 0,376 INDR 2014 0,029 INDR 2015 0,047 INDR 2016 0,047 PBRX 2014 0,575 PBRX 2015 0,506 PBRX 2016 0,546 FASW 2014 -0,008 FASW 2015 0,016 FASW 2015 0,016 FASW 2015 0,018 MLIA 2014 0,023 MLIA 2015 -0,034 ADMG 2014 0,224 ADMG 2015 0,219 ADMG 2016 0,161 KAEF 2015 0,294 KAEF 2015 <td< td=""><td>KLBF 2016 0,477 89,278 AUTO 2014 0,089 -21,217 AUTO 2015 0,082 -16,031 AUTO 2016 0,113 3,887 MYOR 2014 0,330 -6,876 MYOR 2016 0,379 35,523 MYOR 2016 0,376 39,516 INDR 2014 0,029 -45,330 INDR 2015 0,047 -29,680 INDR 2015 0,047 -29,680 INDR 2016 0,047 -22,382 PBRX 2014 0,575 60,642 PBRX 2015 0,506 68,860 PBRX 2016 0,546 69,189 FASW 2016 0,546 69,189 FASW 2016 0,546 69,189 FASW 2016 0,018 -27,770 MLIA 2015 0,016 -6,002 FASW 2016</td><td>KLBF 2016 0,477 89,278 617262 AUTO 2014 0,089 -21,217 123006 AUTO 2015 0,082 -16,031 201249 AUTO 2016 0,113 3,887 92598 MYOR 2014 0,330 -6,876 470683 MYOR 2015 0,379 35,523 185684 MYOR 2016 0,376 39,516 88724 INDR 2014 0,029 -45,330 632708 INDR 2015 0,047 -29,680 1257869 INDR 2016 0,047 -22,382 211835 PBRX 2016 0,047 -22,382 211835 PBRX 2015 0,506 68,860 752495 PBRX 2016 0,546 69,189 -36733 FASW 2016 0,546 69,189 -36733 FASW 2016 0,018 -22,734 -61994 FASW</td></td<>	KLBF 2016 0,477 89,278 AUTO 2014 0,089 -21,217 AUTO 2015 0,082 -16,031 AUTO 2016 0,113 3,887 MYOR 2014 0,330 -6,876 MYOR 2016 0,379 35,523 MYOR 2016 0,376 39,516 INDR 2014 0,029 -45,330 INDR 2015 0,047 -29,680 INDR 2015 0,047 -29,680 INDR 2016 0,047 -22,382 PBRX 2014 0,575 60,642 PBRX 2015 0,506 68,860 PBRX 2016 0,546 69,189 FASW 2016 0,546 69,189 FASW 2016 0,546 69,189 FASW 2016 0,018 -27,770 MLIA 2015 0,016 -6,002 FASW 2016	KLBF 2016 0,477 89,278 617262 AUTO 2014 0,089 -21,217 123006 AUTO 2015 0,082 -16,031 201249 AUTO 2016 0,113 3,887 92598 MYOR 2014 0,330 -6,876 470683 MYOR 2015 0,379 35,523 185684 MYOR 2016 0,376 39,516 88724 INDR 2014 0,029 -45,330 632708 INDR 2015 0,047 -29,680 1257869 INDR 2016 0,047 -22,382 211835 PBRX 2016 0,047 -22,382 211835 PBRX 2015 0,506 68,860 752495 PBRX 2016 0,546 69,189 -36733 FASW 2016 0,546 69,189 -36733 FASW 2016 0,018 -22,734 -61994 FASW

79	IPOL	2014	-0,047	-77,591	69697	0,458
80	IPOL	2015	-0,041	-162,293	340002	0,454
81	IPOL	2016	-0,014	-87,389	-158389	0,449
82	TRST	2014	0,070	-0,309	-11909	0,460
83	TRST	2015	0,080	16,987	121137	0,417
84	TRST	2016	0,082	15,333	-75697	0,413
85	SIDO	2014	0,595	68,758	234705	0,066
86	SIDO	2015	0,545	79,331	170792	0,071
87	SIDO	2016	0,528	79,940	89354	0,077
88	BUDI	2014	0,018	-38,642	209136	0,631
89	BUDI	2015	0,000	-47,952	231388	0,662
90	BUDI	2016	0,001	-54,887	59450	0,603
91	TOTO	2014	0,282	78,746	248334	0,380
92	тото	2015	0,323	96,625	68010	0,389
93	тото	2016	0,272	97,815	6625	0,410
94	SCCO	2014	0,282	23,090	41004	0,508
95	SCCO	2015	0,317	13,683	22590	0,480
96	SCCO	2016	0,336	-38,591	4530	0,502
97	KBLI	2014	0,445	74,575	18286	0,297
98	KBLI	2015	0,402	69,168	140552	0,341
99	KBLI	2016	0,467	63,938	8424	0,280
100	NIPS	2014	0,126	-11,407	193492	0,523
101	NIPS	2015	0,020	-72,801	142956	0,607
102	NIPS	2016	0,083	-61,532	88346	0,526
103	DVLA	2014	0,604	150,519	23985	0,221
104	DVLA	2015	0,543	54,651	-8775	0,293
105	DVLA	2016	0,454	23,666	146334	0,295
106	CEKA	2014	0,261	5,613	6030	0,581
107	CEKA	2015	0,294	-17,536	-557	0,569
108	CEKA	2016	0,421	30,238	-5027	0,377
109	INAF	2014	0,146	-76,144	26671	0,526
110	INAF	2015	0,144	-106,198	3843	0,614
111	INAF	2016	0,108	-62,596	27280	0,583
112	WIIM	2014	0,420	113,741	91085	0,359
113	WIIM	2015	0,482	132,590	21918	0,297
114	WIIM	2016	0,520	164,258	-1300	0,268

Lampiran 3
Inventory Conversion Period (ICP)

	T					ı
Nomor	Kode Perusahaan	Tahun	Persediaan	HPP	Hari per	ICP
1	ASII	2014	16986000	162892000	tahun 365	38,06
2	ASII	2015	18337000	147486000	365	45,38
3	ASII	2016	17771000	144652000	365	44,84
4	GGRM	2014	34739327	51806284	365	244,76
5	GGRM	2015	37255928	54879962	365	247,78
6	GGRM	2016	37545222	59657431	365	229,71
7	BRPT	2014	2770226	29444746	365	34,34
8	BRPT	2015	2529065	17478624	365	52,81
9	BRPT	2016	2719205	19802662	365	50,12
10	TKIM	2014	3934772	13138431	365	109,31
11	TKIM	2015	3792011	13131626	365	105,40
12	TKIM	2016	3375392	11914588	365	103,40
13	INTP	2014	1665546	10890037	365	55,82
14	INTP	2015	1521197	9888919	365	56,15
15	INTP	2016	1780410	9030433	365	71,96
16	ICBP	2014	2821618	21962609	365	46,89
17	ICBP	2015	2546835	22121957	365	42,02
18	ICBP	2016	3109916	23606755	365	48,08
19	TPIA	2014	2716734	29141782	365	34,03
20	TPIA	2015	2461028	16993288	365	52,86
21	TPIA	2016	2680589	19294338	365	50,71
22	CPIN	2014	4334349	20513184	365	77,12
23	CPIN	2015	5483906	24817185	365	80,65
24	CPIN	2016	5109719	31743222	365	58,75
25	SMCB	2014	736995	7502759	365	35,85
26	SMCB	2015	553364	7099577	365	28,45
27	SMCB	2016	369733	6696395	365	20,15
28	JPFA	2014	5133782	21033306	365	89,09
29	JPFA	2015	5854975	21029912	365	101,62
30	JPFA	2016	5500017	21584412	365	93,01
31	GJTL	2014	2247074	10625591	365	77,19
32	GJTL	2015	2112616	10346094	365	74,53
33	GJTL	2016	2280868	10438263	365	79,76
34	UNVR	2014	2325989	17412413	365	48,76
35	UNVR	2015	2297502	17835061	365	47,02
36	UNVR	2016	2318130	19594636	365	43,18

37	KLBF	2014	3090544	8892737	365	126,85
38	KLBF	2015	3003150	9295887	365	117,92
39	KLBF	2016	3344404	9886263	365	123,48
40	AUTO	2014	1718663	10500112	365	59,74
41	AUTO	2015	1749263	9993047	365	63,89
42	AUTO	2016	1823884	10954051	365	60,77
43	MYOR	2014	1966800	11633862	365	61,71
44	MYOR	2015	1763233	10620394	365	60,60
45	MYOR	2016	2123676	13449537	365	57,63
46	INDR	2014	1573578	8096469	365	70,94
47	INDR	2015	1872919	8553168	365	79,93
48	INDR	2016	1720047	8420577	365	74,56
49	PBRX	2014	838957	3719208	365	82,33
50	PBRX	2015	1222864	5034402	365	88,66
51	PBRX	2016	1365500	5602060	365	88,97
52	FASW	2014	829904	4880425	365	62,07
53	FASW	2015	905574	4570044	365	72,33
54	FASW	2016	768429	4696162	365	59,72
55	MLIA	2014	830802	4360614	365	69,54
56	MLIA	2015	923104	4760284	365	70,78
57	MLIA	2016	890959	4839218	365	67,20
58	ADMG	2014	970739	5783125	365	61,27
59	ADMG	2015	845411	4494855	365	68,65
60	ADMG	2016	776860	4036800	365	70,24
61	KAEF	2014	687407	3135541	365	80,02
62	KAEF	2015	742318	3323619	365	81,52
63	KAEF	2016	987327	3947606	365	91,29
64	INRU	2014	392494	1138011	365	125,89
65	INRU	2015	598813	1180797	365	185,10
66	INRU	2016	422334	1086972	365	141,82
67	TFCO	2014	543732	3490546	365	56,86
68	TFCO	2015	536020	2507334	365	78,03
69	TFCO	2016	482916	2399101	365	73,47
70	ULTJ	2014	714411	2979799	365	87,51
71	ULTJ	2015	738804	3011443	365	89,55
72	ULTJ	2016	760534	3052883	365	90,93
73	BRAM	2014	659287	2156947	365	111,56
74	BRAM	2015	720475	2380628	365	110,46
75	BRAM	2016	808792	2353270	365	125,45
76	MAIN	2014	610432	4179751	365	53,31
77	MAIN	2015	551010	4235099	365	47,49

78	MAIN	2016	625872	4322418	365	52,85
79	IPOL	2014	300665	2395235	365	45,82
80	IPOL	2015	278950	2246380	365	45,32
81	IPOL	2016	307754	2041107	365	55,03
82	TRST	2014	509899	2292152	365	81,20
83	TRST	2015	581817	2245445	365	94,58
84	TRST	2016	621015	2052139	365	110,46
85	SIDO	2014	230736	1358342	365	62,00
86	SIDO	2015	264982	1335171	365	72,44
87	SIDO	2016	317082	1494142	365	77,46
88	BUDI	2014	269981	2007000	365	49,10
89	BUDI	2015	370284	2158224	365	62,62
90	BUDI	2016	452315	2193293	365	75,27
91	тото	2014	452112	1522596	365	108,38
92	тото	2015	603335	1708574	365	128,89
93	тото	2016	646864	1625425	365	145,26
94	SCCO	2014	274129	3370803	365	29,68
95	scco	2015	293477	3193858	365	33,54
96	scco	2016	355622	3182424	365	40,79
97	KBLI	2014	265488	2173964	365	44,57
98	KBLI	2015	294195	2812196	365	38,18
99	KBLI	2016	320647	2278128	365	51,37
100	NIPS	2014	225075	835213	365	98,36
101	NIPS	2015	246439	805199	365	111,71
102	NIPS	2016	246724	860991	365	104,59
103	DVLA	2014	227409	518602	365	160,05
104	DVLA	2015	198658	628365	365	115,39
105	DVLA	2016	209778	649919	365	117,81
106	CEKA	2014	475991	3478089	365	49,95
107	CEKA	2015	424593	3186844	365	48,63
108	CEKA	2016	556574	3680603	365	55,19
109	INAF	2014	216407	1069010	365	73,89
110	INAF	2015	300271	1299969	365	84,31
111	INAF	2016	292411	1337793	365	79,78
112	WIIM	2014	753511	1177719	365	233,53
113	WIIM	2015	762248	1279427	365	217,46
114	WIIM	2016	778305	1176494	365	241,46

Lampiran 4

Average Collection Period (ACP)

Nomor	Kode Perusahaan	Tahun	Piutang	Penjualan	Hari per tahun	АСР
1	ASII	2014	54759000	201701000	365	99,09
2	ASII	2015	53005000	184196000	365	105,03
3	ASII	2016	56126000	181084000	365	113,13
4	GGRM	2014	1532275	65185850	365	8,58
5	GGRM	2015	158098	70365573	365	0,82
6	GGRM	2016	2089949	76274147	365	10,00
7	BRPT	2014	1394163	30812474	365	16,52
8	BRPT	2015	827631	19397688	365	15,57
9	BRPT	2016	1993661	26352121	365	27,61
10	TKIM	2014	1621417	14862752	365	39,82
11	TKIM	2015	1149234	14657615	365	28,62
12	TKIM	2016	999840	13394375	365	27,25
13	INTP	2014	2670993	19996264	365	48,75
14	INTP	2015	2534690	17798055	365	51,98
15	INTP	2016	2605323	15361894	365	61,90
16	ICBP	2014	2902202	30022463	365	35,28
17	ICBP	2015	3363697	31741094	365	38,68
18	ICBP	2016	3893925	34466069	365	41,24
19	TPIA	2014	1347600	30603034	365	16,07
20	TPIA	2015	693599	19003620	365	13,32
21	TPIA	2016	1887610	25935994	365	26,56
22	CPIN	2014	3522209	25662992	365	50,10
23	CPIN	2015	3339849	29920628	365	40,74
24	CPIN	2016	2837396	38256857	365	27,07
25	SMCB	2014	1035277	3025964	365	124,88
26	SMCB	2015	1258919	9239022	365	49,74
27	SMCB	2016	1035277	15452080	365	24,45
28	JPFA	2014	1312779	24458880	365	19,59
29	JPFA	2015	1253885	25022913	365	18,29
30	JPFA	2016	1297333	27063310	365	17,50
31	GJTL	2014	2338576	13070734	365	65,30
32	GJTL	2015	2881929	12970237	365	81,10
33	GJTL	2016	3774753	13633556	365	101,06
34	UNVR	2014	3052260	34511534	365	32,28
35	UNVR	2015	3602272	36484030	365	36,04
36	UNVR	2016	3809854	40053732	365	34,72

37	KLBF	2014	2464902	17368533	365	51,80
38	KLBF	2015	2434081	17887464	365	49,67
39	KLBF	2016	2725807	19374231	365	51,35
40	AUTO	2014	1784352	12255427	365	53,14
41	AUTO	2015	1686745	11723787	365	52,51
42	AUTO	2016	1813229	12806867	365	51,68
43	MYOR	2014	1130675	14169088	365	29,13
44	MYOR	2015	3379243	14818730	365	83,23
45	MYOR	2016	4388397	18349959	365	87,29
46	INDR	2014	849829	9032462	365	34,34
47	INDR	2015	1065474	9408759	365	41,33
48	INDR	2016	1303808	9294473	365	51,20
49	PBRX	2014	786183	4211304	365	68,14
50	PBRX	2015	1052272	5774245	365	66,52
51	PBRX	2016	1245893	6478895	365	70,19
52	FASW	2014	817929	5456936	365	54,71
53	FASW	2015	682421	4960000	365	50,22
54	FASW	2016	1113234	5874745	365	69,17
55	MLIA	2014	563658	5629696	365	36,54
56	MLIA	2015	438466	5713989	365	28,01
57	MLIA	2016	486473	5793738	365	30,65
58	ADMG	2014	505364	5586583	365	33,02
59	ADMG	2015	546131	4288500	365	46,48
60	ADMG	2016	534843	3761471	365	51,90
61	KAEF	2014	525095	4521024	365	42,39
62	KAEF	2015	576206	4860371	365	43,27
63	KAEF	2016	733056	5811503	365	46,04
64	INRU	2014	4217	1358361	365	1,13
65	INRU	2015	10305	1330128	365	2,83
66	INRU	2016	43895	1129618	365	14,18
67	TFCO	2014	424843	3500799	365	44,29
68	TFCO	2015	314969	2547189	365	45,13
69	TFCO	2016	317030	2504159	365	46,21
70	ULTJ	2014	407450	3916789	365	37,97
71	ULTJ	2015	477629	4393933	365	39,68
72	ULTJ	2016	504381	4685988	365	39,29
73	BRAM	2014	379842	2584000	365	53,65
74	BRAM	2015	389480	2867519	365	49,58
75	BRAM	2016	471737	2959937	365	58,17
76	MAIN	2014	474299	4502078	365	38,45
77	MAIN	2015	443487	4775015	365	33,90

78	MAIN	2016	423992	5246340	365	29,50
79	IPOL	2014	602397	2857320	365	76,95
80	IPOL	2015	14076	2766482	365	1,86
81	IPOL	2016	618540	2628441	365	85,89
82	TRST	2014	485064	2507885	365	70,60
83	TRST	2015	429238	2457349	365	63,76
84	TRST	2016	411016	2249419	365	66,69
85	SIDO	2014	334258	2197907	365	55,51
86	SIDO	2015	347730	2218536	365	57,21
87	SIDO	2016	387218	2561806	365	55,17
88	BUDI	2014	526564	2284211	365	84,14
89	BUDI	2015	922862	2378805	365	141,60
90	BUDI	2016	347280	2467553	365	51,37
91	тото	2014	546511	2053630	365	97,13
92	тото	2015	545589	2278674	365	87,39
93	тото	2016	481002	2069017	365	84,85
94	scco	2014	840603	3703268	365	82,85
95	scco	2015	713941	3533081	365	73,76
96	scco	2016	591615	3742638	365	57,70
97	KBLI	2014	476764	2384078	365	72,99
98	KBLI	2015	545617	2662039	365	74,81
99	KBLI	2016	539617	2812196	365	70,04
100	NIPS	2014	325697	1015868	365	117,02
101	NIPS	2015	322119	987863	365	119,02
102	NIPS	2016	344922	1039636	365	121,10
103	DVLA	2014	351272	1103822	365	116,15
104	DVLA	2015	398510	1306098	365	111,37
105	DVLA	2016	461789	1451357	365	116,13
106	CEKA	2014	315236	3701868	365	31,08
107	CEKA	2015	261167	3485733	365	27,35
108	CEKA	2016	282395	4115541	365	25,05
109	INAF	2014	208246	1381437	365	55,02
110	INAF	2015	209890	1621899	365	47,23
111	INAF	2016	229203	1674703	365	49,95
112	WIIM	2014	74681	1661533	365	16,41
113	WIIM	2015	63577	1839420	365	12,62
114	WIIM	2016	64275	1685796	365	13,92

Lampiran 5

Average Payable Period (APP)

Nomor Kode Perusahaan Tahun Liabilitas Lancar HPPP Hari per tahun APP tahun 1 ASII 2014 73523000 162892000 365 164,75 2 ASII 2015 76242000 147486000 365 188,68 3 ASII 2016 89079000 144652000 365 1224,77 4 GGRM 2014 23783134 51806284 365 167,56 5 GGRM 2015 24045086 54879962 365 159,92 6 GGRM 2016 21638565 59657431 365 132,39 7 BRPT 2014 6154018 29444746 365 16,29 8 BRPT 2014 6154018 29444746 365 16,29 8 BRPT 2015 5594617 17478624 365 116,88 9 BRPT 2016 6389426 13138431 365 194,17 11 T							
1 ASII 2014 73523000 162892000 365 164,75 2 ASII 2015 76242000 147486000 365 188,68 3 ASII 2016 89079000 144652000 365 224,77 4 GGRM 2014 23783134 51806284 365 167,56 5 GGRM 2015 24045086 54879962 365 159,92 6 GGRM 2016 21638565 59657431 365 132,39 7 BRPT 2014 6154018 29444746 365 76,29 8 BRPT 2015 5594617 17478624 365 116,83 9 BRPT 2016 7316789 19802662 365 134,86 10 TKIM 2014 6989426 13138431 365 167,74 11 TKIM 2015 7988340 13131626 365 222,04 12 TKIM 2016 5769190 11914588 365 176,74 13 INTP <t< td=""><td>Nomor</td><td></td><td>Tahun</td><td></td><td>НРР</td><td>per</td><td>APP</td></t<>	Nomor		Tahun		НРР	per	APP
2 ASII 2015 76242000 147486000 365 188,68 3 ASII 2016 89079000 144652000 365 224,77 4 GGRM 2014 23783134 51806284 365 167,56 5 GGRM 2015 24045086 54879962 365 159,92 6 GGRM 2016 21638565 59657431 365 132,39 7 BRPT 2014 6154018 29444746 365 76,29 8 BRPT 2016 7316789 19802662 365 116,83 9 BRPT 2016 7316789 19802662 365 134,86 10 TKIM 2014 6989426 13138431 365 194,17 11 TKIM 2015 7988340 13131626 365 222,04 12 TKIM 2016 5769190 11914588 365 176,74 13 INTP 2014 3260559 1089037 365 109,28 14 INTP	1	ASII	2014	73523000	162892000		164.75
3 ASII 2016 89079000 144652000 365 224,77 4 GGRM 2014 23783134 51806284 365 167,56 5 GGRM 2015 24045086 54879962 365 159,92 6 GGRM 2016 21638565 59657431 365 132,39 7 BRPT 2014 6154018 29444746 365 76,29 8 BRPT 2016 7316789 19802662 365 116,83 9 BRPT 2016 7316789 19802662 365 134,86 10 TKIM 2014 6989426 13138431 365 194,17 11 TKIM 2015 7988340 13131626 365 222,04 12 TKIM 2016 5769190 11914588 365 176,74 13 INTP 2014 3260559 10890037 365 109,28 14 INTP 2016							
4 GGRM 2014 23783134 51806284 365 167,56 5 GGRM 2015 24045086 54879962 365 159,92 6 GGRM 2016 21638565 59657431 365 132,39 7 BRPT 2014 6154018 29444746 365 76,29 8 BRPT 2016 7316789 19802662 365 116,83 9 BRPT 2016 7316789 19802662 365 134,86 10 TKIM 2014 6989426 13138431 365 194,17 11 TKIM 2015 7988340 13131626 365 222,04 12 TKIM 2016 5769190 11914588 365 176,74 13 INTP 2014 3260559 10890037 365 109,28 14 INTP 2015 2687743 9888919 365 109,28 15 INTP 2016	3	ASII				365	
5 GGRM 2015 24045086 54879962 365 159,92 6 GGRM 2016 21638565 59657431 365 132,39 7 BRPT 2014 6154018 29444746 365 76,29 8 BRPT 2015 5594617 17478624 365 116,83 9 BRPT 2016 7316789 19802662 365 134,86 10 TKIM 2014 6989426 13138431 365 194,17 11 TKIM 2015 7988340 13131626 365 222,04 12 TKIM 2016 5769190 11914588 365 176,74 13 INTP 2014 3260559 10890037 365 109,28 14 INTP 2014 3260559 10890037 365 109,28 14 INTP 2015 2687743 9888919 365 109,28 15 INTP 2016	4	GGRM	2014	23783134	51806284	365	
6 GGRM 2016 21638565 59657431 365 132,39 7 BRPT 2014 6154018 29444746 365 76,29 8 BRPT 2015 5594617 17478624 365 116,83 9 BRPT 2016 7316789 19802662 365 134,86 10 TKIM 2014 6989426 13138431 365 194,17 11 TKIM 2015 7988340 13131626 365 222,04 12 TKIM 2016 5769190 11914588 365 176,74 13 INTP 2014 3260559 10890037 365 109,28 14 INTP 2015 2687743 9888919 365 199,20 15 INTP 2016 3187742 9030433 365 128,84 16 ICBP 2014 6230997 21962609 365 103,55 17 ICBP 2015	5	GGRM	2015	24045086	54879962	365	
8 BRPT 2015 5594617 17478624 365 116,83 9 BRPT 2016 7316789 19802662 365 134,86 10 TKIM 2014 6989426 13138431 365 194,17 11 TKIM 2015 7988340 13131626 365 222,04 12 TKIM 2016 5769190 11914588 365 176,74 13 INTP 2014 3260559 10890037 365 109,28 14 INTP 2015 2687743 9888919 365 199,28 15 INTP 2016 3187742 9030433 365 128,84 16 ICBP 2014 6230997 21962609 365 103,55 17 ICBP 2015 6002344 22121957 365 99,04 18 ICBP 2016 6469785 23606755 365 100,03 19 TPIA 2014		GGRM	2016	21638565	59657431	365	
8 BRPT 2015 5594617 17478624 365 116,83 9 BRPT 2016 7316789 19802662 365 134,86 10 TKIM 2014 6989426 13138431 365 194,17 11 TKIM 2015 7988340 13131626 365 222,04 12 TKIM 2016 5769190 11914588 365 176,74 13 INTP 2014 3260559 10890037 365 109,28 14 INTP 2015 2687743 9888919 365 99,20 15 INTP 2016 3187742 9030433 365 128,84 16 ICBP 2014 6230997 21962609 365 103,55 17 ICBP 2015 6002344 22121957 365 99,04 18 ICBP 2016 6469785 23606755 365 100,03 19 TPIA 2014	7	BRPT	2014	6154018	29444746	365	76,29
10 TKIM 2014 6989426 13138431 365 194,17 11 TKIM 2015 7988340 13131626 365 222,04 12 TKIM 2016 5769190 11914588 365 176,74 13 INTP 2014 3260559 10890037 365 109,28 14 INTP 2015 2687743 9888919 365 99,20 15 INTP 2016 3187742 9030433 365 128,84 16 ICBP 2014 6230997 21962609 365 103,55 17 ICBP 2015 6002344 22121957 365 99,04 18 ICBP 2016 6469785 23606755 365 100,03 19 TPIA 2014 5945225 29141782 365 74,46 20 TPIA 2015 5211103 16993288 365 111,93 21 TPIA 2016	8	BRPT	2015		17478624	365	
10 TKIM 2014 6989426 13138431 365 194,17 11 TKIM 2015 7988340 13131626 365 222,04 12 TKIM 2016 5769190 11914588 365 176,74 13 INTP 2014 3260559 10890037 365 109,28 14 INTP 2015 2687743 9888919 365 99,20 15 INTP 2016 3187742 9030433 365 128,84 16 ICBP 2014 6230997 21962609 365 103,55 17 ICBP 2015 6002344 22121957 365 99,04 18 ICBP 2016 6469785 23606755 365 100,03 19 TPIA 2014 5945225 29141782 365 74,46 20 TPIA 2015 5211103 16993288 365 111,93 21 TPIA 2016	9	BRPT	2016	7316789	19802662	365	134,86
12 TKIM 2016 5769190 11914588 365 176,74 13 INTP 2014 3260559 10890037 365 109,28 14 INTP 2015 2687743 9888919 365 99,20 15 INTP 2016 3187742 9030433 365 128,84 16 ICBP 2014 6230997 21962609 365 103,55 17 ICBP 2015 6002344 22121957 365 99,04 18 ICBP 2016 6469785 23606755 365 100,03 19 TPIA 2014 5945225 29141782 365 74,46 20 TPIA 2015 5211103 16993288 365 111,93 21 TPIA 2016 6098896 19294338 365 115,38 22 CPIN 2014 4467241 20513184 365 79,49 23 CPIN 2015	10	TKIM	2014	6989426	13138431	365	
13 INTP 2014 3260559 10890037 365 109,28 14 INTP 2015 2687743 9888919 365 99,20 15 INTP 2016 3187742 9030433 365 128,84 16 ICBP 2014 6230997 21962609 365 103,55 17 ICBP 2015 6002344 22121957 365 99,04 18 ICBP 2016 6469785 23606755 365 100,03 19 TPIA 2014 5945225 29141782 365 74,46 20 TPIA 2015 5211103 16993288 365 111,93 21 TPIA 2016 6098896 19294338 365 115,38 22 CPIN 2014 4467241 20513184 365 79,49 23 CPIN 2015 5703841 24817185 365 83,89 24 CPIN 2016 <	11	TKIM	2015	7988340	13131626	365	
14 INTP 2015 2687743 9888919 365 99,20 15 INTP 2016 3187742 9030433 365 128,84 16 ICBP 2014 6230997 21962609 365 103,55 17 ICBP 2015 6002344 22121957 365 99,04 18 ICBP 2016 6469785 23606755 365 100,03 19 TPIA 2014 5945225 29141782 365 74,46 20 TPIA 2015 5211103 16993288 365 111,93 21 TPIA 2016 6098896 19294338 365 115,38 22 CPIN 2014 4467241 20513184 365 79,49 23 CPIN 2015 5703841 24817185 365 83,89 24 CPIN 2016 5550257 31743222 365 63,82 25 SMCB 2014 <t< td=""><td>12</td><td>TKIM</td><td>2016</td><td>5769190</td><td>11914588</td><td>365</td><td>176,74</td></t<>	12	TKIM	2016	5769190	11914588	365	176,74
15 INTP 2016 3187742 9030433 365 128,84 16 ICBP 2014 6230997 21962609 365 103,55 17 ICBP 2015 6002344 22121957 365 99,04 18 ICBP 2016 6469785 23606755 365 100,03 19 TPIA 2014 5945225 29141782 365 74,46 20 TPIA 2015 5211103 16993288 365 111,93 21 TPIA 2016 6098896 19294338 365 115,38 22 CPIN 2014 4467241 20513184 365 79,49 23 CPIN 2015 5703841 24817185 365 83,89 24 CPIN 2016 5550257 31743222 365 63,82 25 SMCB 2014 3807545 7502759 365 185,23 26 SMCB 2015 <	13	INTP	2014	3260559	10890037	365	109,28
16 ICBP 2014 6230997 21962609 365 103,55 17 ICBP 2015 6002344 22121957 365 99,04 18 ICBP 2016 6469785 23606755 365 100,03 19 TPIA 2014 5945225 29141782 365 74,46 20 TPIA 2015 5211103 16993288 365 111,93 21 TPIA 2016 6098896 19294338 365 115,38 22 CPIN 2014 4467241 20513184 365 79,49 23 CPIN 2015 5703841 24817185 365 83,89 24 CPIN 2016 5550257 31743222 365 63,82 25 SMCB 2014 3807545 7502759 365 185,23 26 SMCB 2015 4006751 7099577 365 205,99 27 SMCB 2016 <	14	INTP	2015	2687743	9888919	365	99,20
17 ICBP 2015 6002344 22121957 365 99,04 18 ICBP 2016 6469785 23606755 365 100,03 19 TPIA 2014 5945225 29141782 365 74,46 20 TPIA 2015 5211103 16993288 365 111,93 21 TPIA 2016 6098896 19294338 365 115,38 22 CPIN 2014 4467241 20513184 365 79,49 23 CPIN 2015 5703841 24817185 365 83,89 24 CPIN 2016 5550257 31743222 365 63,82 25 SMCB 2014 3807545 7502759 365 185,23 26 SMCB 2015 4006751 7099577 365 205,99 27 SMCB 2016 4205957 6696395 365 229,25 28 JPFA 2014 <t< td=""><td>15</td><td>INTP</td><td>2016</td><td>3187742</td><td>9030433</td><td>365</td><td>128,84</td></t<>	15	INTP	2016	3187742	9030433	365	128,84
17 ICBP 2015 6002344 22121957 365 99,04 18 ICBP 2016 6469785 23606755 365 100,03 19 TPIA 2014 5945225 29141782 365 74,46 20 TPIA 2015 5211103 16993288 365 111,93 21 TPIA 2016 6098896 19294338 365 115,38 22 CPIN 2014 4467241 20513184 365 79,49 23 CPIN 2015 5703841 24817185 365 83,89 24 CPIN 2016 5550257 31743222 365 63,82 25 SMCB 2014 3807545 7502759 365 185,23 26 SMCB 2015 4006751 7099577 365 205,99 27 SMCB 2016 4205957 6696395 365 229,25 28 JPFA 2014 <t< td=""><td>16</td><td>ICBP</td><td>2014</td><td>6230997</td><td>21962609</td><td>365</td><td>103,55</td></t<>	16	ICBP	2014	6230997	21962609	365	103,55
19 TPIA 2014 5945225 29141782 365 74,46 20 TPIA 2015 5211103 16993288 365 111,93 21 TPIA 2016 6098896 19294338 365 115,38 22 CPIN 2014 4467241 20513184 365 79,49 23 CPIN 2015 5703841 24817185 365 83,89 24 CPIN 2016 5550257 31743222 365 63,82 25 SMCB 2014 3807545 7502759 365 185,23 26 SMCB 2015 4006751 7099577 365 205,99 27 SMCB 2016 4205957 6696395 365 229,25 28 JPFA 2014 4916448 21033306 365 85,32 29 JPFA 2015 5352970 21029912 365 92,91 30 JPFA 2016 <td< td=""><td>17</td><td>ICBP</td><td>2015</td><td>6002344</td><td>22121957</td><td>365</td><td></td></td<>	17	ICBP	2015	6002344	22121957	365	
20 TPIA 2015 5211103 16993288 365 111,93 21 TPIA 2016 6098896 19294338 365 115,38 22 CPIN 2014 4467241 20513184 365 79,49 23 CPIN 2015 5703841 24817185 365 83,89 24 CPIN 2016 5550257 31743222 365 63,82 25 SMCB 2014 3807545 7502759 365 185,23 26 SMCB 2015 4006751 7099577 365 205,99 27 SMCB 2016 4205957 6696395 365 229,25 28 JPFA 2014 4916448 21033306 365 85,32 29 JPFA 2015 5352970 21029912 365 92,91 30 JPFA 2016 5193549 21584412 365 87,82 31 GJTL 2014 <td< td=""><td>18</td><td>ICBP</td><td>2016</td><td>6469785</td><td>23606755</td><td>365</td><td>100,03</td></td<>	18	ICBP	2016	6469785	23606755	365	100,03
21 TPIA 2016 6098896 19294338 365 115,38 22 CPIN 2014 4467241 20513184 365 79,49 23 CPIN 2015 5703841 24817185 365 83,89 24 CPIN 2016 5550257 31743222 365 63,82 25 SMCB 2014 3807545 7502759 365 185,23 26 SMCB 2015 4006751 7099577 365 205,99 27 SMCB 2016 4205957 6696395 365 229,25 28 JPFA 2014 4916448 21033306 365 85,32 29 JPFA 2015 5352970 21029912 365 92,91 30 JPFA 2016 5193549 21584412 365 87,82 31 GJTL 2014 3116223 10625591 365 107,05 32 GJTL 2015 <td< td=""><td>19</td><td>TPIA</td><td>2014</td><td>5945225</td><td>29141782</td><td>365</td><td>74,46</td></td<>	19	TPIA	2014	5945225	29141782	365	74,46
22 CPIN 2014 4467241 20513184 365 79,49 23 CPIN 2015 5703841 24817185 365 83,89 24 CPIN 2016 5550257 31743222 365 63,82 25 SMCB 2014 3807545 7502759 365 185,23 26 SMCB 2015 4006751 7099577 365 205,99 27 SMCB 2016 4205957 6696395 365 229,25 28 JPFA 2014 4916448 21033306 365 85,32 29 JPFA 2015 5352970 21029912 365 92,91 30 JPFA 2016 5193549 21584412 365 87,82 31 GJTL 2014 3116223 10625591 365 107,05 32 GJTL 2015 3713148 10346094 365 131,00 33 GJTL 2016 <td< td=""><td>20</td><td>TPIA</td><td>2015</td><td>5211103</td><td>16993288</td><td>365</td><td>111,93</td></td<>	20	TPIA	2015	5211103	16993288	365	111,93
23 CPIN 2015 5703841 24817185 365 83,89 24 CPIN 2016 5550257 31743222 365 63,82 25 SMCB 2014 3807545 7502759 365 185,23 26 SMCB 2015 4006751 7099577 365 205,99 27 SMCB 2016 4205957 6696395 365 229,25 28 JPFA 2014 4916448 21033306 365 85,32 29 JPFA 2015 5352970 21029912 365 92,91 30 JPFA 2016 5193549 21584412 365 87,82 31 GJTL 2014 3116223 10625591 365 107,05 32 GJTL 2015 3713148 10346094 365 131,00 33 GJTL 2016 4343805 10438263 365 151,89 34 UNVR 2014 <t< td=""><td>21</td><td>TPIA</td><td>2016</td><td>6098896</td><td>19294338</td><td>365</td><td>115,38</td></t<>	21	TPIA	2016	6098896	19294338	365	115,38
24 CPIN 2016 5550257 31743222 365 63,82 25 SMCB 2014 3807545 7502759 365 185,23 26 SMCB 2015 4006751 7099577 365 205,99 27 SMCB 2016 4205957 6696395 365 229,25 28 JPFA 2014 4916448 21033306 365 85,32 29 JPFA 2015 5352970 21029912 365 92,91 30 JPFA 2016 5193549 21584412 365 87,82 31 GJTL 2014 3116223 10625591 365 107,05 32 GJTL 2015 3713148 10346094 365 131,00 33 GJTL 2016 4343805 10438263 365 151,89 34 UNVR 2014 8864832 17412413 365 185,83 35 UNVR 2015 <	22	CPIN	2014	4467241	20513184	365	79,49
25 SMCB 2014 3807545 7502759 365 185,23 26 SMCB 2015 4006751 7099577 365 205,99 27 SMCB 2016 4205957 6696395 365 229,25 28 JPFA 2014 4916448 21033306 365 85,32 29 JPFA 2015 5352970 21029912 365 92,91 30 JPFA 2016 5193549 21584412 365 87,82 31 GJTL 2014 3116223 10625591 365 107,05 32 GJTL 2015 3713148 10346094 365 131,00 33 GJTL 2016 4343805 10438263 365 151,89 34 UNVR 2014 8864832 17412413 365 185,83 35 UNVR 2015 10127542 17835061 365 207,26	23	CPIN	2015	5703841	24817185	365	83,89
26 SMCB 2015 4006751 7099577 365 205,99 27 SMCB 2016 4205957 6696395 365 229,25 28 JPFA 2014 4916448 21033306 365 85,32 29 JPFA 2015 5352970 21029912 365 92,91 30 JPFA 2016 5193549 21584412 365 87,82 31 GJTL 2014 3116223 10625591 365 107,05 32 GJTL 2015 3713148 10346094 365 131,00 33 GJTL 2016 4343805 10438263 365 151,89 34 UNVR 2014 8864832 17412413 365 185,83 35 UNVR 2015 10127542 17835061 365 207,26	24	CPIN	2016	5550257	31743222	365	63,82
27 SMCB 2016 4205957 6696395 365 229,25 28 JPFA 2014 4916448 21033306 365 85,32 29 JPFA 2015 5352970 21029912 365 92,91 30 JPFA 2016 5193549 21584412 365 87,82 31 GJTL 2014 3116223 10625591 365 107,05 32 GJTL 2015 3713148 10346094 365 131,00 33 GJTL 2016 4343805 10438263 365 151,89 34 UNVR 2014 8864832 17412413 365 185,83 35 UNVR 2015 10127542 17835061 365 207,26	25	SMCB	2014	3807545	7502759	365	185,23
28 JPFA 2014 4916448 21033306 365 85,32 29 JPFA 2015 5352970 21029912 365 92,91 30 JPFA 2016 5193549 21584412 365 87,82 31 GJTL 2014 3116223 10625591 365 107,05 32 GJTL 2015 3713148 10346094 365 131,00 33 GJTL 2016 4343805 10438263 365 151,89 34 UNVR 2014 8864832 17412413 365 185,83 35 UNVR 2015 10127542 17835061 365 207,26	26	SMCB	2015	4006751	7099577	365	205,99
29 JPFA 2015 5352970 21029912 365 92,91 30 JPFA 2016 5193549 21584412 365 87,82 31 GJTL 2014 3116223 10625591 365 107,05 32 GJTL 2015 3713148 10346094 365 131,00 33 GJTL 2016 4343805 10438263 365 151,89 34 UNVR 2014 8864832 17412413 365 185,83 35 UNVR 2015 10127542 17835061 365 207,26	27	SMCB	2016	4205957	6696395	365	229,25
30 JPFA 2016 5193549 21584412 365 87,82 31 GJTL 2014 3116223 10625591 365 107,05 32 GJTL 2015 3713148 10346094 365 131,00 33 GJTL 2016 4343805 10438263 365 151,89 34 UNVR 2014 8864832 17412413 365 185,83 35 UNVR 2015 10127542 17835061 365 207,26	28	JPFA	2014	4916448	21033306	365	85,32
31 GJTL 2014 3116223 10625591 365 107,05 32 GJTL 2015 3713148 10346094 365 131,00 33 GJTL 2016 4343805 10438263 365 151,89 34 UNVR 2014 8864832 17412413 365 185,83 35 UNVR 2015 10127542 17835061 365 207,26	29	JPFA	2015	5352970	21029912	365	92,91
32 GJTL 2015 3713148 10346094 365 131,00 33 GJTL 2016 4343805 10438263 365 151,89 34 UNVR 2014 8864832 17412413 365 185,83 35 UNVR 2015 10127542 17835061 365 207,26	30	JPFA	2016	5193549	21584412	365	87,82
33 GJTL 2016 4343805 10438263 365 151,89 34 UNVR 2014 8864832 17412413 365 185,83 35 UNVR 2015 10127542 17835061 365 207,26	31	GJTL	2014	3116223	10625591	365	107,05
34 UNVR 2014 8864832 17412413 365 185,83 35 UNVR 2015 10127542 17835061 365 207,26	32	GJTL	2015	3713148	10346094	365	131,00
34 UNVR 2014 8864832 17412413 365 185,83 35 UNVR 2015 10127542 17835061 365 207,26	33	GJTL	2016	4343805	10438263	365	151,89
	34	UNVR	2014	8864832	17412413	365	
36 UNVR 2016 10878074 19594636 365 202,63	35	UNVR	2015	10127542	17835061	365	207,26
	36	UNVR	2016	10878074	19594636	365	202,63

37	KLBF	2014	2385920	8892737	365	97,93
38	KLBF	2015	2365880	9295887	365	92,90
39	KLBF	2016	2317162	9886263	365	85,55
40	AUTO	2014	3857809	10500112	365	134,10
41	AUTO	2015	3625907	9993047	365	132,44
42	AUTO	2016	3258146	10954051	365	108,56
43	MYOR	2014	3114337	11633862	365	97,71
44	MYOR	2015	3151495	10620394	365	108,31
45	MYOR	2016	3884051	13449537	365	105,41
46	INDR	2014	3340855	8096469	365	150,61
47	INDR	2015	3537008	8553168	365	150,94
48	INDR	2016	3417623	8420577	365	148,14
49	PBRX	2014	915359	3719208	365	89,83
50	PBRX	2015	1190528	5034402	365	86,31
51	PBRX	2016	1380853	5602060	365	89,97
52	FASW	2014	1838653	4880425	365	137,51
53	FASW	2015	1609497	4570044	365	128,55
54	FASW	2016	2015617	4696162	365	156,66
55	MLIA	2014	1462013	4360614	365	122,38
56	MLIA	2015	1757516	4760284	365	134,76
57	MLIA	2016	1849891	4839218	365	139,53
58	ADMG	2014	836643	5783125	365	52,80
59	ADMG	2015	815253	4494855	365	66,20
60	ADMG	2016	957368	4036800	365	86,56
61	KAEF	2014	854812	3135541	365	99,51
62	KAEF	2015	1092624	3323619	365	119,99
63	KAEF	2016	1696209	3947606	365	156,83
64	INRU	2014	643459	1138011	365	206,38
65	INRU	2015	806994	1180797	365	249,45
66	INRU	2016	902268	1086972	365	302,98
67	TFCO	2014	591708	3490546	365	61,87
68	TFCO	2015	322535	2507334	365	46,95
69	TFCO	2016	356069	2399101	365	54,17
70	ULTJ	2014	490967	2979799	365	60,14
71	ULTJ	2015	561628	3011443	365	68,07
72	ULTJ	2016	593526	3052883	365	70,96
73	BRAM	2014	961391	2156947	365	162,69
74	BRAM	2015	779663	2380628	365	119,54
75	BRAM	2016	800246	2353270	365	124,12
76	MAIN	2014	1742384	4179751	365	152,16
77	MAIN	2015	1520802	4235099	365	131,07

79 IPOL 2014 1314816 2395235 365 200,36 80 IPOL 2015 1289206 2246380 365 209,47 81 IPOL 2016 1276768 2041107 365 228,32 82 TRST 2014 955176 2292152 365 152,10 83 TRST 2015 869537 2245445 365 141,34 84 TRST 2016 909779 2052139 365 161,82 85 SIDO 2014 181431 1358342 365 48,75 86 SIDO 2015 184060 1335171 365 50,32 87 SIDO 2016 215686 1494142 365 526,69 88 BUDI 2014 945117 2007000 365 171,88 89 BUDI 2016 1090816 2193293 365 181,53 91 TOTO 2014 528815 <th>78</th> <th>MAIN</th> <th>2016</th> <th>1365050</th> <th>4322418</th> <th>365</th> <th>115,27</th>	78	MAIN	2016	1365050	4322418	365	115,27
81 IPOL 2016 1276768 2041107 365 228,32 82 TRST 2014 955176 2292152 365 152,10 83 TRST 2015 869537 2245445 365 141,34 84 TRST 2016 909779 2052139 365 161,82 85 SIDO 2014 181431 1358342 365 48,75 86 SIDO 2015 184060 1335171 365 50,32 87 SIDO 2016 215686 1494142 365 52,69 88 BUDI 2014 945117 2007000 365 171,88 89 BUDI 2015 1491109 215824 365 252,18 90 BUDI 2016 1090816 2193293 365 181,53 91 TOTO 2014 528815 1522596 365 126,77 92 TOTO 2015 560119	79	IPOL	2014	1314816	2395235	365	200,36
82 TRST 2014 955176 2292152 365 152,10 83 TRST 2015 869537 2245445 365 141,34 84 TRST 2016 909779 2052139 365 161,82 85 SIDO 2014 181431 1358342 365 48,75 86 SIDO 2015 184060 1335171 365 50,32 87 SIDO 2016 215686 1494142 365 52,69 88 BUDI 2014 945117 2007000 365 171,88 89 BUDI 2015 1491109 215824 365 252,18 90 BUDI 2016 1090816 2193293 365 181,53 91 TOTO 2014 528815 1522596 365 126,77 92 TOTO 2015 560119 1708574 365 119,66 93 TOTO 2016 589150	80	IPOL	2015	1289206	2246380	365	209,47
83 TRST 2015 869537 2245445 365 141,34 84 TRST 2016 909779 2052139 365 161,82 85 SIDO 2014 181431 1358342 365 48,75 86 SIDO 2016 215686 1494142 365 50,32 87 SIDO 2016 215686 1494142 365 52,69 88 BUDI 2014 945117 2007000 365 171,88 89 BUDI 2015 1491109 2158224 365 252,18 90 BUDI 2016 1090816 2193293 365 181,53 91 TOTO 2014 528815 1522596 365 126,77 92 TOTO 2015 560119 1708574 365 119,66 93 TOTO 2016 589150 1625425 365 132,30 94 SCCO 2014 826027	81	IPOL	2016	1276768	2041107	365	228,32
84 TRST 2016 909779 2052139 365 161,82 85 SIDO 2014 181431 1358342 365 48,75 86 SIDO 2015 184060 1335171 365 50,32 87 SIDO 2016 215686 1494142 365 52,69 88 BUDI 2014 945117 2007000 365 171,88 89 BUDI 2015 1491109 2158224 365 252,18 90 BUDI 2016 1090816 2193293 365 181,53 91 TOTO 2014 528815 1522596 365 126,77 92 TOTO 2015 560119 1708574 365 119,66 93 TOTO 2016 589150 1625425 365 132,30 94 SCCO 2014 826027 3370803 365 89,44 95 SCCO 2015 819138	82	TRST	2014	955176	2292152	365	152,10
85 SIDO 2014 181431 1358342 365 48,75 86 SIDO 2015 184060 1335171 365 50,32 87 SIDO 2016 215686 1494142 365 52,69 88 BUDI 2014 945117 2007000 365 171,88 89 BUDI 2015 1491109 2158224 365 252,18 90 BUDI 2016 1090816 2193293 365 181,53 91 TOTO 2014 528815 1522596 365 126,77 92 TOTO 2015 560119 1708574 365 119,66 93 TOTO 2016 589150 1625425 365 132,30 94 SCCO 2014 826027 3370803 365 89,44 95 SCCO 2015 819138 3193858 365 93,61 96 SCCO 2016 1195158	83	TRST	2015	869537	2245445	365	141,34
86 SIDO 2015 184060 1335171 365 50,32 87 SIDO 2016 215686 1494142 365 52,69 88 BUDI 2014 945117 2007000 365 171,88 89 BUDI 2015 1491109 2158224 365 252,18 90 BUDI 2016 1090816 2193293 365 181,53 91 TOTO 2014 528815 1522596 365 126,77 92 TOTO 2015 560119 1708574 365 119,66 93 TOTO 2016 589150 1625425 365 132,30 94 SCCO 2014 826027 3370803 365 89,44 95 SCCO 2015 819138 3193858 365 93,61 96 SCCO 2016 1195158 3182424 365 137,08 97 KBLI 2014 256060	84	TRST	2016	909779	2052139	365	161,82
87 SIDO 2016 215686 1494142 365 52,69 88 BUDI 2014 945117 2007000 365 171,88 89 BUDI 2015 1491109 2158224 365 252,18 90 BUDI 2016 1090816 2193293 365 181,53 91 TOTO 2014 528815 1522596 365 126,77 92 TOTO 2015 560119 1708574 365 119,66 93 TOTO 2016 589150 1625425 365 132,30 94 SCCO 2014 826027 3370803 365 89,44 95 SCCO 2015 819138 3193858 365 93,61 96 SCCO 2016 1195158 3182424 365 137,08 97 KBLI 2014 256060 2173964 365 42,99 98 KBLI 2015 365764	85	SIDO	2014	181431	1358342	365	48,75
88 BUDI 2014 945117 2007000 365 171,88 89 BUDI 2015 1491109 2158224 365 252,18 90 BUDI 2016 1090816 2193293 365 181,53 91 TOTO 2014 528815 1522596 365 126,77 92 TOTO 2015 560119 1708574 365 119,66 93 TOTO 2016 589150 1625425 365 132,30 94 SCCO 2014 826027 3370803 365 89,44 95 SCCO 2015 819138 3193858 365 93,61 96 SCCO 2016 1195158 3182424 365 137,08 97 KBLI 2014 256060 2173964 365 42,99 98 KBLI 2015 337674 2812196 365 57,47 100 NIPS 2014 518955	86	SIDO	2015	184060	1335171	365	50,32
89 BUDI 2015 1491109 2158224 365 252,18 90 BUDI 2016 1090816 2193293 365 181,53 91 TOTO 2014 528815 1522596 365 126,77 92 TOTO 2015 560119 1708574 365 119,66 93 TOTO 2016 589150 1625425 365 132,30 94 SCCO 2014 826027 3370803 365 89,44 95 SCCO 2015 819138 3193858 365 93,61 96 SCCO 2016 1195158 3182424 365 137,08 97 KBLI 2014 256060 2173964 365 42,99 98 KBLI 2015 337674 2812196 365 43,83 99 KBLI 2016 358716 2278128 365 57,47 100 NIPS 2014 518955	87	SIDO	2016	215686	1494142	365	52,69
90 BUDI 2016 1090816 2193293 365 181,53 91 TOTO 2014 528815 1522596 365 126,77 92 TOTO 2015 560119 1708574 365 119,66 93 TOTO 2016 589150 1625425 365 132,30 94 SCCO 2014 826027 3370803 365 89,44 95 SCCO 2015 819138 3193858 365 93,61 96 SCCO 2016 1195158 3182424 365 137,08 97 KBLI 2014 256060 2173964 365 42,99 98 KBLI 2015 337674 2812196 365 43,83 99 KBLI 2016 358716 2278128 365 57,47 100 NIPS 2014 518955 835213 365 226,79 101 NIPS 2015 669596	88	BUDI	2014	945117	2007000	365	171,88
91 TOTO 2014 528815 1522596 365 126,77 92 TOTO 2015 560119 1708574 365 119,66 93 TOTO 2016 589150 1625425 365 132,30 94 SCCO 2014 826027 3370803 365 89,44 95 SCCO 2015 819138 3193858 365 93,61 96 SCCO 2016 1195158 3182424 365 137,08 97 KBLI 2014 256060 2173964 365 42,99 98 KBLI 2015 337674 2812196 365 43,83 99 KBLI 2016 358716 2278128 365 57,47 100 NIPS 2014 518955 835213 365 226,79 101 NIPS 2015 669596 805199 365 303,53 102 NIPS 2016 677524	89	BUDI	2015	1491109	2158224	365	252,18
92 TOTO 2015 560119 1708574 365 119,66 93 TOTO 2016 589150 1625425 365 132,30 94 SCCO 2014 826027 3370803 365 89,44 95 SCCO 2015 819138 3193858 365 93,61 96 SCCO 2016 1195158 3182424 365 137,08 97 KBLI 2014 256060 2173964 365 42,99 98 KBLI 2015 337674 2812196 365 43,83 99 KBLI 2016 358716 2278128 365 57,47 100 NIPS 2014 518955 835213 365 226,79 101 NIPS 2015 669596 805199 365 303,53 102 NIPS 2016 677524 860991 365 287,22 103 DVLA 2014 178583	90	BUDI	2016	1090816	2193293	365	181,53
93 TOTO 2016 589150 1625425 365 132,30 94 SCCO 2014 826027 3370803 365 89,44 95 SCCO 2015 819138 3193858 365 93,61 96 SCCO 2016 1195158 3182424 365 137,08 97 KBLI 2014 256060 2173964 365 42,99 98 KBLI 2015 337674 2812196 365 43,83 99 KBLI 2016 358716 2278128 365 57,47 100 NIPS 2014 518955 835213 365 226,79 101 NIPS 2015 669596 805199 365 303,53 102 NIPS 2016 677524 860991 365 287,22 103 DVLA 2014 178583 518602 365 125,69 104 DVLA 2015 296298	91	тото	2014	528815	1522596	365	126,77
94 SCCO 2014 826027 3370803 365 89,44 95 SCCO 2015 819138 3193858 365 93,61 96 SCCO 2016 1195158 3182424 365 137,08 97 KBLI 2014 256060 2173964 365 42,99 98 KBLI 2015 337674 2812196 365 43,83 99 KBLI 2016 358716 2278128 365 57,47 100 NIPS 2014 518955 835213 365 226,79 101 NIPS 2015 669596 805199 365 303,53 102 NIPS 2016 677524 860991 365 287,22 103 DVLA 2014 178583 518602 365 125,69 104 DVLA 2015 296298 628365 365 172,11 105 DVLA 2016 374428	92	тото	2015	560119	1708574	365	119,66
95 SCCO 2015 819138 3193858 365 93,61 96 SCCO 2016 1195158 3182424 365 137,08 97 KBLI 2014 256060 2173964 365 42,99 98 KBLI 2015 337674 2812196 365 43,83 99 KBLI 2016 358716 2278128 365 57,47 100 NIPS 2014 518955 835213 365 226,79 101 NIPS 2015 669596 805199 365 303,53 102 NIPS 2016 677524 860991 365 287,22 103 DVLA 2014 178583 518602 365 125,69 104 DVLA 2015 296298 628365 365 172,11 105 DVLA 2016 374428 649919 365 210,28 106 CEKA 2014 718681	93	тото	2016	589150	1625425	365	132,30
96 SCCO 2016 1195158 3182424 365 137,08 97 KBLI 2014 256060 2173964 365 42,99 98 KBLI 2015 337674 2812196 365 43,83 99 KBLI 2016 358716 2278128 365 57,47 100 NIPS 2014 518955 835213 365 226,79 101 NIPS 2015 669596 805199 365 303,53 102 NIPS 2016 677524 860991 365 287,22 103 DVLA 2014 178583 518602 365 125,69 104 DVLA 2015 296298 628365 365 172,11 105 DVLA 2016 374428 649919 365 210,28 106 CEKA 2014 718681 3478089 365 75,42 107 CEKA 2015 816471	94	SCCO	2014	826027	3370803	365	89,44
97 KBLI 2014 256060 2173964 365 42,99 98 KBLI 2015 337674 2812196 365 43,83 99 KBLI 2016 358716 2278128 365 57,47 100 NIPS 2014 518955 835213 365 226,79 101 NIPS 2015 669596 805199 365 303,53 102 NIPS 2016 677524 860991 365 287,22 103 DVLA 2014 178583 518602 365 125,69 104 DVLA 2015 296298 628365 365 172,11 105 DVLA 2016 374428 649919 365 210,28 106 CEKA 2014 718681 3478089 365 75,42 107 CEKA 2015 816471 3186844 365 93,51 108 CEKA 2016 504208	95	SCCO	2015	819138	3193858	365	93,61
98 KBLI 2015 337674 2812196 365 43,83 99 KBLI 2016 358716 2278128 365 57,47 100 NIPS 2014 518955 835213 365 226,79 101 NIPS 2015 669596 805199 365 303,53 102 NIPS 2016 677524 860991 365 287,22 103 DVLA 2014 178583 518602 365 125,69 104 DVLA 2015 296298 628365 365 172,11 105 DVLA 2016 374428 649919 365 210,28 106 CEKA 2014 718681 3478089 365 75,42 107 CEKA 2015 816471 3186844 365 93,51 108 CEKA 2016 504208 3680603 365 50,00 109 INAF 2014 600566	96	scco	2016	1195158	3182424	365	137,08
99 KBLI 2016 358716 2278128 365 57,47 100 NIPS 2014 518955 835213 365 226,79 101 NIPS 2015 669596 805199 365 303,53 102 NIPS 2016 677524 860991 365 287,22 103 DVLA 2014 178583 518602 365 125,69 104 DVLA 2015 296298 628365 365 172,11 105 DVLA 2016 374428 649919 365 210,28 106 CEKA 2014 718681 3478089 365 75,42 107 CEKA 2015 816471 3186844 365 93,51 108 CEKA 2016 504208 3680603 365 50,00 109 INAF 2014 600566 1069010 365 205,06 110 INAF 2015 846731	97	KBLI	2014	256060	2173964	365	42,99
100 NIPS 2014 518955 835213 365 226,79 101 NIPS 2015 669596 805199 365 303,53 102 NIPS 2016 677524 860991 365 287,22 103 DVLA 2014 178583 518602 365 125,69 104 DVLA 2015 296298 628365 365 172,11 105 DVLA 2016 374428 649919 365 210,28 106 CEKA 2014 718681 3478089 365 75,42 107 CEKA 2015 816471 3186844 365 93,51 108 CEKA 2016 504208 3680603 365 50,00 109 INAF 2014 600566 1069010 365 237,74 111 INAF 2015 846731 1299969 365 237,74 111 INAF 2016 704930 <td>98</td> <td>KBLI</td> <td>2015</td> <td>337674</td> <td>2812196</td> <td>365</td> <td>43,83</td>	98	KBLI	2015	337674	2812196	365	43,83
101 NIPS 2015 669596 805199 365 303,53 102 NIPS 2016 677524 860991 365 287,22 103 DVLA 2014 178583 518602 365 125,69 104 DVLA 2015 296298 628365 365 172,11 105 DVLA 2016 374428 649919 365 210,28 106 CEKA 2014 718681 3478089 365 75,42 107 CEKA 2015 816471 3186844 365 93,51 108 CEKA 2016 504208 3680603 365 50,00 109 INAF 2014 600566 1069010 365 205,06 110 INAF 2015 846731 1299969 365 237,74 111 INAF 2016 704930 1337793 365 192,33 112 WIIM 2014 439446 </td <td>99</td> <td>KBLI</td> <td>2016</td> <td>358716</td> <td>2278128</td> <td>365</td> <td>57,47</td>	99	KBLI	2016	358716	2278128	365	57,47
102 NIPS 2016 677524 860991 365 287,22 103 DVLA 2014 178583 518602 365 125,69 104 DVLA 2015 296298 628365 365 172,11 105 DVLA 2016 374428 649919 365 210,28 106 CEKA 2014 718681 3478089 365 75,42 107 CEKA 2015 816471 3186844 365 93,51 108 CEKA 2016 504208 3680603 365 50,00 109 INAF 2014 600566 1069010 365 205,06 110 INAF 2015 846731 1299969 365 237,74 111 INAF 2016 704930 1337793 365 192,33 112 WIIM 2014 439446 1177719 365 136,19 113 WIIM 2015 341706<	100	NIPS	2014	518955	835213	365	226,79
103 DVLA 2014 178583 518602 365 125,69 104 DVLA 2015 296298 628365 365 172,11 105 DVLA 2016 374428 649919 365 210,28 106 CEKA 2014 718681 3478089 365 75,42 107 CEKA 2015 816471 3186844 365 93,51 108 CEKA 2016 504208 3680603 365 50,00 109 INAF 2014 600566 1069010 365 205,06 110 INAF 2015 846731 1299969 365 237,74 111 INAF 2016 704930 1337793 365 192,33 112 WIIM 2014 439446 1177719 365 136,19 113 WIIM 2015 341706 1279427 365 97,48	101	NIPS	2015	669596	805199	365	303,53
104 DVLA 2015 296298 628365 365 172,11 105 DVLA 2016 374428 649919 365 210,28 106 CEKA 2014 718681 3478089 365 75,42 107 CEKA 2015 816471 3186844 365 93,51 108 CEKA 2016 504208 3680603 365 50,00 109 INAF 2014 600566 1069010 365 205,06 110 INAF 2015 846731 1299969 365 237,74 111 INAF 2016 704930 1337793 365 192,33 112 WIIM 2014 439446 1177719 365 136,19 113 WIIM 2015 341706 1279427 365 97,48	102	NIPS	2016	677524	860991	365	287,22
105 DVLA 2016 374428 649919 365 210,28 106 CEKA 2014 718681 3478089 365 75,42 107 CEKA 2015 816471 3186844 365 93,51 108 CEKA 2016 504208 3680603 365 50,00 109 INAF 2014 600566 1069010 365 205,06 110 INAF 2015 846731 1299969 365 237,74 111 INAF 2016 704930 1337793 365 192,33 112 WIIM 2014 439446 1177719 365 136,19 113 WIIM 2015 341706 1279427 365 97,48	103	DVLA	2014	178583	518602	365	125,69
106 CEKA 2014 718681 3478089 365 75,42 107 CEKA 2015 816471 3186844 365 93,51 108 CEKA 2016 504208 3680603 365 50,00 109 INAF 2014 600566 1069010 365 205,06 110 INAF 2015 846731 1299969 365 237,74 111 INAF 2016 704930 1337793 365 192,33 112 WIIM 2014 439446 1177719 365 136,19 113 WIIM 2015 341706 1279427 365 97,48	104	DVLA	2015	296298	628365	365	172,11
107 CEKA 2015 816471 3186844 365 93,51 108 CEKA 2016 504208 3680603 365 50,00 109 INAF 2014 600566 1069010 365 205,06 110 INAF 2015 846731 1299969 365 237,74 111 INAF 2016 704930 1337793 365 192,33 112 WIIM 2014 439446 1177719 365 136,19 113 WIIM 2015 341706 1279427 365 97,48	105	DVLA	2016	374428	649919	365	210,28
108 CEKA 2016 504208 3680603 365 50,00 109 INAF 2014 600566 1069010 365 205,06 110 INAF 2015 846731 1299969 365 237,74 111 INAF 2016 704930 1337793 365 192,33 112 WIIM 2014 439446 1177719 365 136,19 113 WIIM 2015 341706 1279427 365 97,48	106	CEKA	2014	718681	3478089	365	75,42
109 INAF 2014 600566 1069010 365 205,06 110 INAF 2015 846731 1299969 365 237,74 111 INAF 2016 704930 1337793 365 192,33 112 WIIM 2014 439446 1177719 365 136,19 113 WIIM 2015 341706 1279427 365 97,48	107	CEKA	2015	816471	3186844	365	93,51
110 INAF 2015 846731 1299969 365 237,74 111 INAF 2016 704930 1337793 365 192,33 112 WIIM 2014 439446 1177719 365 136,19 113 WIIM 2015 341706 1279427 365 97,48	108	CEKA	2016	504208	3680603	365	50,00
111 INAF 2016 704930 1337793 365 192,33 112 WIIM 2014 439446 1177719 365 136,19 113 WIIM 2015 341706 1279427 365 97,48	109	INAF	2014	600566	1069010	365	205,06
112 WIIM 2014 439446 1177719 365 136,19 113 WIIM 2015 341706 1279427 365 97,48	110	INAF	2015	846731	1299969	365	237,74
113 WIIM 2015 341706 1279427 365 97,48	111	INAF	2016	704930	1337793	365	192,33
	112	WIIM	2014	439446	1177719	365	136,19
114 WIIM 2016 293712 1176494 365 91.12	113	WIIM	2015	341706	1279427	365	97,48
	114	WIIM	2016	293712	1176494	365	91,12

Lampiran 6
Siklus Konversi Kas (Cash Convertion Cycle (CCC))

Nomor	Kode Perusahaan	Tahun	ICP	ACP	APP	ccc
1	ASII	2014	38,06	99,09	164,75	-27,59
2	ASII	2015	45,38	105,03	188,68	-38,27
3	ASII	2016	44,84	113,13	224,77	-66,80
4	GGRM	2014	244,76	8,58	167,56	85,77
5	GGRM	2015	247,78	0,82	159,92	88,68
6	GGRM	2016	229,71	10,00	132,39	107,32
7	BRPT	2014	34,34	16,52	76,29	-25,43
8	BRPT	2015	52,81	15,57	116,83	-48,44
9	BRPT	2016	50,12	27,61	134,86	-57,13
10	TKIM	2014	109,31	39,82	194,17	-45,04
11	TKIM	2015	105,40	28,62	222,04	-88,02
12	TKIM	2016	103,40	27,25	176,74	-46,09
13	INTP	2014	55,82	48,75	109,28	-4,71
14	INTP	2015	56,15	51,98	99,20	8,92
15	INTP	2016	71,96	61,90	128,84	5,02
16	ICBP	2014	46,89	35,28	103,55	-21,38
17	ICBP	2015	42,02	38,68	99,04	-18,33
18	ICBP	2016	48,08	41,24	100,03	-10,71
19	TPIA	2014	34,03	16,07	74,46	-24,36
20	TPIA	2015	52,86	13,32	111,93	-45,75
21	TPIA	2016	50,71	26,56	115,38	-38,10
22	CPIN	2014	77,12	50,10	79,49	47,73
23	CPIN	2015	80,65	40,74	83,89	37,51
24	CPIN	2016	58,75	27,07	63,82	22,01
25	SMCB	2014	35,85	124,88	185,23	-24,50
26	SMCB	2015	28,45	49,74	205,99	-127,81
27	SMCB	2016	20,15	24,45	229,25	-184,65
28	JPFA	2014	89,09	19,59	85,32	23,36
29	JPFA	2015	101,62	18,29	92,91	27,00
30	JPFA	2016	93,01	17,50	87,82	22,68
31	GJTL	2014	77,19	65,30	107,05	35,45
32	GJTL	2015	74,53	81,10	131,00	24,64
33	GJTL	2016	79,76	101,06	151,89	28,92
34	UNVR	2014	48,76	32,28	185,83	-104,79
35	UNVR	2015	47,02	36,04	207,26	-124,21
36	UNVR	2016	43,18	34,72	202,63	-124,73

37	KLBF	2014	126,85	51,80	97,93	80,72
38	KLBF	2015	117,92	49,67	92,90	74,69
39	KLBF	2016	123,48	51,35	85,55	89,28
40	AUTO	2014	59,74	53,14	134,10	-21,22
41	AUTO	2015	63,89	52,51	132,44	-16,03
42	AUTO	2016	60,77	51,68	108,56	3,89
43	MYOR	2014	61,71	29,13	97,71	-6,88
44	MYOR	2015	60,60	83,23	108,31	35,52
45	MYOR	2016	57,63	87,29	105,41	39,52
46	INDR	2014	70,94	34,34	150,61	-45,33
47	INDR	2015	79,93	41,33	150,94	-29,68
48	INDR	2016	74,56	51,20	148,14	-22,38
49	PBRX	2014	82,33	68,14	89,83	60,64
50	PBRX	2015	88,66	66,52	86,31	68,86
51	PBRX	2016	88,97	70,19	89,97	69,19
52	FASW	2014	62,07	54,71	137,51	-20,73
53	FASW	2015	72,33	50,22	128,55	-6,00
54	FASW	2016	59,72	69,17	156,66	-27,77
55	MLIA	2014	69,54	36,54	122,38	-16,29
56	MLIA	2015	70,78	28,01	134,76	-35,97
57	MLIA	2016	67,20	30,65	139,53	-41,68
58	ADMG	2014	61,27	33,02	52,80	41,48
59	ADMG	2015	68,65	46,48	66,20	48,93
60	ADMG	2016	70,24	51,90	86,56	35,58
61	KAEF	2014	80,02	42,39	99,51	22,91
62	KAEF	2015	81,52	43,27	119,99	4,80
63	KAEF	2016	91,29	46,04	156,83	-19,50
64	INRU	2014	125,89	1,13	206,38	-79,36
65	INRU	2015	185,10	2,83	249,45	-61,52
66	INRU	2016	141,82	14,18	302,98	-146,98
67	TFCO	2014	56,86	44,29	61,87	39,28
68	TFCO	2015	78,03	45,13	46,95	76,21
69	TFCO	2016	73,47	46,21	54,17	65,51
70	ULTJ	2014	87,51	37,97	60,14	65,34
71	ULTJ	2015	89,55	39,68	68,07	61,15
72	ULTJ	2016	90,93	39,29	70,96	59,25
73	BRAM	2014	111,56	53,65	162,69	2,53
74	BRAM	2015	110,46	49,58	119,54	40,50
75	BRAM	2016	125,45	58,17	124,12	59,50
76	MAIN	2014	53,31	38,45	152,16	-60,40
77	MAIN	2015	47,49	33,90	131,07	-49,68

78	MAIN	2016	52,85	29,50	115,27	-32,92
79	IPOL	2014	45,82	76,95	200,36	-77,59
80	IPOL	2015	45,32	1,86	209,47	-162,29
81	IPOL	2016	55,03	85,89	228,32	-87,39
82	TRST	2014	81,20	70,60	152,10	-0,31
83	TRST	2015	94,58	63,76	141,34	16,99
84	TRST	2016	110,46	66,69	161,82	15,33
85	SIDO	2014	62,00	55,51	48,75	68,76
86	SIDO	2015	72,44	57,21	50,32	79,33
87	SIDO	2016	77,46	55,17	52,69	79,94
88	BUDI	2014	49,10	84,14	171,88	-38,64
89	BUDI	2015	62,62	141,60	252,18	-47,95
90	BUDI	2016	75,27	51,37	181,53	-54,89
91	тото	2014	108,38	97,13	126,77	78,75
92	тото	2015	128,89	87,39	119,66	96,63
93	тото	2016	145,26	84,85	132,30	97,81
94	scco	2014	29,68	82,85	89,44	23,09
95	scco	2015	33,54	73,76	93,61	13,68
96	scco	2016	40,79	57,70	137,08	-38,59
97	KBLI	2014	44,57	72,99	42,99	74,58
98	KBLI	2015	38,18	74,81	43,83	69,17
99	KBLI	2016	51,37	70,04	57,47	63,94
100	NIPS	2014	98,36	117,02	226,79	-11,41
101	NIPS	2015	111,71	119,02	303,53	-72,80
102	NIPS	2016	104,59	121,10	287,22	-61,53
103	DVLA	2014	160,05	116,15	125,69	150,52
104	DVLA	2015	115,39	111,37	172,11	54,65
105	DVLA	2016	117,81	116,13	210,28	23,67
106	CEKA	2014	49,95	31,08	75,42	5,61
107	CEKA	2015	48,63	27,35	93,51	-17,54
108	CEKA	2016	55,19	25,05	50,00	30,24
109	INAF	2014	73,89	55,02	205,06	-76,14
110	INAF	2015	84,31	47,23	237,74	-106,20
111	INAF	2016	79,78	49,95	192,33	-62,60
112	WIIM	2014	233,53	16,41	136,19	113,74
113	WIIM	2015	217,46	12,62	97,48	132,59
114	WIIM	2016	241,46	13,92	91,12	164,26

Lampiran 7

Capital Expenditure (CAPEX)

Nomor	Kode Perusahaan	Tahun	Aset Tetap t	Aset Tetap t-1	CAPEX
1	ASII	2014	41250000	37862000	3388000
2	ASII	2015	41702000	41250000	452000
3	ASII	2016	43237000	41702000	1535000
4	GGRM	2014	18973272	14788915	4184357
5	GGRM	2015	20106488	18973272	1133216
6	GGRM	2016	20498950	20106488	392462
7	BRPT	2014	17885473	15632094	2253379
8	BRPT	2015	21897024	17885473	4011551
9	BRPT	2016	21292298	21897024	-604726
10	TKIM	2014	14217850	13987915	229935
11	TKIM	2015	17176679	14217850	2958829
					-
12	TKIM	2016	15639638	17176679	1537040
13	INTP	2014	12143632	9304992	2838640
14	INTP	2015	13813892	12143632	1670260
15	INTP	2016	14643695	13813892	829803
16	ICBP	2014	5838843	4844407	994436
17	ICBP	2015	6555660	5838843	716817
18	ICBP	2016	7114288	6555660	558628
19	TPIA	2014	14228312	11987991	2240321
20	TPIA	2015	18044522	14228312	3816210
21	TPIA	2016	17691772	18044522	-352750
22	CPIN	2014	9256710	6389545	2867165
23	CPIN	2015	11309628	9256710	2052918
24	CPIN	2016	11233847	11309628	-75781
25	SMCB	2014	14904563	12367323	2537240
26	SMCB	2015	14427080	14904563	-477483
27	SMCB	2016	16608121	14427080	2181041
28	JPFA	2014	6361632	5272131	1089501
29	JPFA	2015	6808971	6361632	447339
30	JPFA	2016	7512091	6808971	703120
31	GJTL	2014	7611453	6415815	1195638
32	GJTL	2015	8733925	7611453	1122472
33	GJTL	2016	9130997	8733925	397072
34	UNVR	2014	7348025	6874177	473848
35	UNVR	2015	8320917	7348025	972892

36	UNVR	2016	9529476	8320917	1208559
37	KLBF	2014	3404457	2925547	478910
38	KLBF	2015	3938494	3404457	534037
39	KLBF	2016	4555756	3938494	617262
40	AUTO	2014	3305968	3182962	123006
41	AUTO	2015	3507217	3305968	201249
42	AUTO	2016	3599815	3507217	92598
43	MYOR	2014	3585012	3114329	470683
44	MYOR	2015	3770696	3585012	185684
45	MYOR	2016	3859420	3770696	88724
46	INDR	2014	5196292	4563585	632708
47	INDR	2015	6454162	5196292	1257869
48	INDR	2016	6665997	6454162	211835
49	PBRX	2014	942458	689748	252711
50	PBRX	2015	1694954	942458	752495
51	PBRX	2016	1658221	1694954	-36733
52	FASW	2014	3733099	3795093	-61994
53	FASW	2015	4916098	3733099	1182999
54	FASW	2016	6271722	4916098	1355624
55	MLIA	2014	5497491	5556239	-58748
56	MLIA	2015	5520674	5497491	23183
57	MLIA	2016	6042933	5520674	522259
58	ADMG	2014	3643560	3823468	-179908
59	ADMG	2015	3710234	3643560	66675
60	ADMG	2016	3300978	3710234	-409256
61	KAEF	2014	557939	498644	59295
62	KAEF	2015	674489	557939	116550
63	KAEF	2016	1006745	674489	332256
64	INRU	2014	2396989	2348508	48481
65	INRU	2015	2599764	2396989	202775
66	INRU	2016	2451304	2599764	-148460
67	TFCO	2014	3004919	3008836	-3917
68	TFCO	2015	3225805	3004919	220886
69	TFCO	2016	3040964	3225805	-184840
70	ULTJ	2014	1003229	965975	37254
71	ULTJ	2015	1160712	1003229	157483
72	ULTJ	2016	1042072	1160712	-118640
73	BRAM	2014	2271497	1542643	728854
74	BRAM	2015	2414991	2271497	143494
75	BRAM	2016	2239563	2414991	-175428
76	MAIN	2014	1576504	1128473	448031

77	MAIN	2015	1822002	1576504	245498
78	MAIN	2016	1956952	1822002	134950
79	IPOL	2014	2355897	2286200	69697
80	IPOL	2015	2695899	2355897	340002
81	IPOL	2016	2537509	2695899	-158389
82	TRST	2014	1980023	1991932	-11909
83	TRST	2015	2101160	1980023	121137
84	TRST	2016	2025463	2101160	-75697
85	SIDO	2014	791081	556376	234705
86	SIDO	2015	961873	791081	170792
87	SIDO	2016	1051227	961873	89354
88	BUDI	2014	1480942	1271806	209136
89	BUDI	2015	1712330	1480942	231388
90	BUDI	2016	1771780	1712330	59450
91	тото	2014	807117	558783	248334
92	тото	2015	875127	807117	68010
93	тото	2016	881752	875127	6625
94	scco	2014	295398	254394	41004
95	scco	2015	317988	295398	22590
96	scco	2016	322518	317988	4530
97	KBLI	2014	411559	393273	18286
98	KBLI	2015	552111	411559	140552
99	KBLI	2016	560535	552111	8424
100	NIPS	2014	450149	256657	193492
101	NIPS	2015	593105	450149	142956
102	NIPS	2016	681451	593105	88346
103	DVLA	2014	267040	243055	23985
104	DVLA	2015	258265	267040	-8775
105	DVLA	2016	404599	258265	146334
106	CEKA	2014	221560	215530	6030
107	CEKA	2015	221003	221560	-557
108	CEKA	2016	215976	221003	-5027
109	INAF	2014	394584	367913	26671
110	INAF	2015	398427	394584	3843
111	INAF	2016	425707	398427	27280
112	WIIM	2014	309830	218745	91085
113	WIIM	2015	331748	309830	21918
114	WIIM	2016	330448	331748	-1300

Lampiran 8

Leverage (LEV)

	· · · · · · · · · · · · · · · · · · ·		I	I	
Nomor	Kode Perusahaan	Tahun	Total Utang	Total Aset	LEV
1	ASII	2014	115705000	236029000	0,490
2	ASII	2015	118902000	245435000	0,484
3	ASII	2016	212949000	261855000	0,813
4	GGRM	2014	24991880	58220600	0,429
5	GGRM	2015	25497504	63505413	0,402
6	GGRM	2016	23387406	62951634	0,372
7	BRPT	2014	15805219	28928212	0,546
8	BRPT	2015	14583729	31081294	0,469
9	BRPT	2016	15078175	34538447	0,437
10	TKIM	2014	22138585	33724044	0,656
11	TKIM	2015	23834366	37024028	0,644
12	TKIM	2016	20882285	33472865	0,624
13	INTP	2014	4307622	28884635	0,149
14	INTP	2015	3772410	27638360	0,136
15	INTP	2016	4011877	30150580	0,133
16	ICBP	2014	9870264	24910211	0,396
17	ICBP	2015	10173713	26560624	0,383
18	ICBP	2016	10401125	28901948	0,360
19	TPIA	2014	13115019	23928464	0,548
20	TPIA	2015	13457574	25691615	0,524
21	TPIA	2016	13269407	28608858	0,464
22	CPIN	2014	9842611	21083004	0,467
23	CPIN	2015	12129993	24916656	0,487
24	CPIN	2016	10047751	24204994	0,415
25	SMCB	2014	8436760	17195532	0,491
26	SMCB	2015	8921018	17370875	0,514
27	SMCB	2016	9405276	17546218	0,536
28	JPFA	2014	10440441	15730435	0,664
29	JPFA	2015	11049774	17159466	0,644
30	JPFA	2016	9878062	19251026	0,513
31	GJTL	2014	10059605	16042897	0,627
32	GJTL	2015	12115363	17509505	0,692
33	GJTL	2016	12849602	18697779	0,687
34	UNVR	2014	9681888	14280670	0,678
35	UNVR	2015	10902585	15729945	0,693
36	UNVR	2016	12041437	16745695	0,719

37	KLBF	2014	2607557	12425032	0,210
38	KLBF	2015	2758131	13696417	0,201
39	KLBF	2016	2762162	15226009	0,181
40	AUTO	2014	4244369	14380926	0,295
41	AUTO	2015	4195684	14339110	0,293
42	AUTO	2016	4075716	14612274	0,279
43	MYOR	2014	6190553	10291108	0,602
44	MYOR	2015	6148255	11342715	0,542
45	MYOR	2016	6657165	12922421	0,515
46	INDR	2014	5442149	9220038	0,590
47	INDR	2015	7008026	11102924	0,631
48	INDR	2016	7353137	11374494	0,646
49	PBRX	2014	2013640	4559191	0,442
50	PBRX	2015	3131250	6108995	0,513
51	PBRX	2016	3921515	6980093	0,562
52	FASW	2014	3936323	5581001	0,705
53	FASW	2015	4548288	6993634	0,650
54	FASW	2016	5424781	8583224	0,632
55	MLIA	2014	5893567	7215152	0,817
56	MLIA	2015	6010681	7125800	0,844
57	MLIA	2016	6110479	7723579	0,791
58	ADMG	2014	2129163	5797868	0,367
59	ADMG	2015	2100186	5794041	0,362
60	ADMG	2016	1819087	5117067	0,355
61	KAEF	2014	1157041	2968185	0,390
62	KAEF	2015	1378319	3434879	0,401
63	KAEF	2016	2341155	4612563	0,508
64	INRU	2014	2513166	4108111	0,612
65	INRU	2015	2879886	4606206	0,625
66	INRU	2016	2377218	4560555	0,521
67	TFCO	2014	654079	4233514	0,155
68	TFCO	2015	408939	4345713	0,094
69	TFCO	2016	412055	4330207	0,095
70	ULTJ	2014	651986	2917084	0,224
71	ULTJ	2015	742490	3539996	0,210
72	ULTJ	2016	749966	4239200	0,177
73	BRAM	2014	1612813	3835228	0,421
74	BRAM	2015	1502287	4025983	0,373
75	BRAM	2016	1320972	3977869	0,332
76	MAIN	2014	2453335	3531220	0,695
77	MAIN	2015	2413483	3962068	0,609

78	MAIN	2016	2082189	3919764	0,531
79	IPOL	2014	1624597	3550444	0,458
80	IPOL	2015	1759955	3873361	0,454
81	IPOL	2016	1705547	3800969	0,449
82	TRST	2014	1499792	3261285	0,460
83	TRST	2015	1400439	3357359	0,417
84	TRST	2016	1358241	3290596	0,413
85	SIDO	2014	186740	2821399	0,066
86	SIDO	2015	197797	2796111	0,071
87	SIDO	2016	229729	2987614	0,077
88	BUDI	2014	1563631	2476982	0,631
89	BUDI	2015	2160702	3265953	0,662
90	BUDI	2016	1766825	2931807	0,603
91	тото	2014	790096	2077289	0,380
92	тото	2015	947998	2439541	0,389
93	тото	2016	1057566	2581441	0,410
94	SCCO	2014	841615	1656007	0,508
95	SCCO	2015	850792	1773144	0,480
96	SCCO	2016	1229515	2449935	0,502
97	KBLI	2014	396594	1337351	0,297
98	KBLI	2015	529035	1551800	0,341
99	KBLI	2016	524438	1871422	0,280
100	NIPS	2014	630960	1206854	0,523
101	NIPS	2015	938717	1547720	0,607
102	NIPS	2016	935375	1777956	0,526
103	DVLA	2014	273816	1236248	0,221
104	DVLA	2015	402761	1376278	0,293
105	DVLA	2016	451786	1531366	0,295
106	CEKA	2014	746598	1284150	0,581
107	CEKA	2015	845932	1485826	0,569
108	CEKA	2016	538044	1425964	0,377
109	INAF	2014	656380	1248343	0,526
110	INAF	2015	941000	1533709	0,614
111	INAF	2016	805876	1381633	0,583
112	WIIM	2014	478483	1332908	0,359
113	WIIM	2015	398991	1342700	0,297
114	WIIM	2016	362541	1353634	0,268

Lampiran 9 Hasil Pengujian dengan Economic Views (Eviews) versi 8 9.1. Analisis Statistik Deskriptif

	WCR	CCC	CAPEX	LEV
Mean	0.204825	1.846734	539890.9	0.458503
Median	0.174466	3.209229	178238.0	0.474517
Maximum	0.604014	164.2585	4184357.	0.843510
Minimum	-0.256183	-184.6461	-1537040.	0.066187
Std. Dev.	0.194279	66.38919	968866.6	0.178496
Skewness	0.153388	-0.204818	1.923545	-0.278573
Kurtosis	2.287481	2.971876	6.801788	2.550259
Jarque-Bera	2.858524	0.800816	138.9550	2.435227
Probability	0.239486	0.670047	0.000000	0.295936
Sum	23.35008	210.5277	61547563	52.26931
Sum Sq. Dev.	4.265131	498050.2	1.06E+14	3.600262
Observations	114	114	114	114

9.2. uji chow

Redundant Fixed Effects Tests

Equation: FIXED

Test cross-section fixed effects

Effects Test	Statistic	d.f.	Prob.
Cross-section F Cross-section Chi-square	33.141495	(37,73)	0.0000
	328.214174	37	0.0000

Cross-section fixed effects test equation:

Dependent Variable: WCR Method: Panel Least Squares Date: 07/05/17 Time: 19:22

Sample: 2014 2016 Periods included: 3 Cross-sections included: 38

Total panel (balanced) observations: 114

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C CCC CAPEX LEV	0.336801 0.001849 -8.63E-09 -0.285130	0.035629 0.000197 1.11E-08 0.073225	9.452993 9.383745 -0.780744 -3.893916	0.0000 0.0000 0.4366 0.0002
R-squared Adjusted R-squared	0.671299 0.662334	Mean depender		0.204825 0.194279

S.E. of regression	0.112894	Akaike info criterion	-1.490280
Sum squared resid	1.401953	Schwarz criterion	-1.394273
Log likelihood	88.94595	Hannan-Quinn criter.	-1.451316
F-statistic	74.88355	Durbin-Watson stat	1.035077
Prob(F-statistic)	0.000000		

9.3. Uji Hausman

Correlated Random Effects - Hausman Test

Equation: RANDOM

Test cross-section random effects

Test Summary	Chi-Sq. Statistic	Chi-Sq. d.f.	Prob.
Cross-section random	23.555055	3	0.0000

Cross-section random effects test comparisons:

Variable	Fixed	Random	Var(Diff.)	Prob.
CCC	0.000446	0.000736	0.000000	0.0000
CAPEX	-0.000000	-0.000000	0.000000	0.8145
LEV	-0.281241	-0.341484	0.001709	0.1450

Cross-section random effects test equation:

Dependent Variable: WCR Method: Panel Least Squares Date: 07/05/17 Time: 19:36

Sample: 2014 2016 Periods included: 3 Cross-sections included: 38

Total panel (balanced) observations: 114

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.335937	0.034971	9.606066	0.0000
CCC	0.000446	0.000155	2.874197	0.0053
CAPEX	-5.53E-09	4.32E-09	-1.278989	0.2050
LEV	-0.281241	0.076327	-3.684693	0.0004

Effects Specification

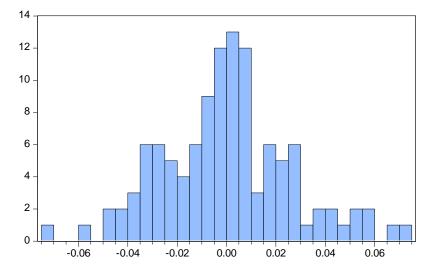
981531	Mean dependent var	0.204825
971411 932849 978771 3.0530 .99089	S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat	0.194279 -3.720229 -2.736157 -3.320849 2.453887
)	78771 3.0530	78771 Schwarz criterion 3.0530 Hannan-Quinn criter. 99089 Durbin-Watson stat

9.4. Model Fixed

Dependent Variable: WCR Method: Panel Least Squares Date: 07/06/17 Time: 07:57

Sample: 2014 2016 Periods included: 3 Cross-sections included: 38

Total panel (balanced) observations: 114


CCC 0.000446 0.000155 2.874197 0.005 CAPEX -5.53E-09 4.32E-09 -1.278989 0.205	Variable	Coefficient	Std. Error	t-Statistic	Prob.
	CCC CAPEX	0.000446 -5.53E-09	0.000155 4.32E-09	2.874197 -1.278989	0.0000 0.0053 0.2050 0.0004

Effects Specification

Cross-section fixed (dummy variables)

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.981531 0.971411 0.032849 0.078771 253.0530 96.99089	Akaike info criterion Schwarz criterion Hannan-Quinn criter.	0.204825 0.194279 -3.720229 -2.736157 -3.320849 2.453887
F-statistic Prob(F-statistic)	96.99089 0.000000	Durbin-Watson stat	2.453887

9.5. Uji Normalitas

Series: Stand Sample 2014 Observations	
Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis	1.52e-18 -0.000287 0.074974 -0.070474 0.026402 0.267039 3.339384
Jarque-Bera Probability	1.901995 0.386355
	Sample 2014 Observations Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis Jarque-Bera

9.6. Multikolinieritas

	CCC	CAPEX	LEV
CCC	1.000000	-0.117821	-0.581531
CAPEX	-0.117821	1.000000	0.108176
LEV	-0.581531	0.108176	1.000000

9.7. Uji Autokorelasi

R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic	0.981531 0.971411 0.032849 0.078771 253.0530 96.99089	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat	0.204825 0.194279 -3.720229 -2.736157 -3.320849 2.453887
<u> </u>	96.99089	Durbin-Watson stat	2.453887
Prob(F-statistic)	0.000000		

9.8. Uji Heteroskedastisitas

Heteroskedasticity Test: White

F-statistic	1.628962	Prob. F(9,104)	0.1165
Obs*R-squared	14.08483	Prob. Chi-Square(9)	0.1193
Scaled explained SS	10.88331	Prob. Chi-Square(9)	0.2838

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 07/06/17 Time: 08:54

Sample: 1 114

Included observations: 114

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.041632	0.013354	3.117631	0.0024
CCC^2	-2.17E-07	3.37E-07	-0.644636	0.5206
CCC*CAPEX	-3.31E-11	2.80E-11	-1.182245	0.2398
CCC*LEV	0.000235	0.000290	0.810880	0.4193
CCC	-0.000102	0.000135	-0.758823	0.4497
CAPEX^2	2.47E-16	1.15E-15	0.215084	0.8301
CAPEX*LEV	1.07E-08	1.40E-08	0.761284	0.4482
CAPEX	-7.35E-09	8.07E-09	-0.910515	0.3647
LEV^2	0.070819	0.057349	1.234864	0.2197
LEV	-0.094439	0.055254	-1.709170	0.0904
R-squared	0.123551	Mean dependent var		0.012298
Adjusted R-squared	0.047705	S.D. dependent var		0.015914
S.E. of regression	0.015530	Akaike info criterion		-5.408511
Sum squared resid	0.025081	Schwarz criterion		-5.168493
Log likelihood	318.2851	Hannan-Quinn criter.		-5.311101
F-statistic	1.628962	Durbin-Watson stat		1.290745
Prob(F-statistic)	0.116482			

9.9. Analisis Regresi

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.335937	0.034971	9.606066	0.0000
CCC	0.000446	0.000155	2.874197	0.0053
CAPEX	-5.53E-09	4.32E-09	-1.278989	0.2050
LEV	-0.281241	0.076327	-3.684693	0.0004

9.10. Uji T

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.335937	0.034971	9.606066	0.0000
CCC	0.000446	0.000155	2.874197	0.0053
CAPEX	-5.53E-09	4.32E-09	-1.278989	0.2050
LEV	-0.281241	0.076327	-3.684693	0.0004

9.11. Uji F

R-squared	0.981531	Mean dependent var	0.204825
Adjusted R-squared	0.971411	S.D. dependent var	0.194279
S.E. of regression	0.032849	Akaike info criterion	-3.720229
Sum squared resid	0.078771	Schwarz criterion	-2.736157
Log likelihood	253.0530	Hannan-Quinn criter.	-3.320849
F-statistic	96.99089	Durbin-Watson stat	2.453887
Prob(F-statistic)	0.000000		

9.12. Uji Koefisien Determinasi \mathbb{R}^2

R-squared	0.981531	Mean dependent var	0.204825
Adjusted R-squared	0.971411	S.D. dependent var	0.194279
S.E. of regression	0.032849	Akaike info criterion	-3.720229
Sum squared resid	0.078771	Schwarz criterion	-2.736157
Log likelihood	253.0530	Hannan-Quinn criter.	-3.320849
F-statistic	96.99089	Durbin-Watson stat	2.453887
Prob(F-statistic)	0.000000		

RIWAYAT HIDUP

Linda Puspita Dewi merupakan sulung dari dua bersaudara dengan orang tua bernama Dalimi dan Damanuri, lahir di Purworejo pada tanggal 7 November 1995. Saat ini Penulis tinggal di KP. Penggilingan RT 011/RW 007, Kelurahan Penggilingan Kecamatan Cakung, Jakarta Timur. Penulis menyelesaikan masa sekolah dasar di SDN Jatinegara 02 Jakarta Timur pada

tahun 2007 dan pada tahun yang sama Penulis melanjutkan pendidikannya ke SMP Negeri 144 Jakarta. Setelah menempuh pendidikan selama tiga tahun, pada tahun 2010 Penulis melanjutkan pendidikan ke SMA Negeri 11 Jakarta dan lulus pada tahun 2013.

Penulis resmi menjadi mahasiswa S1 Akuntansi FE UNJ pada bulan Juli tahun 2013 melalui SNMPTN. Selama menjadi mahasiswi penulis pernah menjadi staff PSDM dan Sekretaris 1 EconoChannel FE UNJ. Penulis mengikuti beragam kepanitiaan seperti kepanitiaan KKL S1 Akuntansi angkatan 2013, panitia acara-acara intra Econochannel, acara paguyuban KSE UNJ dan lainnya. Penulis juga mendapatkan beasiswa PPA dan Karya Salemba Empat pada dua tahun terakhir masa studinya. Penulis melaksanakan Program KKN di desa Umbul Tanjung, Kabupaten Serang, Provinsi Banten tahun 2016, melaksanakan KKL di Bank Negara Malaysia dan Bursa Malaysia, serta menjalani Praktik Kerja Lapangan Selama dua bulan di Departemen Akuntansi PT. Akebono Brake Astra Indonesia.