HUBUNGAN ANTARA PERSEPSI DIRI TERHADAP KEMAMPUAN BERPIKIR KRITIS DENGAN HASIL BELAJAR KOGNITIF MATERI SISTEM REPRODUKSI MANUSIA PADA PESERTA DIDIK SMA

SKRIPSI

Disusun untuk Memenuhi Persyaratan Guna Memperoleh Gelar Sarjana Pendidikan

NOFITA LASARI 3415131019

PROGRAM STUDI PENDIDIKAN BIOLOGI
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS NEGERI JAKARTA
2017

PERSETUJUAN PANITIA UJIAN SKRIPSI

HUBUNGAN ANTARA PERSEPSI DIRI TERHADAP KEMAMPUAN BERPIKIR KRITIS DENGAN HASIL BELAJAR KOGNITIF MATERI SISTEM REPRODUKSI MANUSIA PADA PESERTA DIDIK SMA

Nama : Nofita Lasari No. Reg : 3415131019

Nama

Penanggung Jawab

Dekan

: Prof. Dr. Suyono, M.Si.

NIP. 19671218 199303 1 005

andas Tando

Wakil Penanggung Jawab: Dr. Muktiningsih, M.Si.

Wakil Dekan I

NIP. 19640511 198903 2 00

: Dra. Nurmasari S., M.Biomed Ketua

NIP. 19580207 198301 2 001

Sekretaris / Penguji I : Drs. Refirman Dj., M.Biomed

NIP. 19590816 198903 1 00

Anggota

Penguji II

: Dr. Rusdi, M.Biomed Pembimbing I

NIP. 19650917 199203 1 001

: Dra. Yulilina R.D., M.Biomed Pembimbing II

NIP. 19640701 199703 2 001

: Sri Rahayu, S.Kep., M.Biomed

NIP. 19790925 200501 2 002

Dinyatakan lulus ujian skripsi pada tanggal 31 Juli 2017

"Dan apabila hamba-hamba-Ku
bertanya kepadamu (Muhammad)
tentang Aku, maka sesungguhnya Aku
dekat. Aku kabulkan permohonan
orang yang berdoa apabila dia berdoa
kepada-Ku. Hendaklah mereka itu
memenuhi (perintah)-Ku dan beriman
kepada-Ku agar mereka memperoleh
kebenaran."
(Al-Qur'an: Surat Al-Bagarah ayat 186)

Kepada jiwa-jiwa yang sedang berjuang Tetaplah berdoa, berusaha, dan bersyukur Semua pasti bisal

"Because Allah is always there when you think no one else is. Surely Allah is with us"

Salah Satu Pejuang Peradaban

ABSTRAK

NOFITA LASARI. Hubungan antara Persepsi Diri terhadap Kemampuan Berpikir Kritis dengan Hasil Belajar Kognitif Materi Sistem Reproduksi Manusia pada Peserta Didik SMA. Skripsi. Jakarta: Program Studi Pendidikan Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta. 2017.

Persepsi diri terhadap kemampuan berpikir kritis dapat menjadi alat untuk merangsang pemikiran dan membantu peserta didik agar memperoleh hasil belajar kognitif yang lebih baik. Hasil belajar kognitif peserta didik ialah perubahan pada peserta didik yang dinyatakan dalam skor terhadap pemahaman konsep yang dialami setelah mendapatkan pengalaman belajarnya. Penelitian ini bertujuan untuk mengetahui hubungan antara persepsi diri terhadap kemampuan berpikir kritis dengan hasil belajar kognitif materi Sistem Repoduksi Manusia pada peserta didik SMA. Penelitian ini dilaksanakan di SMA Negeri 45 Jakarta pada bulan Mei-Juni tahun 2017. Metode yang digunakan ialah metode kuantitatif dengan studi korelasional. Jumlah sampel yang digunakan sebanyak 85 peserta didik kelas XI MIA yang dipilih menggunakan teknik simple random sampling. Berdasarkan pengujian hipotesis, diperoleh nilai koefisien korelasi sebesar 0,401 dengan kontribusi variabel X terhadap variabel Y sebesar 16,1%. Berdasarkan hasil tersebut, maka dapat disimpulkan bahwa terdapat hubungan positif antara persepsi diri terhadap kemampuan berpikir kritis dengan hasil belajar kognitif materi Sistem Reproduksi Manusia pada peserta didik SMA Negeri 45 Jakarta.

Kata kunci: hasil belajar kognitif, kemampuan berpikir kritis, persepsi diri, sistem reproduksi manusia

ABSTRACT

Nofita Lasari. Relationship between Self Perception of The Critical Thinking Skill and The Cognitive Learning Outcomes of The Human Reproductive System in High School Students. Undergraduate Thesis. Jakarta: Biology Education Program, Faculty of Mathematics and Natural Sciences, Jakarta State University. 2017.

Self perception of the critical thinking skill can be a tool to stimulate thinking and help students to get better cognitive learning outcomes. The cognitive learning outcomes of students are the change of students expressed in the scores on understanding the concept experienced after gaining experience learning. The purpose of this study was to determine the relationship between self perception of the critical thinking skill and the cognitive learning outcomes of the Human Reproductive System in high school students. This research was conducted at SMA Negeri 45 Jakarta in May-June 2017. The method used was quantitative method with correlational study. The number of samples used were 85 students of class XI MIA by simple random sampling technique. Based on hypothesis testing, correlation coefficient value was 0.401 with the contribution of variable X to variable Y of 16.1%. Based on these results, there was a positive correlation between self perception of the critical thinking skill with the cognitive learning outcomes of the Human Reproductive System in students of SMA Negeri 45 Jakarta.

Keywords: self perception, the cognitive learning outcomes, the critical thinking skill, the human reproductive system

KATA PENGANTAR

Puji dan syukur penulis panjatkan kehadirat Allah SWT yang telah memberikan rahmat, hidayat, dan kekuatan sehingga penulis dapat menyelesaikan skripsi yang berjudul: "Hubungan antara Persepsi Diri terhadap Kemampuan Berpikir Kritis dengan Hasil Belajar Kognitif Materi Sistem Reproduksi Manusia pada Peserta Didik SMA". Penyusunan skripsi ini diajukan sebagai syarat untuk memperoleh gelar Sarjana Pendidikan di Universitas Negeri Jakarta.

Penyusunan skripsi ini tidak terlepas dari bantuan, bimbingan, dan dukungan dari berbagai pihak. Pada kesempatan ini penulis ingin menyampaikan terimakasih yang sebesar-besarnya kepada berbagai pihak. Ucapan terimakasih penulis sampaikan kepada:

- Dr. Rusdi, M.Biomed selaku dosen pembimbing I yang telah memberikan doa, bimbingan, motivasi, semangat, dan saran serta meluangkan waktunya untuk dapat memberikan ilmu yang luar biasa.
- Dra. Yulilina R.D., M.Biomed selaku dosen pembimbing II atas waktu, bimbingan, saran, dan motivasi, sehingga penulis dapat menyelesaikan skripsi ini.
- Drs. Refirman Dj., M.Biomed selaku dosen penguji I dan Sri Rahayu,
 S.Kep, M.Biomed selaku dosen penguji II atas bimbingan, kritik, dan saran yang memotivasi penulis.

- 4. Ade Suryanda, S.Pd, M.Si selaku dosen pembimbing akademik atas waktu, arahan, saran, dan motivasi selama masa perkuliahan.
- 5. Dr. Diana Vivanti S., M.Si selaku Koordinator Program Studi Pendidikan Biologi yang selalu memberikan semangat dan motivasi dengan penuh kesabaran kepada penulis.
- 6. Dosen-dosen Universitas Negeri Jakarta dan seluruh dosen Biologi atas ilmu dan didikan selama masa kuliah.
- 7. Bapak Mardani, Ibu Umi Hani, Kakak Marhati, Kakak Marhoni, Kakak Marfuah, Kakak Untung Haryono, Kakak Marliana, Kakak Muhammad Guntur, Kakak Ardi Syuhadi, dan Kakak Yeni Ocktifiyani yang senantiasa selalu memotivasi, mendoakan, dan memberi dukungan moril serta materil kepada penulis hingga terselesaikannya skripsi ini.
- 8. Sahabat terbaik Kasih, Rahma, Evi, Soraya, Intan, Desnil, Sarifah, Ika, Nisa, Ella, Esyi, Mia, Fatih, Dita, Zamita, Rica, Dea, Ranny, dan Syera atas doa, perhatian, kesabaran, motivasi, serta dukungan dalam persahabatan yang terjalin.
- Apis indica dan Keluarga Pendidikan Biologi Bilingual 2013 khususnya atas kenangan akan kekeluargaan yang terjalin serta dukungan dan doa untuk saling menguatkan.
- 10. Ibu Isoh Sukaesah, M.Pd dan Ibu Dra. Wulan Rahayu selaku guru Biologi di SMA Negeri 45 Jakarta yang telah memberikan saran dan bantuan selama penelitian, serta peserta didik SMA Negeri 45 Jakarta kelas XI MIA Tahun Ajaran 2016/2017.

11. Keluarga Kesmalingdup BEMF MIPA periode 2016/2017, Karang Taruna RW 04 periode 2015/2018, BEMJ Biologi periode 2014/2015 dan periode 2015/2016, serta keluarga besar KSP *Macaca* UNJ yang telah memberikan perhatian, semangat, dukungan dan doa agar selesainya skripsi ini.

12. Semua pihak yang tidak dapat penulis sebutkan satu persatu yang telah membantu dalam penyelesaian penulisan skripsi.

Kepada semua pihak, penulis berharap Allah SWT berkenan membalas kebaikan yang telah diberikan. Penulis menyadari bahwa dalam penyusunan skripsi ini masih jauh dari sempurna. Saran dan kritik yang membangun sangat diharapkan untuk karya selanjutnya. Semoga tulisan ini dapat mendatangkan manfaat bagi pembaca umumnya dan bagi penulis khususnya.

Jakarta, Juli 2017

Penulis

DAFTAR ISI

Hala	man
ABSTRAK	i
ABSTRACT	ii
KATA PENGANTAR	iii
DAFTAR ISI	vi
DAFTAR GAMBAR	ix
DAFTAR TABEL	хi
DAFTAR LAMPIRAN	xiii
BAB I PENDAHULUAN	
A. Latar Belakang	1
B. Identifikasi Masalah	4
C. Pembatasan Masalah	4
D. Perumusan Masalah	. 5
E. Tujuan Penelitian	5
F. Manfaat Penelitian	5
BAB II KAJIAN PUSTAKA, KERANGKA BERPIKIR, DAN PERUMUSA	N
HIPOTESIS	
A. Kajian Pustaka	7
1. Persepsi Diri	7
2. Kemampuan Berpikir Kritis	. 10
3 Hasil Belaiar Kognitif	17

4. Materi Sistem Reproduksi Manusia	19
B. Kerangka Berpikir	25
C. Perumusan Hipotesis	27
BAB III METODOLOGI PENELITIAN	
A. Tujuan Operasional Penelitian	28
B. Tempat dan Waktu Penelitian	28
C. Metode Penelitian	28
D. Desain Penelitian	28
E. Populasi dan Sampel Penelitian	29
F. Teknik Pengumpulan Data	30
G. Instrumen Penelitian	30
H. Validitas dan Reliabilitas Instrumen Penelitian	35
I. Prosedur Penelitian	36
J. Hipotesis Statistik	36
K. Teknik Analisis Data	37
BAB IV HASIL PENELITIAN DAN PEMBAHASAN	
A. Hasil Penelitian	39
B. Pembahasan	46
BAB V KESIMPULAN, IMPLIKASI, DAN SARAN	
A. Kesimpulan	54
B. Implikasi	54
C. Saran	54
DAFTAR PUSTAKA	56

LAMPIRAN-LAMPIRAN	60
SURAT IZIN PENELITIAN	
SURAT KETERANGAN PENELITIAN	
SURAT PERNYATAAN KEASLIAN SKRIPSI	
DAFTAR RIWAYAT HIDUP	

DAFTAR GAMBAR

No	mor Halan	nan
1.	Anatomi Sistem Reproduksi Pria	60
2.	Tahapan Spermatogenesis	62
3.	Anatomi Sistem Reproduksi Wanita	63
4.	Proses Oogenesis pada Wanita	65
5.	Siklus Menstruasi	66
6.	Skema Desain Penelitian	28
7.	Persentase Kategori Nilai Persepsi Diri terhadap Kemampuan Berpikir Kritis	40
8.	Persentase Nilai Persepsi Diri terhadap Kemampuan Berpikir Kritis per Indikator	41
9.	Distribusi Frekuensi Nilai Persepsi Diri terhadap Kemampuan Berpikir Kritis	42
10.	Persentase Kategori Nilai Hasil Belajar Kognitif	43
11.	Distribusi Frekuensi Nilai Hasil Belajar Kognitif	44
12.	Model Regresi Linier antara Persepsi Diri terhadap Kemampuan Berpikir Kritis dengan Hasil Belajar Kognitif	45
13.	Penyebaran Instrumen Penelitian pada Kelas Uji Coba (XI MIA 1)	103
14.	Peserta Didik Kelas Uji Coba (XI MIA 1) sedang Mengerjakan Instrumen Penelitian	103
15.	Peserta Didik Kelas Penelitian (XI MIA 3) sedang mengerjakan Instrumen Penelitian	103
16.	Peserta Didik Kelas Penelitian (XI MIA 4) sedang mengerjakan Instrumen Penelitian	103

17. Peserta Didik Kelas Penelitian (XI MIA 2) sedang mengerjakan	
Instrumen Penelitian	103

DAFTAR TABEL

No	mor Halar	nan
1.	Kisi-Kisi Instrumen Persepsi Diri terhadap Kemampuan Berpikir Kritis	32
2.	Kategori Nilai Kriteria Persepsi Diri terhadap Kemampuan Berpikir Kritis	33
3.	Kisi-Kisi Instrumen Tes Hasil Belajar Kognitif Peserta Didik pada Materi Sistem Reproduksi Manusia	34
4.	Kategori Hasil Belajar Kognitif Peserta Didik	34
5.	Interpretasi Koefisien Korelasi r	38
6.	Alokasi Proporsional Sampel	69
7.	Kuesioner Persepsi Diri terhadap Kemampuan Berpikir Kritis	71
8.	Pengujian Validitas Instrumen Persepsi Diri terhadap Kemampuan Berpikir Kritis	96
9.	Pengujian Validitas Instrumen Hasil Belajar Kognitif	98
10.	. Pengujian Reliabilitas Instrumen Persepsi Diri terhadap Kemampuan Berpikir Kritis	100
11.	. Pengujian Reliabilitas Instrumen Hasil Belajar Kognitif	102
12.	. Nilai Mentah dan Nilai Kriteria Persepsi Diri terhadap Kemampuan Berpikir Kritis	104
13.	. Kategori Nilai Kriteria Persepsi Diri terhadap Kemampuan Berpikir Kritis	105
14.	. Nilai Mentah dan Nilai Hasil Belajar Kognitif	106
15.	. Kategori Nilai Hasil Belajar Kognitif Peserta Didik	107

16.	Kemampuan Berpikir Kritis dengan Kategori Nilai Hasil Belajar Kognitif	108
17.	Persentase Skor Indikator Instrumen Persepsi Diri terhadap Kemampuan Berpikir Kritis	109
18.	Nilai Persepsi Diri terhadap Kemampuan Berpikir Kritis 1	10
19.	Distribusi Frekuensi Nilai Persepsi Diri terhadap Kemampuan Berpikir Kritis	112
20.	Nilai Hasil Belajar Kognitif	113
21.	Distribusi Frekuensi Nilai Hasil Belajar Kognitif	115

DAFTAR LAMPIRAN

No	mor Halai	man
1.	Materi Sistem Reproduksi Manusia	60
2.	Perhitungan Jumlah Sampel dan Alokasi Proporsional Sampel	69
3.	Instrumen Persepsi Diri terhadap Kemampuan Berpikir Kritis Peserta Didik	70
4.	Instrumen Hasil Belajar Kognitif Materi Sistem Reproduksi Manusia	78
5.	Kunci Jawaban Instrumen Hasil Belajar Kognitif Materi Sistem Reproduksi Manusia	94
6.	Pengujian Validitas Instrumen Penelitian	95
7.	Pengujian Reliabilitas Instrumen Penelitian	99
8.	Foto Kegiatan Penelitian di SMA Negeri 45 Jakarta	103
9.	Perhitungan Kategori Nilai Per Variabel	104
10.	Perbandingan Kategori Nilai Kriteria Persepsi Diri terhadap Kemampuan Berpikir Kritis dengan Kategori Nilai Hasil Belajar Kognitif	108
11.	Persentase Skor Indikator Instrumen Persepsi Diri terhadap Kemampuan Berpikir Kritis	109
12.	Perhitungan Distribusi Frekuensi Skor Per Variabel	110
13.	Uji Prasyarat Pengujian Hipotesis	116
14.	Pengujian Hipotesis Penelitian	117

BABI

PENDAHULUAN

A. Latar Belakang

Abad 21 ini, perkembangan teknologi yang pesat menjadi ciri khas, sehingga sains dan teknologi menjadi salah satu landasan yang penting dalam pembangunan bangsa dan negara. Kemampuan yang diperlukan pada abad 21 terbagi menjadi 4C, yaitu Critical Thinking (Berpikir Kritis), Communication (Komunikasi), Collaboration (Kolaborasi), dan Creativity (Kreativitas) (Boonjeam, Tesaputa dan Sri-ampai, 2017). Perkembangan kemampuan yang diperlukan tersebut, dapat dilihat pada kegiatan pembelajaran di kelas. Pembelajaran sebagai proses belajar yang dibangun oleh guru untuk mengembangkan kreatifitas berpikir yang dapat meningkatkan kemampuan berpikir peserta didik. serta dapat meningkatkan kemampuan mengkonstruksi pengetahuan baru sebagai upaya meningkatkan penguasaan yang baik terhadap materi pelajaran (Dimyati dan Mudjiono, 2006).

Biologi sebagai salah satu materi pelajaran yang paling dekat dengan kehidupan makhluk hidup terutama dalam masalah kehidupan sehari-hari manusia. Materi Biologi di SMA yang menjelaskan struktur dan fungsi sistem organ pada manusia yang kemudian dikaitkan dengan kehidupan sehari-hari. Salah satu materi kompleksnya ialah Sistem Reproduksi Manusia yang penting dipelajari oleh peserta didik yang

sedang berada dalam masa perkembangan seksual. Pada hakikatnya pembelajaran Biologi berkaitan dengan cara mencari tahu dan memahami tentang alam secara sistematis sehingga pembelajaran Biologi bukan hanya penguasaan kumpulan pengetahuan yang berupa fakta-fakta, konsep-konsep, tetapi juga sebagai suatu proses penemuan, sehingga peserta didik dituntut untuk dapat berpikir kritis, dimana peserta didik ditantang untuk menggunakan pemahaman mereka tentang konsep-konsep baru untuk memecahkan masalah dalam pertanyaan (Tate, 2012).

Peserta didik pada proses pembelajaran di kelas akan mengalami interaksi dengan guru yang dapat menimbulkan persepsi. Persepsi ialah pengalaman mengenai objek, peristiwa atau hubungan-hubungan yang dapat diperoleh melalui penyimpulan informasi dan penafsiran pesan (Rakhmat, 2002). Persepsi diri terhadap kemampuan berpikir kritis diharapkan dapat meningkatkan kualitas belajar peserta didik baik proses maupun hasilnya. Berpikir kritis ialah proses disiplin yang secara intelektual aktif terampil mengkonseptualisasi, dan menerapkan, menganalisis, mensintesis, dan atau mengevaluasi informasi yang dikumpulkan dari atau dihasilkan oleh, pengamatan, pengalaman, refleksi, penalaran, atau komunikasi, sebagai panduan untuk kepercayaan dan tindakan (Tawil dan Liliasari, 2013). Berpikir kritis ialah menggunakan kemampuan atau strategi kognisi yang mampu meningkatkan peluang hal yang ingin didapatkan. Proses ini juga meliputi beberapa hal seperti: memecahkan masalah, merumuskan faktor-faktor yang berpengaruh,

mengkalkulasi berbagai macam kemungkinan, dan membuat keputusan (Wicaksono, 2014). Oleh karena itu, persepsi diri terhadap kemampuan berpikir kritis tentu akan mempengaruhi hasil belajar peserta didik.

Hasil belajar peserta didik dapat dikatakan baik jika diperoleh dari penggunaan materi yang baik pula. Hasil belajar ialah kemampuan-kemampuan yang dimiliki peserta didik setelah ia menerima pengalaman belajarnya. Gagne (2006) membagi lima kategori hasil belajar yakni (a) informasi verbal, (b) keterampilan intelektual, (c) strategi kognitif, (d) sikap, dan (e) keterampilan motoris. Akan tetapi, hasil belajar yang menjadi tolak ukur keberhasilan dalam proses pembelajaran peserta didik ialah hanya ranah kognitif (Sudjana, 2004).

Peserta didik sebagai pemimpin atau ilmuwan di masa depan perlu dipersiapkan dengan membiasakan mereka melakukan kebiasaan berpikir kritis. Tujuan berpikir kritis diajarkan kepada peserta didik antara lain agar peserta didik dapat belajar memecahkan masalah secara sistematis, inovatif, dan mampu mendesain alternatif solusi yang mendasar. Penting bagi peserta didik untuk menjadi seorang pemikir yang kritis sejalan dengan semakin kompleksnya persoalan di masa depan. Masalahmasalah akan menjadi sangat banyak dan sangat rumit. Oleh sebab itu, pembelajaran semestinya memberikan kesempatan kepada peserta didik untuk berpikir kritis agar mereka tumbuh dan berkembang serta mampu menghadapi berbagai tantangan (Hasruddin, 2009). Menurut Sanjaya (2007) menyatakan bahwa paradigma baru dalam dunia pendidikan

dewasa ini ialah menciptakan proses pembelajaran yang melibatkan peserta didik secara aktif dalam pembelajaran (*student oriented*) dan mampu menumbuhkembangkan kemampuan berpikir kritis, sehingga peserta didik dapat memecahkan masalah yang muncul serta dapat membentuk sikap peserta didik dalam kehidupan sehari-hari agar peserta didik akhirnya menyadari keindahan, keteraturan alam, dan meningkatkan keyakinan terhadap Tuhan Yang Maha Esa.

B. Identifikasi Masalah

Berdasarkan latar belakang masalah, maka dapat diidentifikasi masalah sebagai berikut:

- Bagaimana persepsi diri peserta didik SMA terhadap kemampuan berpikir kritis pada materi sistem reproduksi manusia?
- 2. Apakah terdapat hubungan antara persepsi diri terhadap kemampuan berpikir kritis dengan hasil belajar kognitif materi sistem reproduksi manusia pada peserta didik SMA?
- 3. Bagaimana hubungan antara persepsi diri terhadap kemampuan berpikir kritis dengan hasil belajar kognitif materi sistem repoduksi manusia pada peserta didik SMA?

C. Pembatasan Masalah

Berdasarkan identifikasi masalah maka penelitian ini dibatasi dalam hubungan antara persepsi diri terhadap kemampuan berpikir kritis dengan hasil belajar kognitif materi sistem repoduksi manusia pada peserta didik SMA.

D. Perumusan Masalah

Berdasarkan latar belakang, identifikasi masalah dan pembatasan masalah, maka dapat dirumuskan permasalahan sebagai berikut: "Apakah terdapat hubungan antara persepsi diri terhadap kemampuan berpikir kritis dengan hasil belajar kognitif materi sistem repoduksi manusia pada peserta didik SMA?"

E. Tujuan Penelitian

Tujuan dari penelitian ini ialah untuk mengetahui hubungan antara persepsi diri terhadap kemampuan berpikir kritis dengan hasil belajar kognitif materi sistem repoduksi manusia pada peserta didik SMA.

F. Manfaat Penelitian

Adapun manfaat dari penelitian ini ialah:

- 1. Memberikan wawasan dan ilmu pengetahuan bagi peneliti, mengenai adanya kekuatan hubungan antara persepsi diri terhadap kemampuan berpikir kritis dengan hasil belajar kognitif materi sistem repoduksi manusia pada peserta didik SMA, sehingga diharapkan mampu menjadi referensi di bidang Pendidikan Biologi.
- Memberikan informasi bagi sekolah, mengenai pentingnya peranan persepsi diri terhadap kemampuan berpikir kritis terhadap hasil belajar kognitif materi sistem repoduksi manusia pada peserta didik SMA.
- 3. Memberikan informasi kepada guru Biologi, mengenai pentingnya peranan persepsi diri terhadap kemampuan berpikir kritis yang berhubungan dengan hasil belajar kognitif materi sistem repoduksi

pada peserta didik SMA, serta diharapkan guru dapat meningkatkan mutunya untuk ikut berperan dalam meningkatkan kemampuan berpikir kritis dan hasil belajar kognitif peserta didik.

BABII

KAJIAN PUSTAKA, KERANGKA BERPIKIR, DAN PERUMUSAN HIPOTESIS

A. KAJIAN PUSTAKA

1. Persepsi Diri

a. Definisi Persepsi

Dalam proses pembelajaran guru sebagai seorang pemimpin harus mampu menjalankan tugasnya dalam mengelola kelas secara keseluruhan, salah satunya adalah aktivitas komunikasi secara langsung ataupun tidak langsung dengan peserta didik sehingga akan muncul reaksi yang disebut persepsi. Persepsi dapat muncul dari rasa ingin tahu yang kemudian akan mendorong seseorang memfungsikan panca inderanya untuk menafsirkan sesuatu. Sesuai dengan pendapat Rudolph dikutip dalam Mulyana (2005) bahwa persepsi ialah proses dari menafsirkan inderawi.

Persepsi ialah proses seseorang dapat menerima, mengorganisasi, serta menginterprestasi informasi yang ada di sekitar lingkungannya (Schemerthon, 2005). Robbins (2009) menyatakan bahwa persepsi ialah rangkaian pada individu-individu yang mengorganisasi dan menafsirkan kesan-kesan dari penginderaan mereka untuk memberi makna bagi lingkungannya. Sedangkan menurut Gibson (2001) berpendapat bahwa

kognisi (pengetahuan), persepsi mencakup penerimaan, pengorganisasian, dan penerjemahan stimulus yang dapat mempengaruhi perilaku atau sikap seseorang. Rakhmat (2002) berpendapat bahwa persepsi ialah pengalaman mengenai objek, peristiwa atau hubunganhubungan yang dapat diperoleh melalui penyimpulan informasi dan penafsiran pesan. Berdasarkan beberapa pendapat yang telah disebutkan, maka dapat disimpulkan bahwa persepsi diri ialah pendapat atau pandangan seseorang mengenai sesuatu yang diterima oleh panca indera berupa objek, peristiwa, dan aktivitas yang dilakukan.

b. Proses Terjadinya Persepsi

Sobur (2003) mengelompokkan persepsi menjadi 3 komponen, yaitu:

1) Seleksi (selection)

Seleksi ialah proses penyaringan yang dilakukan oleh indera terhadap rangsangan dari luar. Ketika proses seleksi terjadi pemusatan persepsi yang melibatkan kognitif yang dapat merefleksikan minat, tujuan, dan harapan seseorang pada saat itu. Pemusatan persepsi ini disebut juga perhatian yang berfungsi untuk mengarahkan rangsangan sehingga sampai kepada seseorang dan kemudian diolah menjadi sebuah informasi. Jika dikaitkan dengan proses pembelajaran, peserta didik secara sadar maupun tidak sadar akan memilih stimulus yang diberikan oleh lingkungan sesuai dengan tujuan peserta didik dalam proses pembelajaran.

2) Interpretasi (interpretation)

Interpretasi ialah proses mengorganisasikan suatu informasi sehingga mempunyai arti bagi seseorang. Interpretasi dapat dipengaruhi oleh beberapa faktor, seperti sistem nilai yang dianut, pengalaman di masa lalu, kecerdasan, dan juga kepribadian seseorang. Pada proses pembelajaran, peserta didik akan dihadapkan pada berbagai hal yang berkaitan dengan pengalaman-pengalaman dan motivasi belajarnya.

3) Reaksi (reaction)

Reaksi ialah hasil dari interpretasi yang kemudian diterjemahkan dalam bentuk pola perilaku atau tindakan. Seseorang cenderung melakukan sesuatu sehubungan dengan persepsinya. Peserta didik yang telah menginterprestasikan berbagai hal yang berkaitan dengan proses pembelajaran dengan baik akan mempengaruhi aktivitas.

c. Faktor yang Mempengaruhi Persepsi

Menurut Walgito (2010) terdapat 3 faktor yang berperan dalam persepsi, yaitu:

1) Objek yang dipersepsikan

Suatu objek yang dipersepsikan akan menimbulkan stimulus yang mengenai alat indera atau reseptor. Stimulus dapat berasal dari dalam diri individu maupun dari luar diri individu,

2) Alat indera atau reseptor

Alat indera atau reseptor adalah alat untuk menerima stimulus.

Disamping itu pula harus ada syaraf sensori sebagai alat untuk

meneruskan stimulus yang diterima reseptor ke pusat susunan syaraf yaitu sebagai pusat kesadaran.

3) Perhatian

Perhatian diperlukan untuk menyadari adanya persepsi. Perhatian merupakan pemusatan atau konsentrasi dari seluruh aktivitas seseorang yang ditujukan kepada sesuatu atau sekumpulan objek. Dapat dikatakan pula bahwa perhatian adalah proses mental ketika stimuli menjadi menonjol dalam kesadaran pada saat stimuli lain melemah (Krech dan Crutchfield dalam Rakhmat, 2008).

2. Kemampuan Berpikir Kritis

a. Definisi Kemampuan Berpikir Kritis

Dewey dalam Fisher (2009) berpikir ialah usaha dari seseorang untuk memeriksa dan menilai informasi-informasi berdasarkan kriteria tertentu. Berpikir kritis ialah pertimbangan yang aktif, terus menerus dan teliti mengenai sebuah keyakinan atau bentuk pengetahuan yang diterima begitu saja dengan menyertakan alasan-alasan yang mendukung dan kesimpulan-kesimpulan yang rasional. Penjelasan tersebut menekankan berpikir kritis kaitannya dalam mengambil suatu kesimpulan atau keputusan lanjutan ialah sebuah proses aktif dan sebagai proses yang terus-menerus dan teliti. Proses aktif disini ialah memikirkan berbagai hal secara mendalam, mengajukan berbagai pertanyaan, dan menemukan informasi yang relevan, ketimbang menerima berbagai hal dari orang lain dengan pasif. Proses yang terus-menerus dan teliti ialah proses tidak

terburu-buru dalam membuat suatu kesimpulan artinya berpikir sejenak untuk menemukan alasan-alasan yang mendukung suatu keyakinannya terhadap sesuatu dan implikasi dari keyakinannya.

Paul dan Elder (2010) berpendapat bahwa berpikir kritis ialah sebuah proses disiplin secara intelektual mengandung konsep, menerapkan, menganalisis, mensintesis, dan atau mengevaluasi informasi secara aktif dan terampil yang telah dikumpulkan atau dihasilkan dari observasi, pengalaman, refleksi, penalaran, atau komunikasi, sebagai panduan untuk meyakinkan kepercayaan dan tindakan. Berdasarkan pengertian tersebut, maka dapat ditegaskan bahwa berpikir kritis tersebut menyangkut 2 hal yakni:

- Seperangkat keterampilan yang harus dimiliki untuk memproses dan memahami informasi serta keyakinan-keyakinan. Hal ini berarti, tidak mudah mempercayai informasi-informasi yang datang dari berbagai sumber.
- Kebiasaan yang didasarkan pada komitmen intelektual untuk selalu mendasarkan setiap pengambilan keputusan dan tindakan pada proses kritis tersebut.

Lebih lanjut, Ennis (2011) berpendapat bahwa berpikir kritis ialah suatu berpikir dengan tujuan membuat keputusan masuk akal tentang apa yang diyakini atau dilakukan. Berpikir kritis ialah kemampuan menggunakan logika. Logika ialah cara berpikir untuk mendapatkan

pengetahuan yang disertai pengkajian kebenaran berdasarkan pola penalaran tertentu.

Berdasarkan beberapa pendapat yang telah disebutkan, maka dapat disimpulkan bahwa berpikir kritis ialah suatu kemampuan untuk mengidentifikasi tentang keyakinan atau pengetahuan berdasarkan fakta dan data secara sistematis. Berpikir kritis ada kaitannya dengan kemampuan dalam memahami, mengaplikasikan, menganalisis, serta mengevaluasi berbagai informasi yang diperoleh dari berbagai sumber. Selain itu, berpikir kritis juga dapat menunjukkan alasan-alasan yang rasional yang diperoleh dari keyakinan atau pengetahuan yang didapat serta informasi atau pandangan dari sumber lain seperti media massa dan sebagainya. Hal ini dikarenakan berpikir kritis ialah pemikiran rasional yang tercermin dalam tindakan untuk memecahkan masalah dengan mempertimbangkan memahami penjelasan sederhana, sumber, menyimpulkan serta mengatur strategi dan teknik penyelesaian.

b. Proses Terjadinya Kemampuan Berpikir Kritis

Adapun kemampuan dasar berpikir kritis terdiri atas: 1) Kemampuan untuk menentukan dan mengambil posisi yang tepat dalam mendiskusikan sebuah isu; 2) Pemikiran yang kita berikan harus relevan dengan topik yang sedang dibicarakan; 3) Argumen yang kita sampaikan harus rasional; 4) Dengan alasan-alasan yang jelas, harus memutuskan untuk menerima atau menolak sebuah keputusan; dan 5) Keputusan tersebut harus datang dari dalam diri sendiri (Sihotang, Rima, Molan, dan Ujan,

2012). Hal tersebut menunjukkan bahwa seseorang dapat dikatakan berpikir kritis jika sudah memiliki 5 kemampuan dasar tersebut dalam pengambilan keputusan maupun penyampaian pendapat pada sebuah isu.

Watson dan Glaser (2012) menyatakan bahwa seseorang dapat dikatakan memiliki kemampuan berpikir kritis, jika kerja nalar dan kemampuan argumentasinya melibatkan tiga hal, yakni (1) Sikap menanggapi berbagai persoalan, menimbang berbagai persoalan yang dihadapi dalam pengalaman dan kemampuan memikirkannya secara mendalam. Sikap dan kemampuan ini bertujuan untuk membebaskan seseorang dari kebiasaan menerima berbagai informasi atau kesimpulan tanpa mempertanyakannya, (2) Pengetahuan akan metode berpikir atau bernalar dan inkuiri logis, dan (3) Keterampilan atau kecakapan menerapkan metode-metode tersebut. Berdasarkan pendapat tersebut dapat disimpulkan bahwa:

- 1) Kemampuan berpikir kritis menuntut adanya usaha untuk selalu menguji keyakinan atau pengetahuan apa pun dengan cara mempertanyakan sejauh mana keyakinan atau pengetahuan itu di dukung oleh data (evidence). Ini penting untuk menguji kesahihan kesimpulan dari keyakinan atau pengetahuan tersebut.
- Berpikir juga menuntut adanya kemampuan untuk mengenali, mengidentifikasi, dan memahami persoalan serta menemukan solusi atasnya. Kemampuan ini dituntut supaya seseorang dapat

mengumpulkan informasi yang dibutuhkan atau data-data yang dituntut demi memecahkan masalah tersebut.

3) Kemampuan mengidentifikasi atau menemukan hubungan antar berbagai proposisi, menarik kesimpulan-kesimpulan atau generalisasigeneralisasi, menguji kembali kesimpulan yang telah diambil, serta mempertanyakan kembali keyakinan dan pengetahuan yang selama ini diterima begitu saja.

Lebih lanjut, Ennis (2011) juga menyatakan kemampuan berpikir kritis terdiri atas beberapa indikator, seperti:

- Memberikan penjelasan sederhana, yang meliputi: (a) memfokuskan pertanyaan; (b) menganalisis pertanyaan; dan (c) bertanya dan menjawab tentang suatu penjelasan atau tantangan.
- Membangun keterampilan dasar, yang meliputi: (a) mempertimbangkan apakah sumber dapat dipercaya; dan (b) mengamati dan mempertimbangkan suatu laporan hasil observasi.
- 3) Menyimpulkan, yang meliputi: (a) mendeduksi dan mempertimbangkan hasil deduksi; (b) menginduksi dan mempertimbangkan hasil induksi; dan (c) membuat dan menentukan nilai pertimbangan.
- 4) Memberikan penjelasan lanjut, yang meliputi: (a) mendefinisikan istilah dan pertimbangan definisi dalam tiga dimensi; dan (b) mengidentifikasi asumsi.
- 5) Mengatur strategi dan taktik, yang meliputi: (a) menentukan tindakan; dan (b) berinteraksi dengan orang lain.

c. Faktor yang Mempengaruhi Kemampuan Berpikir Kritis

Kemampuan berpikir kritis dapat dipengaruhi oleh faktor-faktor yang mempengaruhi jalannya berpikir, yaitu bagaimana seseorang melihat atau memahami masalah tersebut, situasi yang tengah dialami seseorang dan situasi luar yang dihadapi, pengalaman-pengalaman orang tersebut, serta bagaimana intelegensi orang itu (Sobur, 2009). Selain daripada itu, Hassoubah (2008) mengatakan bahwa latar belakang kepribadian dan kebudayaan seseorang dapat mempengaruhi usaha seseorang untuk berpikir secara kritis terhadap suatu masalah dalam kehidupan. Kemudian berpikir kritis juga dipengaruhi oleh kondisi emosi. Hal tersebut dikarenakan berpikir kritis dapat melihat manfaat cara berpikir yang lain, dan ini dapat mempengaruhi stabilitas emosi. Dari segi negatif, hal ini dapat menyebabkan kecemasan dan kebimbangan, takut, ketidakpastian dan terancam, tetapi segi positifnya dapat menciptakan suasana kebebasan, kemudahan, dan kegembiraan. Berdasarkan uraian di atas, maka dapat disimpulkan bahwa faktor yang mempengaruhi berpikir secara kritis ialah kepribadian dan kebudayaan yang juga dipengaruhi oleh kondisi emosi.

d. Langkah-langkah Pengembangan Kemampuan Berpikir Kritis

Adapun langkah-langkah dalam mengembangkan berpikir kritis yang perlu dilakukan ialah sebagai berikut: 1) Mengenali masalah; 2) Menemukan cara-cara yang dapat dipakai untuk menangani masalah; 3) Mengumpulkan dan menyusun informasi yang diperlukan untuk

penyelesaian masalah; 4) Mengenal asumsi-asumsi dan nilai-nilai yang tidak dinyatakan oleh orang lain; 5) Menggunakan bahasa yang tepat, jelas, dan khas dalam membicarakan suatu persoalan atau suatu hal yang diterimanya; 6) Mengevaluasi data dan menilai fakta serta pernyataan-pernyataan; 7) Mencermati adanya hubungan logis antara masalah-masalah dengan jawaban-jawaban yang diberikan; dan 8) Menarik kesimpulan-kesimpulan atau pendapat tentang isu atau persoalan yang sedang dibicarakan (Sihotang dkk, 2012).

Oleh karena itu, pengembangan kemampuan berpikir kritis yang optimal mensyaratkan adanya kelas yang interaktif. Agar pembelajaran dapat interaktif, maka desain pembelajarannya harus menarik sehingga peserta didik dapat terlibat aktif dalam proses pembelajaran. Dalam pembelajaran yang mengembangkan keterampilan berpikir kritis lebih melibatkan peserta didik sebagai pemikir, bukan seorang yang diajar. Adapun pengajar berperan sebagai mediator, fasilitator, dan motivator yang membantu peserta didik dalam belajar dan bukan mengajar. Upaya yang dapat dilakukan guru dalam mengembangkan kemampuan berpikir kritis dapat dikembangkan melalui pembelajaran yang bersifat *student-centered*, yaitu pembelajaran yang berpusat pada peserta didik. Dalam pembelajaran yang berpusat pada peserta didik ini, guru memberikan kebebasan berpikir dan keleluasaan bertindak kepada peserta didik dalam memahami pengetahuan serta dalam menyelesaikan masalahnya (Harsono, 2006). Dalam hal ini, peserta didik diberi kesempatan untuk

mengkontruksi pengetahuan oleh dirinya sendiri, tidak hanya menunggu transfer dari guru (*teacher-centered*).

3. Hasil Belajar Kognitif

Belajar ialah serangkaian kegiatan diri untuk memperoleh suatu perubahan tingkah laku sebagai hasil dari pengalaman individu dalam interaksi dengan lingkungannya yang menyangkut kognitif, afektif, dan psikomotorik (Djamarah, 2011). Hasil belajar diartikan sebagai tingkat keberhasilan peserta didik dalam mempelajari materi pelajaran di sekolah yang dinyatakan dalam skor yang diperoleh dari hasil tes mengenai sejumlah materi pelajaran tertentu (Susanto, 2013). Jadi, hasil belajar ialah perubahan-perubahan yang terjadi pada diri peserta didik dinyatakan dalam skor baik yang menyangkut aspek kognitif, afektif, dan psikomotor sebagai hasil dari kegiatan belajar.

Hasil belajar yang dicapai oleh peserta didik ialah hasil interaksi antara berbagai faktor yang mempengaruhi, baik faktor internal maupun faktor eksternal. Faktor internal ialah faktor yang bersumber dari dalam diri peserta didik berupa kecerdasan, minat dan perhatian, motivasi belajar, ketekunan, sikap, kebiasaan belajar, serta kondisi fisik, dan kesehatan. Faktor eksternal ialah faktor yang berasal dari luar diri peserta didik yang mempengaruhi hasil belajar yaitu keluarga, sekolah dan masyarakat. Kedua faktor ini seharusnya saling mempengaruhi, sehingga hasil belajar peserta didik tercapai dengan baik (Susanto, 2013).

Sekolah menjadi salah satu faktor eksternal yang ikut menentukan hasil belajar peserta didik, semakin tinggi kemampuan belajar peserta didik dan kualitas pengajaran di sekolah, maka semakin tinggi pula hasil belajar peserta didik (Susanto, 2013). Ranah kognitif menjadi tolak ukur keberhasilan dalam proses pembelajaran peserta didik (Sudjana, 2004). Setiap peserta didik pasti memiliki kecerdasan, tingkat kognitif, dan kepribadian yang berbeda satu sama lain. Perbedaan tersebut memainkan peran penting dalam pembelajaran dan pengajaran seperti halnya konteks pembelajaran (Tella, 2007). Oleh karena itu, pencapaian hasil belajar kognitif tiap individu berbeda pula.

Pemahaman konsep (aspek kognitif) ialah pemahaman yang berorientasi pada bagaimana kemampuan berpikir. Bloom membagi enam tingkatan hasil belajar kognitif yang meliputi: 1) hafalan (C1), 2) pemahaman (C2), 3) penerapan (C3), 4) analisis (C4), 5) sintesis (C5), dan 6) evalusi (C6) (Purwanto, 2014). Tingkatan-tingkatan dalam taksonomi Bloom tersebut telah digunakan hampir setengah abad sebagai dasar untuk penyusunan tujuan-tujuan pendidikan, penyusunan tes dan kurikulum (Anderson dan Krathwohl, 2001).

Revisi dilakukan terhadap Taksonomi Bloom, yakni perubahan dari kata benda (dalam Taksonomi Bloom) menjadi kata kerja (dalam taksonomi revisi). Perubahan ini dibuat agar sesuai dengan tujuan-tujuan pendidikan yang mengindikasikan bahwa peserta didik akan dapat melakukan sesuatu (kata kerja) dengan sesuatu (kata benda) (Anderson

dan Krathwohl, 2001). Revisi dilakukan oleh Anderson dan Kratwohl (2001), taksonomi menjadi: 1) mengingat (C1); 2) memahami (C2); 3) mengaplikasikan (C4); 4) menganalisis (C4); 5) mengevaluasi (C5); dan 6) mencipta (C6).

Berdasarkan hal tersebut, dapat disimpulkan bahwa hasil belajar kognitif peserta didik ialah perubahan pada peserta didik yang dinyatakan dalam skor terhadap pemahaman konsep yang dialami setelah mendapatkan pengalaman belajarnya.

4. Materi Sistem Reproduksi Manusia

Sistem Reproduksi Manusia ialah salah satu materi pada mata pelajaran Biologi kelas XI semester genap. Reproduksi ialah karakteristik penting organisme hidup, dan sistem reproduksi pria dan wanita yang fungsional diperlukan manusia untuk bereproduksi (Tate, 2012).

a. Struktur Reproduksi Manusia

Sloane (2004) menjelaskan bahwa:

- 1) Organ rreproduksi pria terdiri atas bagian luar dan bagian dalam.

 Bagian luar ialah penis dan kantong Zakar (skrotum). Sedangkan bagian dalam ialah testis, epididimis, kelenjar prostate, vas deferens dan saluran urin (uretra). Lihat pada Gambar 1 (Lampiran 1);
- Organ reproduksi wanita terdiri atas bagian luar dan bagian dalam, bagian luar ialah *labia mayora*, *labia minora*, *klitoris* dan *uretra*.
 Sedangkan bagian dalam ialah vagina, kelenjar *Bartholini*, mulut rahim

(servix), rahim (uterus), saluran telur (tuba falopii) dan indung telur (ovarium). Lihat pada Gambar 3 (Lampiran 1);

Pada pria, testis yang terletak dalam skrotum memproduksi hormon androgen yaitu: hormon testosterone, FSH, dan LH. Hormon-hormon tersebut menyebabkan tumbuhnya ciri-ciri kelamin sekunder seperti kumis, jenggot, rambut halus pada sekitar kemaluan dan ketiak, jakun, otot yang kuat, nada suara akan semakin rendah, dan sebagainya. Testosteron juga menyebabkan timbulnya libido dan mempengaruhi pembentukan spermatozoa. Pada wanita ovarium memproduksi hormon estrogen dan progesteron. Progesteron berfungsi mematangkan sel telur (ovum) sehingga siap dibuahi. Estrogen berfungsi mempengaruhi pertumbuhan sifat-sifat kewanitaan seperti payudara membesar, pinggul membesar, suara halus, serta mengatur siklus menstruasi. Spermatozoa jika bertemu dengan sel telur (ovum) dalam rahim wanita maka akan terjadi pembuahan (fertilisasi) dan kehamilan (gestasi) (Sherwood, 2011). Penjelasan lebih rinci bisa dilihat pada Lampiran 1.

b. Gangguan atau Penyakit pada Sistem Reproduksi Manusia

1) Dismenore

Dismenore ialah gangguan aliran darah haid atau nyeri haid (Ehrenthal, 2006). Gejala yang dirasakan ialah nyeri pada perut bagian bawah yang dapat menyebar ke bagian tubuh lain seperti punggung bagian bawah, paha, dan tungkai. Dismenore juga sering disertai dengan gejala sakit kepala, mual, sembelit, serta sering buang air kecil, dan muntah. Nyeri

timbul tidak lama sebelum atau bersama-sama dengan permulaan haid.

Nyeri haid berlangsung untuk beberapa jam, walaupun beberapa kasus dapat berlangsung untuk beberapa hari (Wiknjosastro dan Abdul, 2005).

Dismenore dibagi menjadi 2 macam, yaitu dismenore primer dan dismenore sekunder (Smeltzer dan Bare 2002):

(a) Dismenore primer

Dismenore primer ditandai oleh nyeri kram yang dimulai sebelum saat permulaan haid dan berlanjut selama 48 jam hingga 72 jam. Dismenore primer disebabkan karena faktor endokrin yakni dari pembentukan prostaglandin. Prostaglandin yang berlebihan menyebabkan uterus untuk berkontraksi secara berlebihan dan mengakibatkan vasospasme arteriolar.

(b) Dismenore sekunder

Dismenore sekunder terjadi karena adanya masalah patologis anatomis pada organ genitalia dalam rongga pelvis. Masalah atau kelainan anatomis ini kemungkinan ialah haid disertai infeksi, endometriosis, mioma uteri, polip endometrial, stenosis serviks, penggunaan alat kontrasepsi yang dipasang dalam rahim, dan tumor atau polip pada rahim.

2) Hipermenorea atau menoragia

Menoragia ialah pendarahan haid yang lebih banyak dari normal, atau lebih lama dari normal (lebih dari 8 hari). Menoragia disebabkan oleh kondisi di dalam uterus, misalnya adanya mioma uteri, polip endometrium, gangguan pelepasan endometrium pada waktu haid (Winkjosastro dan Abdul, 2005).

3) Hipomenorea

Hipomenorea ialah pendarahan haid yang lebih pendek dan atau lebih kurang dari biasa. Hal ini disebabkan oleh gangguan endokrin dan sesudah miomektomi.

4) Hipogonadisme

Hipogonadisme ialah penurunan fungsi testis yang penyebabnya ialah gangguan interaksi hormon andogren dan testosteron. Hipogonadisme muncul jika didapatkan konsentrasi hormon testosteron yang rendah atau kerja hormon testosteron yang tidak kuat. Hipogonadisme dapat muncul sejak masa pertumbuhan di dalam kandungan, masa kanak-kanak sebelum pubertas hingga dewasa (Behram, 2000).

5) Kriptorkidisme

Kriptorkidisme ialah kegagalan dari satu atau kedua testis untuk turun dari rongga abdomen ke dalam skrotum pada waktu bayi. Penanganannya dapat dilakukan dengan pemberian hormon hCG (human chorionic gonadotropin) untuk merangsang testosteron (Wilson dan Hillegas, 2005).

6) Klamidia

Klamidia ialah penyakit yang disebabkan oleh infeksi bakteri *Chlamydia trachomatis*. Pada pria, penyakit ini ditandai dengan uretritis yang menyebabkan rasa nyeri dan seringnya buang air kecil. Jika tidak ditangani, maka dapat menyebabkan kemandulan (Tortora dan Derrickson, 2006).

7) Gonorrhea

Gonorrhea disebabkan oleh infeksi bakteri *Neisseria gonorrhoeae*. Bakteri ini dilepaskan dari infeksi membran mukus dan ditransmisikan selama kontak seksual atau melalui jalur pengeluaran bayi. Gejala pada pria berupa uretris yang ditandai dengan rasa nyeri pada saat buang air kecil disertai dengan keluarnya nanah. Sementara pada wanita terjadi pada vagina, ditandai dengan keluarnya nanah.

8) Herpes Genital

Herpes genital ialah penyakit yang ditimbulkan melalui kontak seksual yang tidak dapat disembuhkan, yang disebabkan oleh virus herpes. Herpes terdiri dari tipe I yang menyerang mulut dan bibir, serta tipe II yang menyerang organ kelamin luar pria dan wanita. Virus herpes akan tetap berada di tubuh, meski gejalanya menghilang.

9) Sifilis

Sifilis disebabkan oleh bakteri *Treponema pallidum* yang ditransmisikan melalui hubungan seksual. Gejalanya bertahap, dimulai dengan rasa nyeri pada tempat infeksi, demam, ruam pada kulit, dan keluhan sakit pada sendi dan otot, yang kemudian berakhir dengan degenerasi pada organorgan syaraf.

c. Kontrasepsi

Kontrasepsi ialah praktik pencegahan fertilitas, yaitu kemampuan untuk menghasilkan atau memproduksi anak. Setiap metode memiliki

perbedaan yang besar dalam keamanan dan keefektifannya (Sloane, 2004).

- 1) Kontrasepsi barier, yaitu menghalangi sperma menyatu dengan oosit sekunder baik dengan barier fisik maupun barier kimia. Barier fisik dilakukan dengan penggunaan kondom pada pria dan diafragma vagina pada wanita. Barier kimia dilakukan dengan menggunakan busa, jeli, krim atau spons vagina yang mengandung spermisida yang dapat menghancurkan sperma dalam vagina.
- 2) Sterilisasi bedah pada perempuan ialah ligasi tubal yaitu pemotongan, kauterisasi, atau pengikatan tuba Fallopi. Pada laki-laki, prosedurnya disebut vasektomi yaitu pemotongan, kauterisasi, atau pengikatan duktus yas deferen.
- 3) Pencegahan ovulasi dengan cara kontrasepsi oral, susuk KB dan suntik KB. Kontrasepsi oral (pil pengendali kelahiran), yaitu gabungan estrogen dan progesteron sintetis yang dikonsumsi perempuan selama 21 hari siklus menstruasi. Pil pengendali kelahiran menghalangi ovulasi. Susuk KB (alat kontrasepsi di bawah kulit atau implant), berisi levornorgestrel yang menghambat ovulasi, menipiskan endometrium, serta menghambat pergerakan sperma karena lendir serviks mengental dan berjumlah sedikit. Suntik KB, mengandung Depo Medroxyprogesterone Acetate (progestin) yang bekerja menghambat ovulasi dan mengentalkan lendir serviks.

4) Penghambatan implantasi dengan cara memblokade implantasi, contohnya *Intrauterine device* (IUD) dimasukkan ke dalam rongga uterus. Alat ini dipercaya mampu mengganggu implantasi ovum yang telah dibuahi dengan cara mengubah lingkungan uterus.

B. Kerangka Berpikir

Pendidikan menjadi salah satu aspek yang penting dalam mempelajari kehidupan. Proses belajar di sekolah baik langsung maupun tidak langsung akan menimbulkan persepsi pada peserta didik yang diharapkan akan memperoleh pengetahuan yang bermanfaat bagi kehidupan bermasayarakat di masa mendatang. Peserta didik dalam menerapkan ilmu pengetahuan yang mereka peroleh di sekolah ke masalah yang mereka temui dalam kehidupan sehari-hari membutuhkan kemampuan berpikir kritis agar dapat bersaing di era globalisasi.

Kemampuan berpikir kritis dalam pembelajaran di sekolah diperlukan untuk mempersiapkan peserta didik agar menjadi pemecah masalah yang tangguh, pembuat keputusan yang matang, dan orang yang tak pernah berhenti belajar. Persepsi diri terhadap kemampuan berpikir kritis tentu akan mempengerahui hasil belajar kognitif peserta didik. Peserta didik yang memiliki persepsi diri terhadap kemampuan berpikir kritis yang tinggi dalam memahami konsep suatu materi pelajaran, maka akan semakin tinggi pula hasil belajar kognitif peserta didik tersebut. Sebaliknya, peserta didik yang memiliki persepsi diri terhadap kemampuan berpikir kritis yang didik yang memiliki persepsi diri terhadap kemampuan berpikir kritis yang

rendah dalam memahami konsep suatu materi pelajaran, maka akan semakin rendah pula hasil belajar kognitif peserta didik tersebut.

Hasil belajar kognitif peserta didik diperoleh salah satunya dengan berpikir kritis dalam memahami konsep-konsep suatu materi pelajaran. Berpikir kritis terhadap pemahaman akan konsep dapat membantu peserta didik untuk mengidentifikasi, menganalisis, mensintesis dan mengevaluasi materi pelajaran yang dipelajari. Peserta didik dapat memecahkan suatu masalah, dan membuat suatu keputusan tindakan yang perlu dilakukan apabila telah berpikir kritis dalam memahami konsep.

Sistem reproduksi ialah salah satu materi kompleks yang diajarkan di sekolah dan berperan penting dalam kehidupan seseorang. Materi sistem reproduksi ini menjadi bahan pengetahuan peserta didik yang sedang berada dalam masa perkembangan seksual. Oleh karena itu, dibutuhkan kemampuan berpikir kritis untuk memahami konsep-konsep materi sistem reproduksi tersebut.

Peserta didik Sekolah Menengah Atas harus diberikan kesempatan untuk mengembangkan kemampuan berpikir dan bersikap kritis terhadap sistem reproduksi sendiri, sehingga dapat mengetahui dan memahami kondisi organ reproduksinya. Oleh karena itu, pembelajaran sistem reproduksi manusia di Sekolah Menengah Atas perlu dilakukan dengan kegiatan penyelidikan akan beberapa masalah pada pembelajaran sistem reproduksi manusia untuk mendapat pengalaman langsung melalui pengamatan, diskusi pengalaman, dan penyelidikan sederhana melalui

pemecahan soal pertanyaan. Pembelajaran yang demikian dapat menumbuhkan sikap ilmiah peserta didik yang diindikasikan dengan merumuskan masalah, dan menarik kesimpulan, sehingga mampu berpikir kritis melalui pembelajaran sistem reproduksi manusia. Peserta didik diharapkan dapat berpikir kritis dalam memahami secara menyeluruh akan prinsip sistem reproduksi manusia, sehingga dapat menerapkan pemahaman tersebut pada masalah yang muncul dalam kehidupan sehari-harinya.

Berdasarkan penjelasan tersebut, maka diduga bahwa terdapat hubungan positif antara persepsi diri terhadap kemampuan berpikir kritis dengan hasil belajar kognitif materi sistem reproduksi pada peserta didik SMA.

C. Hipotesis

Berdasarkan kajian pustaka dan kerangka berpikir yang sudah dijelaskan, maka dapat diajukan hipotesis "Terdapat hubungan positif antara persepsi diri terhadap kemampuan berpikir kritis dengan hasil belajar kognitif materi sistem reproduksi manusia pada peserta didik SMA."

BAB III

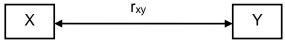
METODOLOGI PENELITIAN

A. Tujuan Operasional Penelitian

Tujuan operasional penelitian ini ialah:

- Mengukur persepsi diri terhadap kemampuan berpikir kritis dan hasil belajar kognitif peserta didik SMA.
- Menganalisis kekuatan hubungan antara persepsi diri terhadap kemampuan berpikir kritis dengan hasil belajar kognitif materi sistem reproduksi manusia pada peserta didik SMA.

B. Tempat dan Waktu Penelitian


Penelitian ini dilakukan di SMA Negeri 45 Jakarta Jalan Perintis Kemerdekaan, Kelapa Gading Timur, Kota Jakarta Utara, DKI Jakarta. Penelitian ini dilakukan pada bulan Mei-Juni 2017.

C. Metode Penelitian

Metode yang digunakan ialah metode kuantitatif dengan studi korelasional. Dalam penelitian ini terdapat dua variabel yang akan diteliti yaitu persepsi diri terhadap kemampuan berpikir kritis sebagai variabel bebas (X) dan hasil belajar kognitif materi sistem reproduksi manusia pada peserta didik SMA yang merupakan variabel terikatnya (Y).

D. Desain Penelitian

Desain penelitian tertera dalam Gambar 6.

Gambar 6. Skema Desain Penelitian

Keterangan:

- X = Variabel bebas yaitu persepsi diri terhadap kemampuan berpikir kritis
- Y = Variabel terikat yaitu hasil belajar kognitif materi sistem reproduksi pada peserta didik SMA.
- r_{xy} = Koefisien korelasi antara persepsi diri terhadap kemampuan berpikir kritis dengan hasil belajar kognitif materi sistem reproduksi pada peserta didik SMA.

E. Populasi dan Sampel Penelitian

Populasi dalam penelitian ini ialah seluruh peserta didik di SMA Negeri 45 Jakarta tahun pelajaran 2016/2017. Pemilihan sekolah tersebut dilakukan secara *purposive* sampling dengan mempertimbangkan akreditasi A serta memiliki lokasi yang strategis. Selain itu, dikarenakan visi sekolah tersebut ialah menjadi sekolah yang unggul dalam ilmu pengetahuan dan teknologi, beretika, peduli lingkungan serta berwawasan global berbasis keimanan dan ketakwaan kepada Tuhan Yang Maha Esa, dengan salah satu misinya ialah memfasilitasi peserta didik untuk dapat bersaing di era global. Sampel diambil dengan teknik purposive sampling dikarenakan materi sistem reproduksi manusia, sehingga terpilih kelas XI MIA. Dari empat kelas XI MIA dipilih tiga kelas dengan setiap kelas terdapat 36 peserta didik sebagai responden untuk penelitian menggunakan teknik cluster random sampling. Pada penelitian ini satu kelas XI MIA berjumlah 36 peserta didik yang tidak terpilih dijadikan sebagai responden uji coba dan tiga kelas berjumlah 108 peserta didik yang terpilih dijadikan sebagai responden untuk penelitian. Kemudian dari tiga kelas yang dijadikan sebagai responden penelitian tersebut dengan menggunakan rumus Slovin dipilih sebanyak 85 peserta didik dengan teknik *simple random sampling*. Setelah menentukan ukuran sampel keseluruhan, selanjutnya menentukan jumlah sampel tiap kelas dengan menggunakan rumus alokasi proporsional (Lampiran 2).

F. Teknik Pengumpulan Data

Teknik pengumpulan data dalam penelitian ini diperoleh dengan:

- Mengambil data dengan menggunakan instrumen berupa kuesioner untuk mengetahui persepsi diri terhadap kemampuan berpikir kritis peserta didik SMA.
- Mengambil data dengan menggunakan instrumen tes objektif pilihan ganda untuk mengetahui hasil belajar kognitif peserta didik SMA pada materi sistem reproduksi manusia.

G. Instrumen Penelitian

1. Variabel Persepsi Diri terhadap Kemampuan Berpikir Kritis

a. Definisi Konseptual

Persepsi diri terhadap kemampuan berpikir kritis ialah proses yang terjadi pada individu dalam usahanya mengenal sesuatu yang meliputi aktivitas mengolah atau menganalisis suatu stimulus dan ditangkap indera terhadap kemampuan berpikir kritis sebagai kemampuan untuk mengidentifikasi tentang keyakinan atau pengetahuan berdasarkan fakta dan data secara sistematis.

b. Definisi Operasional

Persepsi diri terhadap kemampuan berpikir kritis dalam penelitian ini ialah persepsi peserta didik terhadap kemampuan dalam memberikan 1)
Penjelasan sederhana, 2) Membangun keterampilan dasar, 3)

Menyimpulkan, 4) Memberikan penjelasan lanjut, dan 5) Mengatur strategi dan taktik dalam menyelesaikan suatu masalah pada materi sistem reproduksi manusia.

c. Kisi-Kisi Instrumen Persepsi Diri terhadap Kemampuan Berpikir Kritis

Kisi-kisi instrumen persepsi diri terhadap kemampuan berpikir kritis berupa kuesioner respon peserta didik terhadap materi sistem reproduksi manusia. Kuesioner respon peserta didik dibuat dalam bentuk skala *Likert* yang dimodifikasi dengan dengan 5 alternatif pilihan yaitu sangat setuju, setuju, ragu-ragu, tidak setuju, dan sangat tidak setuju. Untuk setiap pilihan jawaban diberi skor, maka responden menggambarkan, mendukung pernyataan (positif) atau tidak mendukung pernyataan (negatif)

Pemberian skor atas pilihan jawaban dari pernyataan yang bermakna positif dan negatif yaitu:

- Pernyataan positif: sangat tidak setuju sampai sangat setuju diberi skor
 sampai 5
- Pernyataan negatif: sangat tidak setuju sampai sangat setuju diberi skor 5 sampai 1 (Lampiran 3)

Kisi-kisi instrumen persepsi diri terhadap kemampuan berpikir kritis dapat dilihat pada Tabel 1.

Tabel 1. Kisi-Kisi Instrumen Persepsi Diri terhadap Kemampuan Berpikir Kritis

NI -	Kritis	ت ما الله ما	Butir Pe		
No.	Aspek	Indikator	Positif Negatif		Jumlah
1.	Memberikan penjelasan sederhana	Memfokuskan pertanyaan atau pokok permasalahan	1, 2, 3	4, 5	5
		Menganalisis argumen	6, 7, 8	9, 10*	5
		Bertanya dan menjawab pertanyaan	11, 12, 13	14, 15	5
2.	Membangun keterampilan	4. Mempertimbang- kan apakah sumber dapat dipercaya atau tidak	16, 17	18, 19, 20*	5
		5. Mengamati dan mempertimbang-kan suatu laporan hasil observasi	21, 22*	23, 24*, 25	5
3.	Menyimpul- kan	6. Mendeduksi dan mempertimbang-kan hasil deduksi	26, 27, 28*	29, 30	5
		7. Menginduksi dan mempertimbang-kan hasil induksi	31, 32, 33	34, 35	5
		8. Membuat dan menentukan hasil pertimbangan	36, 37*	38, 39*, 40	5
4.	Memberikan penjelasan lanjut	9. Mendefinisikan istilah dan pertimbangan suatu definisi	41, 42, 43	44, 45	5
		10. Mengidentifikasi asumsi-asumsi	46, 47	48*, 49, 50	5
5.	Mengatur strategi dan taktik	11. Menentukan suatu tindakan	51, 52	53*, 54, 55	5
		12. Berinteraksi dengan orang lain.	56, 57	58*, 59, 60	5
Total				30	60
*) butir	tidak valid		Sum	ber: Ennis	(2011)

^{*)} butir tidak valid

d. Interpretasi Skor Persepsi Diri terhadap Kemampuan Berpikir Kritis

Jumlah nilai persepsi diri terhadap kemampuan berpikir kritis yang didapatkan dijadikan nilai kriteria dengan rumus:

$$Nilai\ kriteria = \frac{Jumlah\ nilai\ yang\ diperoleh}{Jumlah\ maksimal\ nilai}\ x\ 100\%$$

Penentuan ketegori nilai kriteria dilakukan berdasarkan kriteria nilai sebagai berikut:

Tabel 2. Kategori Nilai Kriteria Persepsi Diri terhadap Kemampuan Berpikir Kritis

No.	Rentang nilai (%)	Kriteria
1.	0%SM < K < 20%SM	Sangat Rendah
2.	20%SM < K ≤ 40%SM	Rendah
3.	40%SM < K ≤ 60%SM	Sedang
4.	60%SM < K ≤ 80%SM	Tinggi
5.	80%SM < K ≤ 100%SM	Sangat Tinggi

Sumber: Suwarma (2009)

2. Variabel Hasil Belajar Kognitif Peserta Didik

a. Definisi Konseptual

Hasil belajar kognitif peserta didik ialah perubahan pada peserta didik dalam memahami konsep yang dialami setelah mendapatkan pengalaman belajarnya.

b. Definisi Operasional

Hasil belajar kognitif ialah skor hasil belajar peserta didik berdasarkan pemahaman konsep dan pengalaman belajarnya setelah proses pembelajaran yang diukur melalui tes dengan soal-soal yang di buat berdasarkan Revisi Taksonomi Bloom pada aspek kognitif C1 (Mengingat), C2 (Memahami), C3 (Mengaplikasikan), C4 (Menganalisis), C5 (Mengevaluasi), dan C6 (Mencipta).

c. Kisi-Kisi Instrumen Hasil Belajar Kognitif Peserta didik

Instrumen yang digunakan untuk mengukur hasil belajar kognitif berupa tes objektif dengan skor untuk jawaban benar ialah 1 dan skor untuk jawaban salah ialah 0 (Lampiran 4). Berikut kisi-kisi instrumen tes hasil belajar kognitif peserta didik pada materi sistem reproduksi manusia.

Kisi-kisi instrumen tes hasil belajar kognitif peserta didik pada materi sistem reproduksi manusia dapat dilihat pada Tabel 3.

Tabel 3. Kisi-kisi Instrumen Tes Hasil Belajar Kognitif Peserta Didik pada Materi Sistem Reproduksi Manusia

Aspek materi	Ranah Kognitif (Nomor Soal)						
Sistem Reproduksi Manusia	C1	C2	C 3	C4	C 5	C6	Jumlah
Struktur, fungsi dan proses pada organ reproduksi manusia	1,2	11, 12	17, 18	31, 32	33, 34	37, 38	12
Proses pembentukan sel kelamin (gametogenesis)	3,4*	13, 14	19*, 20	39*, 40	35, 36	41, 42	12
Ovulasi, menstruasi, fertilisasi, gestasi, dan persalinan	5,6	15, 16*	21*, 22	43*, 44	45, 46*	55, 56*	12
Laktasi, dan kontrasepsi	7,8	23, 24*	25, 26	47, 48*	51, 52	57*, 58	12
Kelainan/penyakit yang terjadi pada sistem reproduksi manusia	9,10	27, 28*	29, 30	49, 50	53, 54*	59, 60	12
Jumlah	10	10	10	10	10	10	60

Sumber: Anderson dan Krathwohl (2001)

^{*)} butir tidak valid

d. Kategori Hasil Belajar Kognitif Peserta Didik

Tabel 4. Kategori Hasil Belajar Kognitif Peserta Didik

Skala	Predikat	Keterangan
>92 - 100	A	Sangat Baik
>83 - 92	В	Baik
>75 - 83	С	Cukup
< 75	D	Kurang

Sumber: Permendikbud No. 23 (2016)

H. Validitas dan Reliabilitas Instrumen Penelitian

Uji validitas instrumen dilakukan untuk mengetahui tingkat ketepatan instrumen dalam melakukan fungsi ukurnya. Untuk mengukur validitas instrumen persepsi diri terhadap kemampuan berpikir kritis yaitu dengan menggunakan rumus Pearson Product Moment. Perhitungan validitas menggunakan Microsoft Excel 2010 dengan taraf signifikan 0,05. Hasil pengujian validitas menunjukkan dari 60 butir pernyataan pada instrumen persepsi diri terhadap kemampuan berpikir kritis yang dibuat, sebanyak 50 butir valid dan 10 butir tidak valid (Lampiran 6.1). Untuk menguji validitas butir soal pada instrumen hasil belajar kognitif ialah dengan menggunakan rumus korelasi Point Biserial (rpbi), karena tes butir soal berbentuk skor dikotomi (skor butir 0 atau 1). Perhitungan validasi menggunakan Microsoft Excel 2010 dengan nilai koefisien korelasi (r) setiap instrumen dicocokkan dengan rtabel dengan taraf signifikan 0.05. Hasil pengujian validitas menunjukkan dari 60 butir soal pertanyaan tes hasil belajar kognitif yang dibuat, sebanyak 47 butir valid dan 13 butir tidak valid (Lampiran 6.2).

Uji reliabilitas instrumen dilakukan untuk mengetahui tingkat kepercayaan terhadap hasil pengukuran instrumen agar dapat dipercaya. Untuk mengukur reliabilitas instrumen persepsi diri terhadap kemampuan berpikir kritis dengan menggunakan rumus *Alpha Cronbach* dengan taraf signifikan 0.05, karena mempunyai skor butir tertentu. Perhitungan reliabilitas dalam penelitian ini menggunakan *Microsoft Excel* 2010. Hasil pengujian reliabilitas instrumen persepsi diri terhadap kemampuan berpikir kritis menunjukkan koefisien reliabilitas sebesar 0,920 (Lampiran 7.1). Uji reliabilitas instrumen hasil belajar kognitif dengan menggunakan rumus *Kuder Richardson-20* (KR-20) dengan taraf signifikan 0.05. Hasil pengujian reliabilitas instrument hasil belajar kognitif menunjukkan koefisien reliabilitas sebesar 0,896 (Lampiran 7.2). Hal ini menunjukkan bahwa instrumen persepsi diri terhadap kemampuan berpikr kritis dan hasil belajar kognitif dapat dipercaya.

I. Prosedur Penelitian

Penelitian ini dilakukan melalui beberapa tahap, yaitu:

- Merumuskan permasalahan yang akan diteliti berdasarkan masalah yang ditemukan.
- Menyusun kerangka berpikir.
- Membuat kisi-kisi instrumen dari masing-masing variabel berdasarkan aspek yang didapatkan dari hasil kajian pustaka.
- Menentukan populasi terjangkau atau responden dalam penelitian untuk pengambilan sampel.
- 5. Melakukan uji validitas dan reliabilitas kuesioner.

37

6. Melakukan penyebaran instrumen penelitian.

7. Menganalisis seluruh data penelitian sesuai dengan teknik analisis data

yang digunakan.

8. Membuat kesimpulan dari hasil penelitian yang telah dilakukan.

J. Hipotesis Statistik

Perumusan hipotesis statistik dalam penelitian ini ialah sebagai

berikut:

 $H_0: \rho_{xy} = 0$

 $H_1: \rho_{xy} > 0$

Keterangan:

ρ_{xy} = Koefisien korelasi antara (X) persepsi diri terhadap kemampuan berpikir kritis dengan (Y) hasil belajar kognitif

materi sistem reproduksi manusia pada peserta didik SMA.

K. Teknik Analisis Data

Analisis data dilakukan dengan mengkorelasikan skor kuesioner

kemampuan berpikir kritis dengan skor tes hasil belajar kognitif materi

sistem reproduksi manusia pada peserta didik SMA. Teknik analisis data

yang dipakai dalam penelitian ini sebagai berikut:

1. Uji Prasyarat Analisis Data

a. Uji Normalitas

Uji normalitas digunakan untuk mengetahui populasi berdistribusi

normal. Uji normalitas diuji dengan menggunakan Uji Kolmogorov-Smirnov

pada $\alpha = 0.05$.

2. Uji Hipotesis Statistik

Uji hipotesis yang digunakan dalam penelitian ini ialah uji regresi dan korelasi sederhana. Langkah pertama yang dilakukan ialah melihat hubungan antara dua variabel dengan rumus *Spearman Rank* untuk menghitung r_{xy} pada $\alpha = 0,05$. Harga r_{xy} yang diperoleh kemudian diinterpretasikan tingkat kekuatan hubungannya dengan menggunakan Tabel 7. Jika r_{xy} signifikan dilanjutkan dengan menghitung koefisien determinasi dan kontribusi.

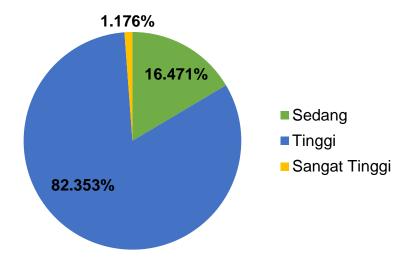
Tabel 5. Interpretasi Koefisien Korelasi r.

Interval Koefisien	Tingkat Hubungan
0,800-1,000	Sangat Tinggi
0,600-0,799	Tinggi
0,400-0,599	Cukup Tinggi
0,200-0,399	Rendah
0,000-0,199	Sangat Rendah

Sumber: Arikunto (2010)

BAB IV

HASIL PENELITIAN DAN PEMBAHASAN


A. Hasil Penelitian

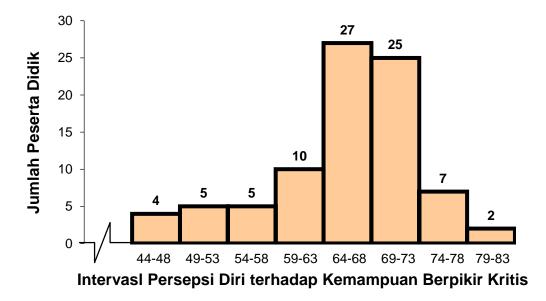
1. Deskripsi Data

Data hasil penelitian yang diperoleh berupa nilai persepsi diri terhadap kemampuan berpikir kritis dan nilai hasil belajar kognitif materi sistem reproduksi manusia pada peserta didik. Deskripsi data pada penelitian ini adalah sebagai berikut:

a. Persepsi Diri terhadap Kemampuan Berpikir Kritis

Berdasarkan hasil perhitungan, diketahui nilai tertinggi persepsi diri terhadap kemampuan berpikir kritis responden/peserta didik ialah 80 dan nilai terendah ialah 44,80 dengan rata-rata sebesar 65,765 serta simpangan baku sebesar 7,715. Berdasarkan perhitungan penggolongan kategori nilai persepsi diri terhadap kemampuan berpikir kritis diketahui 14 peserta didik (16,471%) berada pada kategori sedang, 70 peserta didik (82,353%) berada pada kategori tinggi, dan 1 peserta didik (1,176%) berada pada kategori sangat tinggi (Lampiran 8.1). Perbandingan persentase kategori nilai persepsi diri terhadap kemampuan berpikir kritis peserta didik dapat dilihat pada Gambar 7.

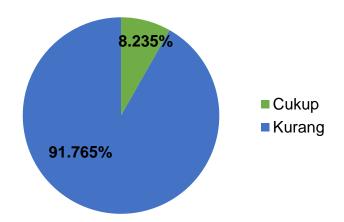
Gambar 7. Persentase Kategori Nilai Persepsi Diri terhadap Kemampuan Berpikir Kritis


Persentase nilai persepsi diri terhadap kemampuan berpikir kritis peserta didik digambarkan berdasarkan 12 indikator. Perbandingan persentase nilai persepsi diri terhadap kemampuan berpikir kritis dapat dilihat pada Gambar 8. Indikator yang memiliki persentase tertinggi ialah indikator ketujuh, yaitu menginduksi dan mempertimbangkan hasil induksi sebesar 28,725%. Indikator yang memiliki persentase terendah ialah indikator kedelapan, yaitu membuat dan menentukan hasil pertimbangan sebesar 14,039%. Hasil persentase untuk indikator persepsi diri terhadap kemampuan berpikir kritis ada pada Lampiran 10.

Keterangan: Indikator 1 Indikator 2 Indikator 3 Indikator 4 Indikator 5 Indikator 6 Indikator 7 Indikator 8 Indikator 9 Indikator 10	 : Memfokuskan pertanyaan atau pokok permasalahan : Menganalisis argumen : Bertanya dan menjawab pertanyaan : Mempertimbangkan apakah sumber dapat dipercaya atau tidak : Mengamati dan mempertimbangkan suatu laporan hasil observasi : Mendeduksi dan mempertimbangkan hasil deduksi : Menginduksi dan mempertimbangkan hasil induksi : Membuat dan menentukan hasil pertimbangan : Mendefinisikan istilah dan pertimbangan suatu definisi : Mengidentifikasi asumsi-asumsi
Indikator 11	: Menentukan suatu tindakan
Indikator 12	: Berinteraksi dengan orang lain

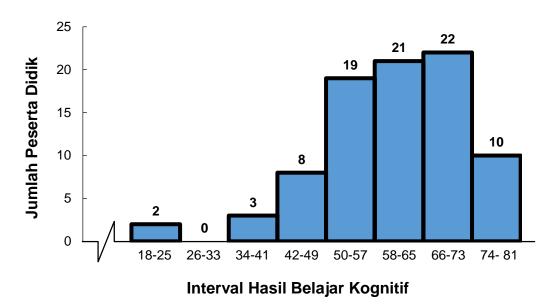
Gambar 8. Persentase Nilai Persepsi Diri terhadap Kemampuan Berpikir Kritis Per Indikator

Distribusi frekuensi nilai persepsi diri terhadap kemampuan berpikir kritis dapat dilihat pada Gambar 9. Jumlah peserta didik terbanyak berada pada interval 64 – 68, yaitu sebanyak 27 peserta didik dengan persentase sebesar 31,765%. Jumlah peserta didik terendah berada pada interval 79 – 83, yaitu sebanyak 2 peserta didik dengan persentase 2,353%. Perhitungan distribusi frekuensi nilai persepsi diri terhadap kemampuan berpikir kritis ada pada Lampiran 11.1.



Gambar 9. Distribusi Frekuensi Nilai Persepsi Diri terhadap Kemampuan Berpikir Kritis

b. Hasil Belajar Kognitif


Berdasarkan hasil perhitungan, diketahi nilai tertinggi hasil belajar kognitif materi sistem reproduksi manusia pada peserta didik ialah 80,851 dan nilai terendah ialah 19,149 dengan rata-rata 60,676 serta simpangan baku sebesar 11,661. Berdasarkan perhitungan penggolongan nilai hasil belajar kognitif, diketahui terdapat 7 peserta

didik (8,235%) berada pada kategori cukup, dan sebanyak 78 peserta didik (91,765%) berada pada kategori kurang (Lampiran 8.2). Perbandingan persentase kategori nilai hasil belajar kognitif peserta didik dapat dilihat pada Gambar 10.

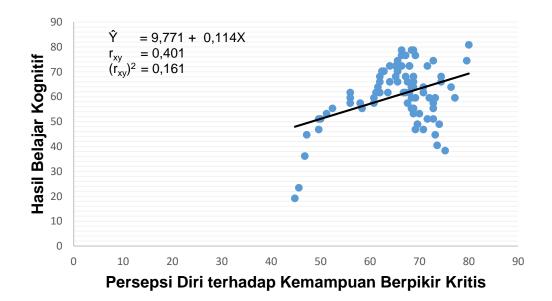
Gambar 10. Persentase Kategori Nilai Hasil Belajar Kognitif

Distribusi frekuensi nilai hasil belajar kognitif peserta didik dapat dilihat pada Gambar 11 dan perhitungannya ada pada Lampiran 10.2. Jumlah peserta didik terbanyak berada pada interval 66 - 73, yaitu sebanyak 22 peserta didik dengan persentase sebesar 25,882%. Jumlah peserta didik terendah pada interval 26 - 33, yaitu 0 peserta didik dengan persentase 0,000%.

Gambar 11. Distribusi Frekuensi Nilai Hasil Belajar Kognitif

2. Pengujian Prasyarat Analisis

a. Pengujian Normalitas


Pengujian normalitas dilakukan dengan menggunakan uji Kolmogorov-Smirnov pada program SPSS 22.0 dengan $\alpha = 0,05$. Hasil yang diperoleh nilai signifikansi sebesar 0,011 < 0,05 yang berarti tolak H₀, sehingga dapat disimpulkan bahwa data populasi berdistribusi tidak normal (Lampiran 12).

3. Uji Hipotesis Statistik

Setelah dilakukan uji prasyarat pada data penelitian, selanjutnya dilakukan uji regresi linier sederhana. Uji regresi dilakukan untuk memprediksi besarnya variabel terikat (Y) jika variabel bebasnya (X) diketahui. Uji linieritas dilakukan untuk mengetahui apakah persamaan regresi bersifat linier atau tidak.

Hasil uji model regresi linier sederhana pada taraf signifkansi (α)

0,05 ialah $0,000 < (\alpha)$ 0,05 (Lampiran 13.1). Hal tersebut sesuai dengan hipotesis tolak H_0 yang berarti koefisien regresi signifikan. Hasil pengujian diperoleh model regresi yaitu $\hat{Y} = 9,771 + 0,114X$. Persamaan tersebut menunjukkan bahwa hubungan antara persepsi diri terhadap kemampuan berpikir kritis dengan hasil belajar kognitif materi sistem reproduksi manusia pada peserta didik bernilai positif. Hal tersebut berarti setiap kenaikan skor variabel persepsi diri terhadap kemampuan berpikir kritis (X) sebesar satu skor dapat menyebabkan kenaikan variabel hasil belajar kognitif (Y) sebesar 0,114 pada konstanta 9,771. Model regresi ditunjukkan pada Gambar 12.

Gambar 12. Model Regresi Linier antara Persepsi Diri terhadap Kemampuan Berpikir Kritis dengan Hasil Belajar Kognitif

Hasil pengujian linearitas menghasilkan taraf signifikansi deviasi dari linearitas $0,001 < \alpha (0,05)$ yang artinya sesuai dengan hipotesis tolak H_0 , sehingga bentuk hubungan data linear antara kedua variabel (Lampiran

13.2). Hal tersebut menunjukkan bahwa setiap kenaikan variabel persepsi diri terhadap kemampuan berpikir kritis (X) menyebabkan pula kenaikan pada variabel hasil belajar kognitif (Y) materi sistem reproduksi manusia pada peserta didik SMA Negeri 45 Jakarta.

Perhitungan koefisien korelasi antara variabel X dan Y dilakukan dengan uji *Spearman Rank* menggunakan program SPSS 22.0. Hasil yang diperoleh koefisien korelasi (r_{xy}) sebesar 0,401 dengan signifikansi 0,000 < α (0,05) (Lampiran 13.3). Hal tersebut menunjukkan terdapat hubungan positif yang signifikan antara persepsi diri terhadap kemampuan berpikir kritis dengan hasil belajar kognitif peserta didik pada materi sistem reproduksi manusia.

Hasil perhitungan koefisien determinasi yaitu sebesar 0,161 (Lampiran 13.4). Hal tersebut dapat diartikan bahwa persepsi diri terhadap kemampuan berpikir kritis memberikan kontribusi sebesar 16,1% terhadap hasil belajar kognitif materi sistem reproduksi manusia pada peserta didik SMA Negeri 45 Jakarta, sedangkan 83,9% dikontribusi oleh faktor-faktor lain yang menentukan hasil belajar kognitif peserta didik diantaranya ialah faktor internal dan faktor eksternal yang tidak terukur dalam instrumen penelitian.

B. Pembahasan

Berdasarkan hasil uji hipotesis yang telah dilakukan maka terdapat hubungan positif antara persepsi diri terhadap kemampuan berpikir kritis dengan hasil belajar kognitif materi sistem reproduksi manusia pada peserta didik SMA. Hasil penelitian menunjukkan bahwa semakin tinggi persepsi diri terhadap kemampuan berpikir kritis peserta didik, maka semakin tinggi pula hasil belajar kognitifnya pada materi sistem reproduksi manusia. Begitu pula sebaliknya, semakin rendah persepsi diri terhadap kemampuan berpikir kritis peserta didik, maka semakin rendah pula hasil belajar kognitifnya pada materi sistem reproduksi manusia. Peserta didik yang memiliki persepsi diri terhadap kemampuan berpikir kritis pada kategori sangat tinggi dan tinggi akan mendapatkan nilai hasil belajar kognitif yang lebih baik dibandingkan dengan peserta didik yang memiliki persepsi diri terhadap kemampuan berpikir kritis pada kategori sedang. Hal tersebut dikarenakan kemampuan berpikir kritis dapat menjadi alat untuk merangsang pemikiran dan membantu peserta didik agar memperoleh hasil belajar yang lebih baik (Choy dan Cheah, 2009).

Persepsi diri terhadap kemampuan berpikir kritis secara tidak langsung akan mempengaruhi hasil belajar kognitif peserta didik dalam mengerjakan soal materi sistem reproduksi yang memang sudah dipelajarinya. Sejalan dengan yang dikatakan oleh Anderson dan Krathwol (2001) bahwa pemahaman konsep (aspek kognitif) berorientasi pada bagaimana kemampuan berpikir yang meliputi: 1) mengingat (C1); 2) memahami (C2); 3) mengaplikasikan (C3); 4) menganalisis (C4); 5) mengevaluasi (C5); dan 6) mencipta (C6). Proses berpikir dari ke-6 taksonomi Bloom yang telah direvisi tersebut mencirikan luas dan

kedalaman dari masing-masing kategori (Krathwohl, 2010). Ke-6 aspek kognitif tersebut membutuhkan kemampuan berpikir kritis peserta didik agar dapat memahami konsep secara menyeluruh. Hal tersebut dikarenakan kemampuan berpikir kritis sebagai proses disiplin secara intelektual yang mengandung konsep, menerapkan, menganalisis, mensintesis, dan atau mengevaluasi informasi secara aktif dan terampil yang telah dikumpulkan atau dihasilkan dari observasi, pengalaman, refleksi, penalaran, atau komunikasi, sebagai panduan untuk meyakinkan kepercayaan dan tindakan (Paul dan Elder, 2010).

Hasil penelitian pada variabel persepsi diri terhadap kemampuan berpikir kritis menunjukkan bahwa indikator ketujuh, yaitu menginduksi dan mempertimbangkan hasil induksi memiliki persentase nilai tertinggi dari 11 indikator lainnya. Hal ini disebabkan karena dalam menginduksi dan mempertimbangkan hasil induksi seseorang sudah memiliki data dari pengalaman hasil observasinya, sehingga dalam pernyataan-pernyataan yang mempunyai ruang lingkup yang khas dan terbatas dalam menyusun argumentasi dapat dipahami dengan disimpulkan menjadi pernyataan yang bersifat umum. Dengan demikian, pada indikator tersebut sebagian besar peserta didik merasa sangat yakin dan memiliki persepsi diri terhadap kemampuan berpikir kritis lebih baik dibandingkan pada indikator lain. Hal tersebut sesuai dengan teori yang dikemukakan oleh Ennis (2011) bahwa menginduksi dan mempertimbangkan hasil induksi merupakan indikator dalam aspek menyimpulkan yang menyusun

kemampuan berpikir kritis seseorang.

Indikator variabel persepsi diri terhadap kemampuan berpikir kritis yang memiliki persentase nilai terendah ialah indikator kedelapan, yaitu membuat dan menentukan hasil pertimbangan. Hal tersebut dapat disebabkan karena dalam membuat dan menentukan hasil pertimbangan menuntut kemampuan berpikir kritis seutuhnya. Hal tersebut sesuai dengan teori yang dikemukakan oleh Ennis (2011) bahwa kemampuan berpikir kritis sebagai suatu kemampuan berpikir dengan tujuan untuk membuat keputusan masuk akal tentang apa yang diyakini atau dilakukan, dalam hal ini untuk mendapatkan pengetahuan yang disertai pengkajian berdasarkan penalaran kebenaran pola tertentu. Peserta didik membutuhkan kemampuan berpikir kritis atau dengan kata lain menggunakan penalaran yang lebih kompleks untuk menentukan ketidakberesan dari setiap informasi yang diberikan. Kemampuan berpikir kritis dibutuhkan untuk menemukan fakta atau kejadian yang tidak mudah dijawab atau dijelaskan (Weiler, 2004).

Perbedaan nilai persepsi diri terhadap kemampuan berpikir kritis peserta didik menunjukkan bahwa persepsi diri terhadap kemampuan berpikir kritis seseorang berbeda antara satu dengan yang lainnya. Perbedaan tersebut dikarenakan pada saat mengisi instrumen persepsi diri terhadap kemampuan berpikir kritis, setiap peserta didik memahami setiap pernyataan pada instrumen dengan pemahaman dari sudut pandang masing-masing, sehingga didapatkan nilai persepsi diri terhadap

kemampuan berpikir kritis antara peserta didik berbeda satu sama lain. Pendapat tersebut sesuai dengan yang dikatakan Walgito (2010) bahwa persepsi seseorang dapat dipengaruhi oleh objek yang dipersepsikan, alat indera atau reseptor, dan perhatian atau konsentrasi. Selain itu, perbedaan tersebut disebabkan karena kemampuan berpikir kritis dapat dipengaruhi oleh situasi yang tengah dialami peserta didik, situasi luar yang dihadapi peserta didik, pengalaman-pengalaman yang dimiliki peserta didik, dan bagaimana intelegensi peserta didik tersebut. Pendapat tersebut sesuai dengan yang dikatakan oleh Sobur (2009) bahwa kemampuan berpikir kritis dapat dipengaruhi oleh faktor-faktor yang mempengaruhi jalannya berpikir seseorang dalam melihat atau memahami masalah tersebut. Selain daripada itu, pendapat tersebut juga sejalan dengan yang dikatakan oleh Hassoubah (2008) bahwa faktor lain mempengaruhi berpikir secara kritis ialah latar belakang kepribadian dan kebudayaan, serta kondisi emosi seseorang dalam menghadapi masalah. Kemampuan berpikir kritis peserta didik juga dapat dipengaruhi oleh proses pembelajaran yang peserta didik terima di sekolah, seperti model dan strategi pembelajaran yang diterapkan oleh guru di dalam kelas (Kusumaningtias, Zubaidah, dan Indriwati, 2013).

Berdasarkan hasil penelitian, juga terdapat perbedaan nilai hasil belajar kognitif antara peserta didik pada materi sistem reproduksi manusia. Perbedaan nilai hasil belajar kognitif yang dimiliki peserta didik diasumsikan sebagai besarnya pemahaman konsep pada materi sistem

reproduksi manusia. Hal tersebut dikarenakan hasil belajar kognitif didapat dari perubahan pada peserta didik dalam mencapai penguasaan konsep atas sejumlah bahan yang diberikan dalam proses belajar mengajar (Maher, 2004).

Adanya perbedaan nilai hasil belajar kognitif dapat disebabkan karena perbedaan nilai persepsi diri terhadap kemampuan berpikir kritis pada setiap peserta didik dalam memahami konsep materi sistem reproduksi manusia. Pemahaman konsep tersebut didapat peserta didik dengan membangun pengetahuan yang dimiliki peserta didik sendiri. Pendapat tersebut sesuai dengan hasil penelitian dari Munfahroyin (2009) yang menyatakan bahwa kemampuan berpikir kritis dapat dijadikan sebagai alat yang dipergunakan dalam proses penguasaan konsep, karena pengetahuan konseptual merupakan hasil dari proses konstruktif. Komponen-komponen yang termuat dalam berpikir kritis memungkinkan peserta didik untuk melatih kemampuan berpikir, memperoleh pemahaman atas suatu fakta atau konsep yang dapat meningkatkan hasil belajar kognitifnya. Pendapat tersebut sesuai dengan hasil penelitian dari Wicaksono (2014) yang menyatakan bahwa berpikir kritis menyediakan lingkungan dan aktivitas kepada peserta didik untuk meningkatkan kemampuan kognisinya. Dengan demikian, kemampuan berpikir kritis mempunyai manfaat konkrit meningkatkan pemahaman yang akibatnya akan mempengaruhi hasil belajar kognitif peserta didik.

Hasil uji hipotesis statistik data menunjukkan bahwa terdapat hubungan bernilai positif antara persepsi diri terhadap kemampuan berpikir kritis dengan hasil belajar kognitif peserta didik pada materi sistem reproduksi manusia. Hal tersebut diperkuat dengan nilai koefisien korelasi yang diperoleh yaitu 0,401 yang termasuk memiliki hubungan korelasi yang cukup tinggi (Arikunto, 2010). Sementara itu, nilai koefisien determinasi yang didapat yaitu sebesar 0,161. Hal tersebut berarti persepsi diri terhadap kemampuan berpikir kritis memberikan kontribusi sebesar 16,1% terhadap hasil belajar kognitif peserta didik pada materi sistem reproduksi manusia, sedangkan sisanya sebesar 83,9% ditentukan oleh faktor-faktor lain yang menentukan hasil belajar kognitif peserta didik diantaranya ialah faktor internal dan faktor eksternal yang tidak terukur dalam penelitian ini.

Hasil penelitian ini dapat dipengaruhi oleh faktor internal peserta didik saat pelaksanaan penelitian yakni pada waktu sekolah sedang mengadakan pekan remedial setelah ujian kenaikan kelas, sehingga peserta didik menjadi kurang konsentrasi dalam mengerjakan instrumen penelitian ini. Hal tersebut sesuai dengan yang dikatakan oleh Susanto (2013) bahwa faktor internal yang dapat mempengaruhi hasil belajar kognitif peserta didik diantaranya ialah kecerdasan, minat dan perhatian, motivasi belajar, ketekunan, sikap, kebiasaan belajar, serta kondisi fisik, dan kesehatan peserta didik. Adapun faktor eksternal diantaranya ialah

kondisi lingkungan belajar yang meliputi kondisi keluarga, kualitas pengajaran di sekolah dan penerimaan diri di masyarakat.

BAB V

KESIMPULAN, IMPLIKASI, DAN SARAN

A. Kesimpulan

Berdasarkan hasil penelitian maka dapat disimpulkan bahwa terdapat hubungan positif antara persepsi diri terhadap kemampuan berpikir kritis dengan hasil belajar kognitif materi Sistem Reproduksi Manusia pada peserta didik SMA Negeri 45 Jakarta dengan kontribusi sebesar 16,1%.

B. Implikasi

Implikasi dari penelitian ini ialah guru diharapkan dapat membantu mengembangkan kemampuan berpikir kritis peserta didik salah satunya dengan cara menciptakan proses pembelajaran yang melibatkan peserta didik secara aktif dalam pembelajaran (*student oriented*). Hal tersebut bertujuan agar dapat mengurangi kemungkinan peserta didik mendapatkan hasil belajar kognitif yang rendah.

C. Saran

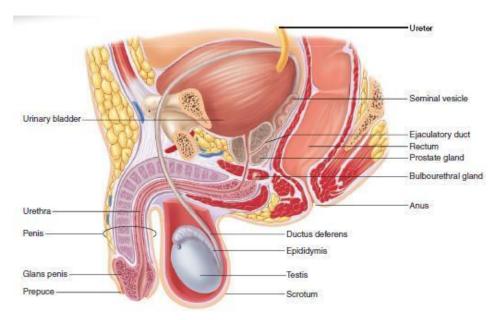
Bagi peneliti selanjutnya, diajukan beberapa saran sebagai berikut:

1. Mengembangkan lebih lanjut penelitian ini agar lebih baik dan lengkap dengan cara menambahkan variabel lain yang mungkin berkontribusi terhadap variabel hasil belajar kognitif. Penambahan variabel lain yang mungkin berkontribusi ialah faktor internal dan eksternal yang ikut menentukan hasil belajar kognitif peserta didik. Penelitian ini dapat pula ditingkatkan dengan penggunaan jumlah sampel yang lebih besar, sehingga dapat memberikan informasi yang lebih akurat.

DAFTAR PUSTAKA

- Anderson, L. W., dan Krathwohl, D. R. (2001). A Taxonomy for Learning, Teaching, and Assessing (A Revision of Bloom's Taxonomy of Educational Objectives). Abridge Edition. New York: David McKay Company.
- Arikunto, S. (2009). *Dasar-dasar Evaluasi Pendidikan*. Jakarta: Bumi Aksara.
- _____. (2010). Manajemen Penelitian. Jakarta: Rineka Cipta.
- Behram. (2000). *Hipofungsi Testis dan Ilmu Kesehatan Anak.* Jakarta: EGC.
- Boonjeam, W., Tesaputa, K., dan Sri-ampai, A. (2017). Program Development for Primary School Teachers' Critical Thinking. Canadian Center of Science Education. *International Education Studies*, 10(2), 131-138.
- Choy, S. C., dan Cheah, P.K. (2009). Teacher Perceptions of Critical Thinking Among Students and Its Influence on Higher Education. *International Journal of Teaching and Learning in Higher Education*, 20(2), 198-206.
- Dimyati dan Mudjiono. (2006). *Belajar dan Pembelajaran.* Jakarta: PT. Rineka Cipta.
- Djamarah, S. B. (2011). *Psikologi Belajar.* Jakarta: Rineka Cipta.
- Ehrenthal, D. B., Hoffman, M. K., dan Hillard P. J. A. (2006). *Menstruasi Disoders*. Philadelpia: American College of Physicians.
- Ennis, R. H. (2011). The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities. Cambridge: University of Illinois.
- Fisher, A. (2009). Berpikir Kritis (Sebuah Pengantar). Jakarta: Erlangga.
- Ganong, W. F. (2002). Review of Medical Physiology. Jakarta: EGC.
- Gagne, E. D. (2006). *The Cognitive Psychology of School Learning.* Boston: Little, Brown and Company.

- Gibson, C. B. (2001). Me and Us: Differential Relationships Among Goal Setting Training, Efficacy, and Effectiveness at the Individual and Team Level. *Journal of Organizational Behavior*, 22(7), 789-808.
- Harsono. (2006). Kearifan dalam Transformasi Pembelajaran: Dari Teacher-Centered ke Student-Centered Learning. *Jurnal Pendidikan Kedokteran dan Profesi Kesehatan Indonesia*, 1(1), 1-6.
- Hasruddin. (2009). Memaksimalkan Kemampuan Berpikir Kritis Melalui Pendekatan Kontekstual. *Jurnal Tabularasa PPS Unimed*, *6*(1), 48-60.
- Hassoubah. (2008). Developing Creative and Critical Thinking: Cara Berpikir Kreatif dan Kritis. Bandung: Nuansa.
- Kemendikbud. (2013). Kompetensi Dasar Sekolah Menengah Atas (SMA)/Madrasah Aliyah (MA). Jakarta: Kementerian Pendidikan dan Kebudayaan.
- ______. (2016). Permendikbud No. 23 Tentang Standar Penilaian Pendidikan. Jakarta: Kementerian Pendidikan dan Kebudayaan.
- Krathwohl, D.R. (2010). A Revision of Bloom's Taxonomy: An Overview. *Theory Into Practice*, *41*(4): 212-218.
- Kusumaningtias, A., Zubaidah, S., dan Indriwati, S.E. (2013). Pengaruh Problem Based Learning Dipadu Strategi Numbered Heads Together Terhadap Kemampuan Metakognitif, Berpikir Kritis, dan Kognitif Biologi. *Jurnal Penelitian Kependidikan*, 23(1), 33-47.
- Maher, A. (2004). Learning Outcomes in Higher Education: Implications for Curriculum Design and Student Learning. *Journal of Hospitality, Leisure, Sport, and Tourism Education*, *3*(2), 46-54.
- Mescher, A. L. (2011). *Histologi Dasar Junqueira Teks dan Atlas.* (dr. Frans Dany. Trans). Jakarta: Penerbit Buku Kedokteran EGC.
- Mulyana, D. (2005). *Ilmu Komunikasi Suatu Pengantar*. Bandung: PT Remaja Rosdakarya.
- Munfahroyin. (2009). Pengaruh Strategi Pembelajaran Integrasi STAD dan TPS dan Kemampuan Akademik terhadap Hasil Belajar Kognitif Biologi, Kemampuan Berpikir Kritis, dan Keterampilan Proses Siswa SMA di Kota Metro (Disertasi tidak diterbitkan). Universitas Negeri Malang, Malang.


- Paul, R., dan Elder, L. (2010). *The Miniature Guide to Critical Thinking Concepts and Tools*. Dillon Beach: Foundation for Critical Thinking Press.
- Purwanto. (2011). Evaluasi Hasil Belajar. Yogyakarta: Pustaka Belajar.
- Rakhmat, J. (2002). Psikologi Komunikasi. Bandung: PT Remaja Rosdakarya.
- _____. (2008). Psikologi Komunikasi. Bandung: PT Remaja Rosdakarya.
- Riduwan. (2009). Metode dan Teknik Menyusun Tesis. Bandung: Alfabeta.
- Robbins, S. P., & Timothy A. J. (2009). *Organizational Behavior*. New Jersey: Pearson Education.
- Saladin, K. S. (2008). *Human Anatomy, Second Edition*. New York: McGraw-Hill Companies.
- Sanjaya, W. (2007). Strategi Pembelajaran Berorientasi Standar Proses Pendidikan. Jakarta: Kencana.
- Schemerton. (2005). *Management Eight Edition*. USA: Wiley International Edition.
- Sevilla, C. G., Ochave, J. A., Punsalan, T. G., Regala, B. P., dan Uriarte, G. G. (2007). *Research Methods*. Quezon City: Rex Printing Company.
- Sherwood, L. (2011). *Human Physiology: From Cells To Systems, 6th Ed.* (Brahm U. Pendit. Trans). Jakarta: EGC.
- Sihotang, K., Rima, F., Molan, B., Ujan, A. A., dan Ristyantoro, R. (2012). *Critical Thinking Membangun Pemikiran Logis.* Jakarta: PT. Pustaka Sinar Harapan.
- Sloane, E. (2004). *Anatomy and Physiology: An Easy Learner.* (James Veldman, Trans). Jakarta: EGC.
- Smeltzer, S. C., dan Bare, B. G. (2002). *Buku Ajar Keperawatan Medical Bedah Brunner dan Suddarth.* Jakarta: EGC.
- Sobur, A. (2003). Psikologi Umum. Bandung: Pustaka Setia Bandung.
- _____. (2009). *Psikologi Umum.* Bandung: Pustaka Setia Bandung.

- Sudjana, N. (2004). *Dasar-Dasar Proses Belajar Mengajar.* Bandung: Sinar Baru Algesindo.
- Susanto, A. (2013). *Teori Belajar dan Pembelajaran di Sekolah Dasar.* Jakarta: Kencana Predana Media Group.
- Suwarma, D. M. (2009) Suatu Alternatif Pembelajaran Kemampuan Berpikir Kritis Matematika. Jakarta: Cakrawala Maha Karya.
- Tate, P. (2012). Seeley's Principles of Anatomy and Physiology. New York: McGraw-Hill.
- Tawil, M., dan Liliasari. (2013). *Berpikir Kompleks dan Implementasinya dalam Pembelajaran IPA.* Makasar: Badan Penerbit UNM.
- Tella, A. (2007). The Impact of Motivation on Student's Academic Achievement and Learning Outcomes in Mathematics among Secondary School Students in Nigeria. *Eurasia Journal of Mathematics, Science and Technology Education, 3*(2), 149-156.
- Tortora, G. J., dan Derrickson, B. H. (2006). *Principles of Anatomy and Physiology.* New York: McGraw-Hill.
- Walgito, B. (2010). *Pengantar Psikologi Umum Cetakan ke-5*. Yogyakarta: C.V ANDI OFFSET.
- Watson, G., dan Glaser, E. M. (2012). Watson-Glaser II Critical Thinking Appraisal, Technical Manual and User's Guide. San Antonio, TX: Pearson.
- Weiler, A. (2004). Information-Seeking Behavior in Generation Y Students: Motivation, Critical Thinking, and Learning Theory. *The Journal of Academic Librarianship*, 31(1), 46-53.
- Wicaksono, A. G. C. (2014). Hubungan Keterampilan Metakognitif dan Berpikir Kritis terhadap Hasil Belajar Kognitif Siswa SMA pada Pembelajaran Biologi dengan Strategi Reciprocal Teaching. *Jurnal Pendidikan Sains*, 2(2), 85-92.
- Wiknjosastro, H., dan Abdul, B. S. (2005). *Ilmu Kebidanan.* Jakarta: Yayasan Bina Pustaka Sarwono Prawirohardjo.
- Wilson, L. M., dan Hillegas, K. B. (2005). *Gangguan Sistem Reproduksi Laki-laki*. Jakarta: EGC.

Lampiran 1. Materi Sistem Reproduksi Manusia

1. Sistem Reproduksi Pria

Sistem reproduksi pria terdiri dari testis, sistem saluran (yang terdiri dari epididimis, duktus eferen, duktus ejakulator, dan uretra), kelenjar aksesoris, dan penis (Sloane, 2004). Sistem reproduksi pria bisa dilihat pada Gambar 1.

Gambar 1. Anatomi Sistem Reproduksi Pria (Tate, 2012)

a. Organ Reproduksi Pria

1) Testis

Testis adalah organ lunak, berbentuk oval, dengan panjang 4-5 cm dan berdiameter 2,5 cm (Sloane, 2004). Testis terbentuk dari lengkungan-lengkungan tubulus seminiferus yang dindingnya merupakan tempat pembentukan spermatozoa dari sel-sel germinativum primitif (Ganong, 2002). Epitelium germinal khusus yang melapisi tubulus seminiferus mengandung spermatogonia yang kemudian menjadi sperma, sel Sertoli memberi nutrisi untuk sperma yang sedang berkembang dari sel interstitial (sel Leydig) yang memiliki fungsi endokrin berupa menyekresikan hormon androgen (testosteron dan dihidrotestosteron) (Sloane, 2004).

2) Duktus epididimis

Duktus epididimis adalah saluran tunggal dengan panjang sekitar 4-6 meter (Mescher, 2011). Selama enam minggu, sperma di dalam epididimis akan menjadi dewasa, mortil, dan melakukan fertilisasi (Sloane, 2004).

3) Duktus deferen

Duktus deferen ditandai dengan lumen yang sempit dan lapisan otot polos tebal yang ikut serta menyemprotkan spermatozoa keluar selama ejakulasi (Mescher, 2011).

4) Duktus ejakuatoris

Setiap duktus ejakulator panjangnya mencapai sekitar 2 cm dan menembus kelenjar prostat untuk bergabung dengan uretra yang berasal dari kandung kemih (Sloane, 2004).

5) Uretra

Uretra merentang dari kandung kemih sampai ke ujung penis dan terdiri atas 3 bagian yaitu uretra prostatik, membranosa, dan penis (Sloane, 2004).


Ketika ejakulasi, kelenjar seks tambahan menghasilkan sekresi yang membantu menunjang kehidupan sperma ketika berada di saluran reproduksi wanita. Kelenjar seks tambahan atau kelenjar aksesoris yaitu (Sherwood, 2011):

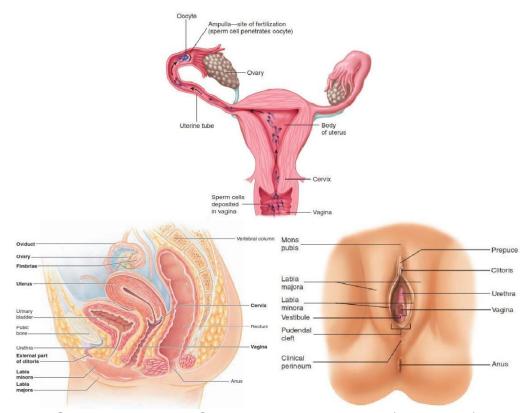
- 1) Vesikula seminalis menghasilkan sekret kuning kental bersifat basa yang mengandung substansi seperti fukrosa, sitrat, inositol, prostaglandin, dan berbagai protein untuk menutrisi dan melindungi sperma (Mascher, 2011).
- 2) Kelenjar prostat mengeluarkan cairan basa yang menetralkan sekresi vagina yang asam dan menghasilkan enzim pembekuan dan fibrinolisin (Sherwood, 2011).
- 3) Kelenjar bulbouretra (kelenjar Cowper) yang berfungsi mensekresi cairan basa yang mengandung mukus ke dalam uretra penis untuk melumasi dan melindungi serta ditambahkan pada semen (Sloane, 2004).

Pada pria, organ reproduksi yang tampak dari luar ada dua yaitu penis dan skrotum. Penis terdiri dari 3 bagian yaitu akar, badan, dan glans penis. Pada glans penis banyak mengandung ujung-ujung saraf sensorik. Glans penis tertutup oleh lipatan kulit longgar prepusium (kulup), kecuali jika diangkat melalui sirkumsisi (khitan). Penis berfungsi untuk tempat keluar urin dan semen serta sebagai organ kopulasi (Sloane, 2004). Sedangkan, skrotum adalah kantong longgar yang tersusun dari kulit, fasia, dan otot polos yang membungkus dan menopang testis di luar tubuh pada suhu optimum untuk produksi spermatozoa. Terdapat 2 kantong skrotal yang masing-masing berisi satu testis tunggal, dipisahkan oleh septum internal. Fasia skrotum mengandung otot Dartos yang mampu berkontraksi membentuk kerutan sebagai respons terhadap udara dingin dan rangsangan seksual. Skrotum juga mengandung otot kremaster yang berfungsi mengatur suhu lingkungan testis beberapa derajat lebih rendah daripada suhu tubuh (Sloane, 2004).

Spermatogenesis adalah suatu proses kompleks dimana sel germinativum primordial yang relatif belum berdiferensiasi, spermatogonia (masing-masing mengandung komplemen diploid 46 kromosom), berpoliferasi dan diubah menjadi spermatozoa (sperma) yang sangat khusus dan dapat bergerak, masing-masing mengandung sel haploid 23 kromosom yang berdistribusi secara acak. Spermatogenesis memerlukan waktu 64 hari untuk pembentukan dari spermatogonium menjadi sperma

matang (Sherwood, 2011). Tahapan spermatogenesis pada pria secara jelas dapat dilihat pada Gambar 2.

Gambar 2. Tahapan Spermatogenesis (Tate, 2012)


b. Hormon Seks Pria

Testis menyekresikan beberapa hormon seks pria yang disebut androgen. Salah satunya adalah testosteron yang dihasilkan lebih banyak dibandingkan lainnya. Testosteron bertanggung jawab untuk membedakan sifat maskulinisasi tubuh. Selain itu, kelenjar hipofisis anterior menyekresi dua hormon gonadotropin yaitu hormon perangsang

folikel (Folicle Stimulating Hormone = FSH) dan hormon luteinisasi (Luteinizing Hormone).

2. Sistem Reproduksi Wanita

Sistem reproduksi wanita terdiri dari ovarium, duktus ovum, uterus, vagina, genitalia eksternal, dan kelenjar mammae, seperti yang tertera pada Gambar 3.

Gambar 3. Anatomi Sistem Reproduksi Wanita (Tate, 2012)

a. Organ Reproduksi Wanita

1) Ovarium

Sepasang ovarium terletak di kanan kiri uterus, dalam rongga pelvis. Ovarium tersusun atas korteks dan medula. Medula adalah area terdalam yang mengandung pembuluh darah dan limfatik, serabut saraf, sel-sel otot polos, dan sel-sel jaringan ikat. Korteks adalah lapisan stroma luar yang mengandung folikel ovarian, yaitu unit fungsional pada ovarium (Sloane, 2004).

2) Oviduk (Tuba Fallopi)

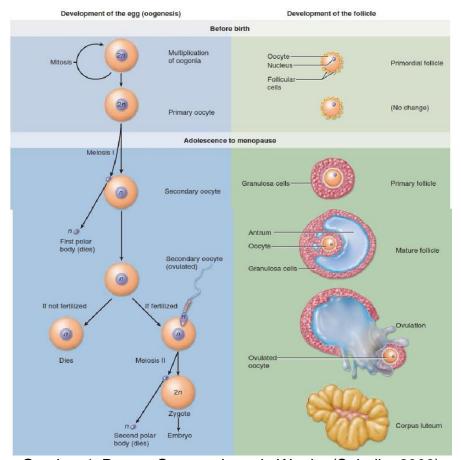
Oviduk adalah 2 tabung berotot dengan mobilitas tinggi dan masingmasing memiliki panjang sekitar 12 cm. Salah satu ujungnya yaitu infundibulum terbuka ke arah rongga peritoneum di samping ovarium dan memiliki tepi dengan juluran mirip jari-jari yang disebut fimbria (Mescher, 2011).

3) Uterus (Rahim)

Uterus adalah organ berbentuk seperti buah pir terbalik yang terdiri atas suatu badan (kurpus) dan suatu struktur silindris di bagian bawah yaitu serviks. Dinding uterus terdiri dari 3 lapisan yaitu lapisan serosa (jaringan ikat dan mesotel), miometrium yaitu lapisan otot polos tebal dan endometrium atau mukosa uterus (Mescher, 2011).

4) Vagina

Vagina adalah merupakan jalan lahir bayi dan aliran menstrual, berfungsi sebagai organ kopulasi wanita serta jalan aliran menstruasi dan jalan lahir bayi (Sloane, 2004).


Genitalia eksternal secara kesatuan disebut dengan vulva atau pudendum, terdiri atas mona pubis, labia mayora, labia minora, klitoris, vestibul, orifisium uretra, mulut vagina, dan perineum. Mons pubis adalah jaringan lemak berkulit yang ditutupi rambut setelah masa pubertas. Labia mayora adalah dua lipatan kulit dari mons pubis merentang ke bawah dan bertemu di perineum dekat anus, setelah masa pubertas juga ditutupi oleh rambut. Labia minora adalah dua lipatan kulit diantara labia mayora yang tidak ditutupi rambut, mengandung kelenjar sebasea dan beberapa kelenjar keringat. Klitoris, homolog dengan penis pada pria, tetapi lebih kecil dan tidak memiliki lubang uretra. Vestibul adalah area yang dikelilingi labia minora, menutupi lubang uretra, mulut vagina, dan saluran kelenjar Bartholin yang menghasilkan lendir saat eksitasi seksual. Orifisium uretra adalah jalur keluar urine dari kandung kemih, pada bagian tepi mengandung dua kelenjar parauretral (skene). Mulut vagina dikelilingi oleh membran yang disebut himen (selaput dara), himen pada setiap wanita memiliki bentuk dan ukuran yang bervariasi (Sloane, 2004).

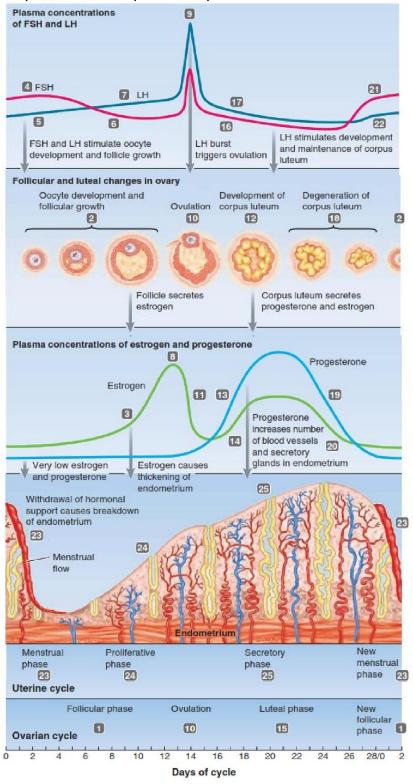
b. Aktivitas yang dipengaruhi hormon

1) Oogenesis

Sel germinativum primordial pada ovarium janin yakni oogonium (setara dengan spermatogonium) mengalami pembelahan diri secara mitosis untuk menghasilkan sekitar enam sampai tujuh juta oogonia pada bulan kelima masa gestasi. Selama bagian akhir masa kehidupan janin, oogonia memulai pembelahan meiosis I tetapi tidak menyelesaikannya membentuk oosit primer (Sherwood, 2011).

Sesaat sebelum ovulasi, oosit primer yang berada dalam tahap meiosis I berhenti selama bertahun-tahun akan menyelesaikan pembelahan meiosis I (Sherwood, 2011). Proses oogenesis pada wanita secara jelas dapat dilihat pada Gambar 4.

Gambar 4. Proses Oogenesis pada Wanita (Saladin, 2008)


2) Siklus Menstruasi

Menstruasi adalah pendarahan bulanan yang terjadi jika bagian endometrium uterus luruh dan dikeluarkan oleh vagina. Siklus menstruasi menandakan fluktuasi irama hormon hipotalamus, hipofisis, dan ovarium serta perubahan morfologis yang dihasilkan pada ovarium dan endometrium uterus. Rentang siklus menstruasi umumnya berkisar antara 28 hari (Sloane, 2004).

Fungsi gonad pada wanita secara langsung dikontrol oleh hormonhormon gonadotropik hipofisis anterior yaitu FSH dan LH. Selama fase folikel diparuh pertama siklus ovarium, folikel ovarium mengeluarkan estrogen di bawah pengaruh FSH, LH, dan estrogen itu sendiri. Kadar estrogen yang rendah tetapi harus meningkat tersebut menghambat sekresi FSH yang menurun selama bagian terakhir fase folikel dan secara onkomplit menekan sekresi LH yang terus meningkat selama fase folikel. Saat pengeluaran estrogen mencapai puncaknya, kadar esterogen yang tinggi tersebut memicu lonjakan sekresi LH pada pertengahan siklus. Lonjakan LH menyebabkan ovulasi folikel yang matang. Sekresi estrogen merosot sewaktu folikel mati pada ovulasi (Sherwood, 2011).

Sel-sel folikel lama diubah menjadi korpus luteum yang mengeluarkan progesteron serta estrogen selama fase luteal. Kadar FSH

dan LH kembali meningkat dan merangsang berkembangnya folikel-folikel baru seiring dengan dimulainya fase folikel (Sherwood, 2011). Siklus menstruasi pada wanita dapat dilihat pada Gambar 5.

Gambar 5. Siklus menstruasi (Sherwood, 2011)

3) Fertilisasi

Fertilisasi adalah penyatuan spermatozoa dan oosit sekunder untuk membentuk sel diploid zigot yang mengandung kromosom maternal dan paternal (Sloane, 2004). Untuk membuahi sel telur, sebuah sperma mulamula harus melewati korona radiata dan zona pelusida yang mengelilingi oosit sekunder tersebut. Enzim-enzim akrosom memungkinkan sperma membuat terowongan untuk menembus zona pelusida. Sperma pertama yang mancapai ovum berfusi dengan membran plasma oosit sekunder dan memicu suatu perubahan kimiawi di membran yang mengelilingi oosit sekunder sehingga lapisan ini tidak lagi dapat ditembus oleh sperma lain (Sherwood, 2011).

4) Kehamilan (Gestasi)

Selama tiga sampai empat jam pertama setelah pembuahan, zigot tetap berada di dalam ampula. Zigot dengan cepat mengalami pembelahan mitosis untuk membentuk sel-sel padat yang disebut morula. Pada saat endometrium siap menerima implantasi (sekitar seminggu setelah ovulasi), morula telah turun ke uterus dan terus berpoliferasi dan berdiferensiasi menjadi blastokista yang dapat melakukan implantasi. Massa padat pada blastokista disebut massa sel dalam (*inner mass cell*) yang akan menjadi janin itu sendiri. Lapisan tipis paling luar yaitu trofoblas akan menyelesaikan implantasi dan setelah itu berkembang menjadi plasenta bagian janin (Sherwood, 2011).

Massa sel dalam (*inner mass cell*) akan berdiferensiasi lebih lanjut mengakibatkan pembentukan sebuah rongga amniotik berisi cairan dan sebuah diskus embrionik. Diskus embrionik terdiri dari 3 lapisan germinal. Ektoderm akan membentuk keseluruhan sistem saraf, indera khusus, kulit, dan beberapa kelenjar endokrin. Endoderm akan membentuk saluran pencernaan dan pernapasan serta berbagai bagian dari sistem reproduksi. Mesoderm akan membentuk sistem rangka, urinaria, sirkulasi, dan sistem reproduksi (Sloane, 2004).

Membran janin terlepas saat lahir dan terbentuk dari lapisan-lapisan sel yang tidak bergabung dalam tubuh embrio. Amnion berasal dari mesoderm ekstra-embrionik dan trofoblas, berisi cairan amniotik yang berfungsi untuk melindungi dan melandasi janin serta memungkinkan pergerakan bebas. Kantung kuning telur (sakus vitelinus) berfungsi sebagai organ-organ pernapasan dan pencernaan awal. Korion berfusi dengan amnion untuk membentuk kantong yang membungkus embrio dan janin dan merupakan sumber hormon HCG. Alantois merupakan bagian yang membentuk kandung kemih. Plasenta berperan dalam fungsi pencernaan, pernapasan, ekskretori, dan fungsi metabolik serta merupakan organ endokrin (Sloane, 2004).

5) Persalinan

Menjelang akhir kehamilan serviks melunak akibat disosiasi seratserat jaringan ikat. Pelunakan firbikartilago dalam simfinis pubis ini disebabkan oleh relaksin yaitu hormon peptida yang dihasilkan oleh korpus luteum kehamilan dan plasenta. Oksitosin yang dilepas dari kelenjar hipofisis posterior menstimulasi kontraksi otot polos uterus selama proses kelahiran. Selain 2 hormon tersebut, persalinan juga dipengaruhi oleh hormon estrogen, prostaglandin, dan CRH (Sherwood, 2011).

Persalinan terjadi dalam 3 tahapan, yaitu:

- 1. Kala 1; dimulai pada waktu serviks membuka karena kontraksi uterus yang teratur, makin lama, makin kuat, makin sering, makin terasa nyeri, disertai pengeluaran darah-lendir yang tidak lebih banyak dari darah haid. Kala 1 berakhir pada waktu pembukaan serviks telah lengkap atau sekitar 10 cm untuk jalan keluar kepala bayi. Tahap ini disebut juga tahap dilatasi serviks (pembukaan), tahap paling lama terjadi mulai dari beberapa jam hingga 24 jam. Selaput ketuban biasanya pecah spontan pada saat akhir kala 1.
- 2. Kala 2; terjadi ketika serviks sudah mengalami dilatasi dengan sempurna dan bayi mulai bergerak dari uterus. Pada kala ini terjadi kontraksi ritmik yang juga dipengaruhi reseptor regang di sekitar serviks. Pada fase ini, ibu dapat membantu terlahirnya bayi dengan gerakan mengejan. Tahap ini disebut juga tahap kelahiran bayi, berlangsung selama 30-90 menit.
- 3. Kala 3; segera setelah bayi lahir, muncul kontraksi seri kedua yang akan melepaskan perlekatan miometrium dengan plasenta, untuk kemudian mendorong plasenta keluar dari tubuh ibu melalui vagina. Tahap ini disebut juga tahap kelahiran plasenta, berlangsung selama 15-30 menit (Sherwood, 2011).

6) Laktasi

Payudara tumbuh pesat selama kehamilan sebagai akibat kerja sinergis beberapa hormon yaitu estrogen, progesteron, prolaktin, oksitosin dan HPL (human placental lactogen atau laktogen plasenta manusia). Sekret pertama yang dikeluarkan kelenjar mammae sesudah lahir yaitu dan kolostrum. Kolostrum agak kental berwarna kekuninggan, mengandung sel darah putih dan antiboti yang tinggi (terutama imunoglobulin A atau IgA) yang dapat melindungi usus dari infeksi serta mencegah alergi makanan. Selain untuk meningkatkan daya tahan tubuh bayi, ASI juga bermanfaat untuk meningkatkan kecerdasan bayi, memberi nutrisi yang optimal dan mudah dicerna oleh bayi, serta dapat meningkatkan jalinan kasih sayang ibu dan bayi Menyusui juga memberikan manfaat untuk ibu, antara lain adalah 1) Berat badan cepat kembali normal setelah hamil dan melahirkan; 2) Merangsang uterus untuk kembali ke bentuk semula (involusi); 3) Sebagai kontrasepsi alamiah; 4) Mengurangki risiko kanker payudara, kanker ovarium, kanker rahim, osteoporosis, dan artritis; 5) Mengurangi stres dan gelisah, dan 6) Menghemat pengeluaran keuangan keluarga (Mescher, 2011).

Lampiran 2. Perhitungan Jumlah Sampel dan Alokasi Proporsional Sampel

A. Perhitungan Jumlah Sampel

Perhitungan jumlah sampel penelitian dilakukan dengan menggunakan rumus *Slovin* sebagai berikut:

Jumlah Sampel (n)
$$= \frac{N}{1+Ne^2}$$
$$= \frac{108}{1+108 \times 0.05^2}$$
$$= 85,04 \text{ dibulatkan menjadi } 85$$

Keterangan:

n: Jumlah Sampel N: Jumlah Populasi e: *error tolerance* (0.05)

B. Alokasi Proporsional Sampel

Rumus alokasi proporsional, yaitu:

$$ni = \frac{Ni}{N} \times n$$

(Riduwan, 2009)

Keterangan:

ni = Jumlah sampel kelompok / menurut kelas

N = Jumlah populasi keseluruhan

Ni = Jumlah populasi menurut kelas

n = Jumlah sampel

Tabel 6. Alokasi Proporsional Sampel

Kelas	Jumlah Peserta Didik	Sampel
XI MIA A	36	29
XI MIA B	36	28
XI MIA C	36	28
Total	108	85

Lampiran 3. Instrumen Persepsi Diri terhadap Kemampuan Berpikir Kritis

I. Identitas Responden

Nama : Kelas : Usia : Jenis Kelamin :

- II. Petunjuk Pengisian Kuesioner
 - 1. Isilah identitas (nama, kelas, usia, dan jenis kelamin) Anda.
 - 2. Bacalah pertanyaan-pertanyaan berikut dengan cermat.
 - 3. Anda dipersilahkan mengisi kuesioner instrumen persepsi diri terhadap kemampuan berpikir kritis.
 - Persepsi diri terhadap kemampuan berpikir kritis ialah proses yang terjadi pada individu dalam usahanya mengenal sesuatu yang meliputi aktivitas mengolah atau menganalisis suatu stimulus dan ditangkap indera terhadap kemampuan berpikir kritis sebagai kemampuan untuk mengidentifikasi tentang keyakinan atau pengetahuan berdasarkan fakta dan data secara sistematis.
 - 4. Dalam memilih lakukan dengan jujur, jangan terpengaruh teman Anda.
 - 5. Isilah dengan lengkap (jangan sampai ada nomor yang terlewatkan).
 - 6. Anda diminta untuk menjawab semua pernyataan yang diberikan. Setelah membaca setiap pernyataan, berilah tanda ($\sqrt{}$) pada pilihan jawaban yang Anda anggap paling sesuai dengan keadaan diri Anda. Ada empat alternatif jawaban yang dapat Anda pilih, yaitu:

SS : Sangat setuju

S : Setuju R : Ragu-ragu TS : Tidak setuju

STS: Sangat tidak setuju

- 7. Apabila Anda ingin mengganti jawaban, tetapi sudah terlanjur memberi tanda ceklis, maka tanda ceklis pada jawaban lama beri tanda sama dengan (=), setelah itu berikan tanda ceklis ($\sqrt{\ }$) pada jawaban yang Anda inginkan.
- 8. Jawaban Anda tidak memiliki pengaruh terhadap status atau penilaian kepribadian Anda sebagai peserta didik di sekolah.
- 9. Atas bantuan dan kesungguhan Anda dalam menjawab pernyataan dalam kuesioner ini, saya ucapkan terima kasih.

Tabel 7. Kuesioner Persepsi Diri terhadap Kemampuan Berpikir Kritis

Nia	Downwatern	Jawaban		an	1		
No	Pernyataan	SS	S	R	TS	STS	
1.	Saya selalu ingin mengetahui tujuan pembelajaran materi sistem reproduksi manusia di kelas.						
2.	Saya selalu membuat catatan yang berisi pertanyaan yang tidak saya pahami selama proses pembelajaran materi sistem reproduksi manusia berlangsung.						
3.	Saya selalu membuat kesimpulan berisi pokok permasalahan yang dibahas selama proses pembelajaran sistem reproduksi manusia di buku catatan.						
4.	Saya tidak dapat mencari tindakan alternatif terbaik saat memecahkan masalah sistem reproduksi manusia.						
5.	Saya tidak tertarik untuk mengetahui pokok permasalahan sistem reproduksi manusia yang guru berikan setiap pertemuan.						
6.	Saya akan mendengarkan pendapat orang lain tentang sistem reproduksi manusia agar saya menjadi lebih objektif.						
7.	Saya akan mempertanyakan segala sesuatu tentang sistem reproduksi manusia jika dianggap tidak benar.						
8.	Saya mencari sumber yang tidak bertentangan dengan pokok permasalahan sistem reproduksi manusia agar memperkuat pendapat saya.						
9.	Saya hanya menerima semua penjelasan sistem reproduksi manusia yang diberikan guru atau teman dalam setiap diskusi tanpa memperdebatkan atau mencari kebenaran dari sumber lain.						

	Downwood or a	Jawaban					
No.	Pernyataan	SS S R T		TS	STS		
10.*	Saya merasa kesulitan membuat ringkasan dari materi diskusi kelompok selama proses pembelajaran materi sistem reproduksi manusia berlangsung.						
11.	Saya akan mengemukakan pendapat tentang sistem reproduksi manusia saat diskusi di kelas karena saya percaya dengan pendapat saya.						
12.	Saya akan mengajukan pertanyaan lebih lanjut kepada guru apabila materi sistem reproduksi manusia yang didiskusikan belum terlalu jelas.						
13.	Saya selalu mengajukan diri setiap guru memberikan kesempatan untuk bertanya.						
14.	Saya tidak pernah mengajukan diri bila guru memberikan kesempatan untuk bertanya tentang materi sistem reproduksi manusia						
15.	Kelemahan saya adalah belum bisa mempertahankan pendapat pribadi tentang materi sistem reproduksi manusia karena keterbatasan informasi.						
16.	Saya akan mengukur bukti teori sistem reproduksi manusia yang sudah ada dengan sumber yang dapat dipercaya.						
17.	Saya lebih menyukai sumber literatur tentang materi sistem reproduksi manusia yang sifatnya dapat dipercaya kebenarannya.						
18.	Saya tidak pernah mencari bukti yang kuat dan akurat setiap saya ingin menilai suatu masalah yang terjadi pada sistem reproduksi manusia.						

No	Dawnyetaan		J	awab	an	
No.	Pernyataan	SS	S	R	TS	STS
19.	Saya merasa kesulitan untuk membedakan antara sumber materi sistem reproduksi manusia yang dapat dipercaya dengan yang tidak dapat dipercaya.					
20.*	Saya membuat kesimpulan tentang materi sistem reproduksi manusia berdasarkan bukti yang tidak akurat.					
21.	Saya senang apabila guru memberikan tugas penelitian tentang materi sistem reproduksi manusia.					
22.*	Saya berkunjung ke perpustakaan serta ke laboratorium untuk melengkapi informasi dalam penelitian tentang materi sistem reproduksi manusia yang ditugaskan oleh guru.					
23.	Saya lebih suka mendengarkan guru menjelaskan materi sistem reproduksi manusia daripada harus melakukan penelitian sendiri.					
24.*	Saya merasa tidak mampu mengidentifikasikan suatu latar belakang teori sistem reproduksi manusia dari apa yang sudah saya teliti.					
25.	Saya selalu melampirkan hasil temuan saya selama melakukan penelitian yang berhubungan dengan materi sistem reproduksi manusia.					
26.	Saya akan mencari bukti yang kuat dan akurat setiap saya ingin menilai suatu teori sistem reproduksi manusia.					
27.	Saya akan menghindari sumber- sumber materi sistem reproduksi manusia yang tidak akurat untuk pengambilan keputusan.					

Na	Dawnistaan	Jawaban					
No.	Pernyataan	SS	S	R	TS	STS	
28.*	Saya tidak selalu menilai segala sesuatu tentang materi sistem reproduksi manusia berdasarkan kebenaran yang berlaku umum.						
29.	Saya selalu menilai materi sistem reproduksi manusia berdasarkan kebenaran yang berlaku umum.						
30.	Saya selalu mengungkapkan kesimpulan tentang materi sistem reproduksi manusia tanpa mempertimbangkan lagi pernyataan yang saya ungkapkan tepat atau tidak.						
31.	Saya akan mengolah informasi- informasi baru terlebih dahulu tentang materi sistem reproduksi manusia sebelum saya mengambil suatu keputusan.						
32.	Saya akan menghindari pengambilan keputusan tentang materi sistem reproduksi manusia terlalu cepat.						
33.	Saya akan melihat terlebih dahulu suatu persoalan tentang materi sistem reproduksi manusia dengan teliti sebelum saya membuat kesimpulan.						
34.	Saya tidak selalu dapat mengungkapkan kesimpulan dari materi sistem reproduksi manusia yang dipelajari di setiap pertemuan.						
35.	Saya tidak melakukan analisa terlebih dahulu sebelum menyimpulkan suatu permasalahan tentang materi sistem reproduksi manusia.						
36.	Saya lebih menyukai pilihan yang bersifat rasional dalam suatu proses pengambilan keputusan tentang materi sistem reproduksi manusia.						

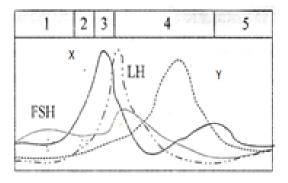
Nia	Dornyataan		Jawaban					
No	Pernyataan	SS	S	R	TS	STS		
37.*	Saya akan mencari latar belakang dari suatu teori materi sistem reproduksi manusia yang menjadi pembahasan di kelas dari berbagai sumber literatur yang akurat.							
38.	Saya mencari sumber literatur tentang materi sistem reproduksi manusia yang dapat dipercaya untuk mendukung kebenaran.							
39.*	Saya kesulitan mendapatkan teori sistem reproduksi manusia yang akurat untuk mendukung argumen yang saya kemukakan.							
40.	Saya sering merasa tidak yakin dengan hasil yang sudah saya dapatkan tentang materi sistem reproduksi manusia dari berbagai macam sumber.							
41.	Saya akan mengoreksi penggunaan kata-kata materi sistem reproduksi manusia yang kurang tepat.							
42.	Sebisa mungkin saya akan menggunakan bahasa sendiri untuk menjelaskan istilah-istilah baru dalam proses pembelajaran materi sistem reproduksi manusia.							
43.	Saya mencari berbagai macam definisi dan istilah baru tentang materi sistem reproduksi manusia dari yang saya dengar, baca, dan lihat (guru, buku, internet, dll).							
44.	Saya lebih suka menghafal definisi suatu istilah pada materi sistem reproduksi manusia daripada menggunakan bahasa sendiri.							
45.	Saya terbiasa mencatat definisi tentang materi sistem reproduksi manusia hanya dari sumber yang saya baca tanpa membandingkan dengan sumber lainnya.							

	D	Jawaban					
No.	Pernyataan	SS	S	R	TS	STS	
46.	Saya lebih menyukai penilaian tentang materi sistem reproduksi manusia yang didasarkan oleh alasan yang logis.						
47.	Saya selalu memperkuat pendapat saya tentang materi sistem reproduksi manusia berdasarkan bukti yang akurat dengan menyebutkan sumbernya.						
48.*	Saya akan mengeluarkan pendapat pribadi jika saya memiliki gagasan yang baru tentang materi sistem reproduksi manusia						
49.	Saya tidak mampu mengungkapkan pendapat tentang materi sistem reproduksi manusia dengan landasan bukti yang tepat.						
50.	Saya tidak dapat membedakan antara pernyataan dan penjelasan dari suatu teori materi sistem reproduksi manusia.						
51.	Saya selalu mencari tindakan alternatif terbaik untuk memecahkan suatu masalah pada materi sistem reproduksi manusia.						
52.	Saya lebih memilih menentukan tindakan yang lebih masuk akal jika berhubungan dengan materi sistem reproduksi manusia.						
53.*	Saya merasa kesulitan bila diberikan tugas untuk menentukan pendapat dari suatu teori materi sistem reproduksi manusia yang bersifat kontroversi.						
54.	Saya selalu mempertimbangkan solusi terbaik dalam segala tindakan yang berhubungan dengan materi sistem reproduksi manusia.						
55.	Saya selalu mengikuti pendapat orang lain tentang materi sistem reproduksi manusia. yang ditemukan di internet dan buku.						

Na	Downwetcom	Jawaban SS S R TS	J	awab	an	
No.	Pernyataan		TS	STS		
56.	Saya dapat menghormati adanya perbedaan pendapat dengan orang lain tentang materi sistem reproduksi manusia sebagai wujud adanya toleransi.					
57.	Saya berusaha menghindari perdebatan yang berhubungan dengan materi sistem reproduksi manusia tanpa adanya dasar logika yang benar.					
58.*	Saya tidak akan menghindari perdebatan tentang materi sistem reproduksi manusia yang akan menimbulkan pertengkaran.					
59.	Saya lebih suka mengerjakan tugas individu tentang materi sistem reproduksi manusia dibandingkan harus berdiskusi.					
60.	Saya termasuk ke dalam kelompok peserta didik yang pasif jika diskusi kelompok tentang materi sistem reproduksi manusia sedang berlangsung.					

Lampiran 4. Instrumen Hasil Belajar Kognitif Materi Sistem Reproduksi Manusia

I. Identitas responden


Nama : Kelas : No. Hp : Email :

- II. Petunjuk Pengisian : Pertanyaan dibawah ini terdiri atas lima pilihan jawaban. Pilihlah salah satu yang paling tepat dan benar, lalu beri tanda silang (x) pada pilihan jawaban kalian.
- 1. Organ reproduksi pada pria yang merupakan tempat pembentukan sperma, pernyataan tersebut mengidentifikasi tentang
 - a. skrotum
 - b. vas deferens
 - c. duktus epididimis
 - d. vesikula seminalis
 - e. tubulus seminiferus
- 2. Pasangan struktur organ pria dan wanita berikut yang homolog dalam hal fungsi adalah
 - a. penis klitoris
 - b. penis labium
 - c. sperma folikel
 - d. vas deferens serviks
 - e. tubulus seminiferus vagina
- 3. Oogenesis terjadi sejak bayi masih dalam kandungan, kemudian akan mengalami masa istirahat sampai seorang wanita mengalami masa pubertas. Pembelahan yang menghasilkan oosit primer dan terjadi pada tahap meiosis I. Pembelahan tersebut menunjukkan pembelahan yang terjadi pada saat
 - a. bayi masih dalam kandungan
 - b. sebelum terjadinya pubertas
 - c. setelah terjadinya pubertas
 - d. masa pubertas
 - e. bayi baru lahir
- 4.* Proses pembentukan sel-sel germinativum yang terdiri dari spermatogenesis dan oogenesis. Hal ini menyatakan tentang proses

.. .

- a. spermiogenesis
- b. gametogenesis
- c. organogenesis
- d. fertilisasi

- e. gestasi
- 5. Ovarium akan melepaskan oosit sekunder pada tahap metafase II. Hal ini mengidentifikasi proses
 - a. laktasi
 - b. gestasi
 - c. ovulasi
 - d. fertilisasi
 - e. menstruasi
- 6. Perhatikan grafik kadar hormon selama siklus menstruasi berikut!

Hormon X dan Y menggambarkan tentang hormon

- a. FSH dan LH
- b. GnRH dan FSH
- c. estrogen dan LH
- d. progesteron dan GnRH
- e. estrogen dan progesteron
- 7. Salah satu alat kontrasepsi menggunakan gabungan estrogen sintetis dan progesteron sintetis. Hal itu menunjukkan alat kontrasepsi berupa
 -
 - a. pil KB
 - b. vasektomi
 - c. interupsi koitus
 - d. intrauterine device
 - e. kontasepsi barier kimia
- 8. Berikut manfaat ASI:
 - 1) Merangsang uterus untuk melebar
 - 2) Berat badan cepat kembali normal setelah hamil dan melahirkan
 - 3) Menyebabkan kanker payudara, ovarium, dan rahim
 - 4) Sebagi kontrasepsi alamiah
 - 5) Menyebabkan osteoporosis dan artritis
 - 6) Mengurangi stres dan gelisah
 - 7) Meningkatkan daya tahan tubuh ibu

8) Menghemat pengeluaran keuangan keluarga

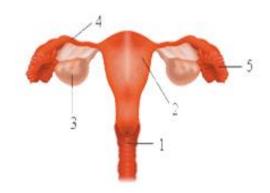
Manfaat ASI bagi ibu yang benar ditunjukkan oleh nomor

- a. 1, 2, 4, dan 8
- b. 1, 3, 4, dan 6
- c. 1, 4, 6, dan 7
- d. 2, 4, 6, dan 8
- e. 3, 4, 6, dan 8
- 9. Berikut adalah penyakit yang menyerang organ reproduksi manusia:
 - 1. Kutil pada kelamin
 - 2. Sifilis
 - 3. Chlamydia
 - 4. Gonorrhea
 - 5. Herpes genitalis

Penyakit pada organ reproduksi manusia yang *bukan* disebabkan oleh virus ditunjukkan oleh nomor

- a. 1, 2, dan 5
- b. 1, 3, dan 4
- c. 2, 3, dan 4
- d. 2, 4, dan 5
- e. 3, 4, dan 5
- 10. Berikut ini adalah penyakit pada organ reproduksi:
 - 1. Epididimitis
 - 2. Prostatitis
 - 3. Hipogonadisme
 - 4. Endometriosis
 - 5. Dismenorhea
 - 6. Amenorhea

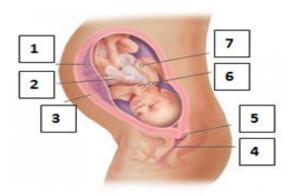
Penyakit yang dapat terjadi pada organ reproduksi wanita ditunjukkan oleh nomor


- a. 1, 3, dan 4
- b. 1, 3, dan 5
- c. 2, 4, dan 5
- d. 2, 5, dan 6
- e. 4, 5, dan 6
- 11. Berikut merupakan organ penyusun sistem reproduksi:
 - 1. Ovarium
 - 2. Skrotum
 - 3. Mons pubis
 - 4. Labia major
 - 5. Testis

- 6. Tuba Fallopi
- 7. Uretra
- 8. Epididimis

Pengelompokkan organ reproduksi wanita ditunjukkan oleh nomor

- a. 1, 2, 4, dan 8
- b. 1, 3, 4, dan 6
- c. 1, 4, 6, dan 7
- d. 2, 4, 6, dan 8
- e. 3, 4, 6, dan 8


12. Perhatikan gambar berikut!

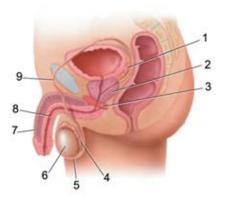
Berdasarkan gambar di atas, organ reproduksi yang menjelaskan tentang fungsi tempat terjadinya fertilisasi, tempat implantasi zigot, dan alat kopulasi ditunjukkan oleh nomor

- a. 1, 2, dan 4
- b. 2, 5, dan 1
- c. 3, 1, dan 2
- d. 4, 2, dan 1
- e. 5, 4, dan 1
- 13. Pembentukan sel telur sampai terbentuknya ovum yang matang terjadi melalui pembelahan meiosis yang terjadi dalam 2 tahap, yaitu meiosis I dan meiosis II. Pembelahan meiosis II di ovarium tidak berlangsung sampai selesai. Pernyataan tersebut menerangkan bahwa kelanjutan proses meiosis II dipengaruhi oleh
 - a. hormon estrogen
 - b. hormon progesteron
 - c. ada tidaknya ovulasi
 - d. ada tidaknya fertilisasi
 - e. ada tidaknya menstruasi

- 14. Jika spermatozoa masuk ke dalam sel telur, maka pernyataan berikut yang menjelaskan proses selanjutnya yang benar adalah
 - a. Sel telur akan menuntaskan pembelahan tahap metafase I.
 - b. Sel telur akan menuntaskan pembelahan tahap meiosis II.
 - c. Sel telur akan menuntaskan pembelahan tahap meiosis I.
 - d. Sel telur akan menuntaskan pembelahan tahap profase I.
 - e. Sel telur akan menuntaskan pembelahan tahap mitosis.
- 15. Korpus luteum menghasilkan hormon yang berfungsi untuk melunakkan serviks serta melonggarkan tulang panggul sehingga mempermudah persalinan. Pernyataan di atas menguraikan fungsi dari hormon
 - a. relaksin
 - b. estrogen
 - c. oksitosin
 - d. progesteron
 - e. prostaglandin
- 16.* Perhatikan gambar berikut!

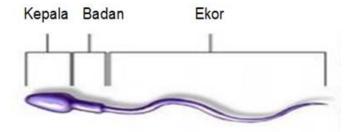
Pernyataan yang benar untuk menjelaskan fungsi struktur nomor 3 adalah

- a. Sebagai organ pencernaan dan pernapasan awal janin.
- b. Melindungi janin dari guncangan dan perubahan suhu.
- c. Membentuk sel-sel darah dan pembuluh darah.
- d. Menyekresikan hormon HCG.
- e. Membentuk tali pusar.
- 17. Lapisan pada dinding rahim yang tersusun atas sel-sel epitel, menghasilkan lendir, mengandung banyak pembuluh darah, dan mengalami penebalan karena pengaruh hormon estrogen dan progesteron. Lapisan tersebut menggambarkan tentang
 - a. endometrium
 - b. infundibulum
 - c. perimetrium


- d. miometrium
- e. ampula
- 18. Urutan yang benar, sperma saat diejakulasi dari tubuh adalah
 - a. testis epididimis saluran ejakulasi vas deferens uretra
 - b. testis vas deferens epididimis saluran ejakulasi uretra
 - c. testis uretra saluran ejakulasi vas deferens epididimis
 - d. testis saluran ejakulasi uretra vas deferens epididimis
 - e. testis epididimis vas deferens saluran ejakulasi uretra
- 19.* Urutan pernyataan yang benar tentang hormon yang terlibat dalam pembentukan sel telur dan pelepasan folikel dari ovarium adalah hormon
 - a. laktogenik dan gonadotropin
 - b. laktogenik dan progesteron
 - c. FSH dan oksitosin
 - d. estrogen dan LH
 - e. FSH dan LH
- 20. Pernyataan di bawah ini yang merupakan urutan paling benar dalam peristiwa spermatogenesis adalah
 - a. spermatid spermatosit sekunder spermatosit primer spermotogonium spermatozoa
 - b. spermatosit primer spermatogonium spermatosit sekunder spermatid spermatozoa
 - c. spermatogonium spermatosit primer spermatosit sekunder spermatid spermatozoa
 - d. spermatosit primer spermatosit sekunder spermatogonium spermatid spermatozoa
 - e. spermatid spermatogonium spermatosit primer spermatosit sekunder spermatozoa
- 21.* Hanya ibu hamil yang dapat memproduksi hormon
 - a. LH
 - b. FSH
 - c. HCG
 - d. progesteron
 - e. prostaglandin
- 22. Perhatikan pernyataan berikut!
 - 1. Plasenta keluar
 - 2. Amnion pecah
 - 3. Leher rahim melebar
 - 4. Tali pusar dipotong
 - 5. Fetus keluar
 - 6. Terjadi kontraksi

Urutan rangkaian peristiwa yang benar dalam proses melahirkan adalah

- a. 3-2-6-4-1-5
- b. 3-6-4-2-1-5
- c. 4-5-6-1-2-3
- d. 6 2 3 5 4 1
- e. 6 3 2 4 5 1
- 23. Untuk mencegah terjadinya kehamilan dalam melaksanakan program keluarga berencana, pemerintah telah menggalakkan berbagai cara kontrasepsi. Salah satunya adalah dengan cara kontrasepsi permanen, yaitu kontrasepsi dengan melakukan sterilisasi bedah. Pernyataan di atas menguraikan mengenai kontrasepsi permanen yang biasa dikenal dengan nama
 - a. pil KB dan IUD
 - b. IUD dan vasektomi
 - c. vasektomi dan tubektomi
 - d. pemakaian kondom dan pil KB
 - e. penggunaan spermisida dan kondom
- 24.* Di bawah ini yang menjelaskan tentang fungsi dari hormon prolaktin pada laktasi adalah untuk
 - a. menyintesis enzim-enzim untuk berhenti produksi susu
 - b. merangsang pertumbuhan puting, dan areola
 - c. merangsang perkembangan kelenjar mamae
 - d. merangsang pertumbuhan payudara
 - e. merangsang pengeluaran susu
- 25. Salah satu tindakan pengontrolan kehamilan adalah mencegah terjadinya implantasi embrio pada endometrium. Tindakan demikian dilakukan dengan menggunakan
 - a. IUD
 - b. pil KB
 - c. tubektomi
 - d. vasektomi
 - e. spermatisida
- 26. Penurunan mendadak estrogen dan progesteron akibat keluarnya plasenta saat kelahiran bayi menggambarkan terjadinya
 - a. laktasi
 - b. gestasi
 - c. ovulasi
 - d. fertilisasi
 - e. menstruasi

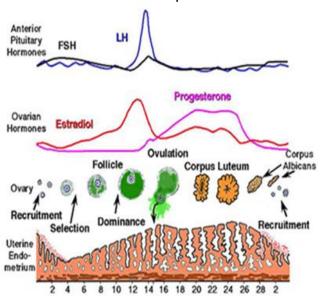

- 27. Suatu penyakit kelamin yang disebabkan oleh bakteri *Treponema pallidum* dengan gejala yang ditandai rasa nyeri pada tempat infeksi, demam, ruam pada kulit, dan keluhan sakit pada sendi dan otot, yang kemudian berakhir dengan degenerasi pada organ-organ dan syaraf. Pernyataan di atas menguraikan mengenai penyakit
 - a. AIDS
 - b. sifilis
 - c. herpes
 - d. clamydia
 - e. gonorrhea
- 28.* Mola hidatidosa (hamil anggur) adalah kegagalan dalam pembentukan janin sehingga tidak ada janin yang tumbuh di dalam rahim. Pernyataan berikut yang menjelaskan kondisi mola hidatidosa adalah
 - a. Hanya gelembung (mola) dan darah berwarna biru.
 - b. Hanya gelembung (mola) dan darah yang membeku.
 - c. Hanya gelembung (mola) dan darah berwarna putih.
 - d. Hanya gelembung (mola) dan darah yang merembes.
 - e. Hanya gelembung (mola) dan darah berwarna hitam.
- 29. Seorang bayi laki-laki mengalami kegagalan testis turun ke dalam skrotum, sehingga testis berada pada lingkungan suhu yang lebih tinggi daripada suhu optimum spermatogenesis. Pernyataan di atas menggambarkan gangguan yang disebut dengan
 - a. amenore sekunder
 - b. amenore primer
 - c. hipogonadisme
 - d. kriptorkidisme
 - e. dismenore
- 30. Hipermonorea adalah keadaan menstruasi dengan jumlah pendarahan banyak dan melebihi batas normal. Salah satu faktor penyebabnya adalah dengan cara menyelidiki adanya
 - a. kekurangan gizi
 - b. infeksi bakteri
 - c. infeksi virus
 - d. mioma uteri
 - e. stress

31. Perhatikan gambar berikut ini!

Jika saluran nomor 9 diputus atau diikat, maka dapat disimpulkan bahwa

- a. sperma menjadi abnormal
- b. semen tidak dapat diproduksi lagi
- c. sperma tidak akan diproduksi lagi
- d. pria tersebut akan menderita impotensi
- e. saat ejakulasi sperma tidak ikut keluar
- 32. Pada saat proses fertilisasi, sperma akan menghampiri ovum. Kemudian, sperma akan masuk ke dalam ovum. Berdasarkan hasil analisis, sperma dapat menembus lapisan-lapisan pelindung ovum karena
 - a. mengeluarkan enzim hialuronidase
 - b. mempunyai hormon testosteron
 - c. mengandung senyawa kimiawi
 - d. menghasilkan zat protein
 - e. melepaskan ekornya
- 33. Perhatikan gambar struktur sperma berikut!

Sel sperma dapat melakukan pergerakan untuk menghampiri sel ovum. Hal ini membuktikan bahwa pada badan sel sperma mengandung....


- a. retikulum endoplasma
- b. mitokondria
- c. badan golgi
- d. kromosom
- e. vakuola
- 34. Di bawah ini yang menafsirkan tentang fungsi dari sel sertoli adalah ...

a. menampung sperma

- b. menggerakkan sperma
- c. memberi nutrisi pada sperma
- d. menghasilkan hormon testosteron
- e. menyimpan dan mematangkan sperma
- 35. Proses spermatogenesis dengan oogenesis memiliki beberapa perbandingan, *kecuali* pada
 - a. waktu terjadinya
 - b. tempat terjadinya
 - c. tipe pembelahannya
 - d. sel induknya yang membelah
 - e. jumlah sel kelaminnya yang fungsional
- 36. Di bawah ini pernyataan yang benar tentang membandingkan hasil oogenesis dengan spermatogenesis yaitu
 - a. Oogenesis menghasilkan 1 ovum yang fungsional dan 3 badan polar, sedangkan spermatogenesis menghasilkan 4 spermatozoa fungsional.
 - b. Oogenesis menghasilkan 3 ovum yang fungsional dan 1 badan polar, sedangkan spermatogenesis menghasilkan 4 spermatozoa fungsional.
 - c. Oogenesis menghasilkan 1 ovum yang fungsional dan 3 badan polar, sedangkan spermatogenesis menghasilkan 4 spermatozoa nonfungsional.
 - d. Oogenesis menghasilkan 2 ovum yang fungsional dan 2 badan polar, sedangkan spermatogenesis menghasilkan 4 spermatozoa nonfungsional.
 - e. Oogenesis menghasilkan 4 ovum yang fungsional, sedangkan spermatogenesis menghasilkan 4 spermatozoa fungsional.
- 37. Suhu lingkungan testis beberapa derajat lebih rendah daripada suhu tubuh. Hal tersebut diciptakan oleh
 - a. otot kremaster pada skrotum
 - b. otot kremaster pada testis
 - c. otot dartos dan kremaster
 - d. otot dartos pada skrotum
 - e. otot dartos pada testis

- 38. Pada masa reproduktif, konsentrasi hormon estrogen meningkat dapat membuat
 - a. Lapisan vagina mengkerut
 - b. Lapisan vagina berkurang
 - c. Lapisan vagina menyusut
 - d. Lapisan vagina menebal
 - e. Lapisan vagina menipis
- 39.* Proses spermatogenesis dapat selalu terjadi jika mengaitkan sifat spermatogonium berikut ini yaitu
 - a. sel spermatogonium akan membelah terus-menerus
 - b. satu spermatogonium dapat menghasilkan ratusan sperma
 - c. sejak lahir laki-laki mempunyai jumlah spermatogonium yang sangat banyak
 - d. satu spermatogonium dapat menghasilkan 1 sel sperma yang kemudian akan membelah tidak terbatas
 - e. satu spermatogonium akan membelah secara meiosis kemudian dilanjutkan pembelahan secara mitosis tanpa batas
- 40. Sebelum ovulasi, oosit primer (2n) dalam folikel matang mengalami pembelahan meiosis I dengan pembagian sitoplasma yang tidak sama. Kesimpulan yang dapat terjadi pada pembelahan meiosis I adalah
 - a. ovum (n) yang berukuran besar dan badan polar II (n) yang berukuran kecil
 - b. oosit sekunder (n) yang berukuran besar dan badan polar I (n) yang berukuran kecil
 - c. oosit sekunder (n) yang berukuran besar dan badan polar II (n) yang berukuran kecil
 - d. oosit sekunder (n) yang berukuran kecil dan badan polar I (n) yang berukuran besar
 - e. oosit sekunder (n) yang berukuran kecil dan badan polar II (n) yang berukuran besar
- 41. Dua spermatosit sekunder (n) diciptakan pada saat
 - a. setiap spermatosit primer (2n) membelah pada meiosis ii
 - b. setiap spermatosit primer (2n) membelah pada meiosis i
 - c. dua spermatosit primer (2n) membelah pada meiosis ii
 - d. dua spermatosit primer (2n) membelah pada meiosis i
 - e. dua spermatosit primer (2n) membelah pada mitosis
- 42. Ootid (n) dan badan polar II (n) terbentuk pada saat pembelahan meiosis berlanjut. Hal tersebut memperjelas bahwa
 - a. oosit primer terovulasi dibuahi oleh sperma
 - b. oosit sekunder terovulasi dibuahi oleh sperma
 - c. oosit primer terlisiskan karena terbentuknya badan polar

- d. oosit sekunder terlisiskan karena terbentuknya badan polar
- e. oosit primer dan oosit sekunder terlisiskan pada tahap meiosis I dan II
- 43.* Hubungan estrogen dengan ovulasi yang benar adalah
 - a. Menyebabkan korpus luteum menghasilkan progesteron yang akan menyebabkan folikel pecah.
 - b. Merangsang hipofisis untuk mensekresikan LH yang menyebabkan folikel pecah.
 - c. Merangsang hipofisis untuk mensekresikan FSH yang akan menyebabkan folikel pecah.
 - d. Merangsang hipofisis untuk menghasilkan LH dan FSH sehingga folikel tumbuh.
 - e. Merangsang folikel untuk menghasilkan progesteron yang tinggi sehingga folikel pecah.
- 44. Perhatikan gambar siklus menstruasi pada wanita berikut!

Berdasarkan gambar tersebut, manakah analisis pernyataan yang paling benar

- a. Masa subur wanita pada hari ke-28, saat sel telur dilepaskan.
- b. Fertilisasi dapat terjadi pada hari ke-5 karena kadar estrogen sangat tinggi.
- c. Menstruasi terjadi pada hari ke-14, karena kadar progesteron sangat tinggi.
- d. Ovulasi terjadi pada hari ke-14, pada saat dinding endometrium terkelupas dan meluruh.
- e. Pertumbuhan folikel primer terjadi pada hari ke-1 hingga ke-14, yang dirangsang oleh hormon FSH.

45. Andi dan Ani adalah saudara kembar, tetapi keduanya berbeda jenis kelamin dan tidak mirip. Proses ini dapat terjadi karena didukung oleh

...

- a. satu sel telur dibuahi oleh 2 sperma
- b. dua sel telur yang dominan dibuahi oleh satu sperma
- c. pada saat perkembangan, embrio membelah menjadi 2
- d. zigot berasal dari 2 sel telur berbeda yang masing-masing dibuahi spermatozoa
- e. satu sel telur dibuahi oleh satu spermatozoa kemudian menghasilkan 1 zigot
- 46.* Proses persalinan memiliki beberapa tahap. Tahap persalinan (partus) yang diprediksi memerlukan waktu paling lama adalah
 - a. kelahiran bayi
 - b. dilatasi serviks
 - c. kelahiran plasenta
 - d. pembukaan vagina
 - e. pemotongan tali pusar
- 47. Pernyataan berikut yang menyimpulkan tentang prinsip dari penggunaan alat kontrasepsi barier adalah
 - a. Mengganggu implantasi ovum yang telah dibuahi dengan cara mengubah lingkungan uterus.
 - b. Menghalangi sperma menyatu dengan oosit.
 - c. Kauterisasi duktus vas deferen.
 - d. Pengikatan tuba uterin.
 - e. Menghalangi ovulasi.
- 48.* Anak akan merasa nyaman dalam pelukan ibu. Pernyataan tersebut mengaitkan bahwa ASI dapat
 - a. meningkatkan jalinan kasih sayang ibu dan anak
 - b. meningkatkan kekebalan tubuh ibu dan anak
 - c. meningkatkan kecerdasaran ibu dan anak
 - d. meningkatkan kesehatan ibu dan anak
 - e. meningkatkan nutrisi ibu dan anak
- 49. Jika seseorang terkena penyakit yang disebabkan oleh virus, dan ditimbulkan melalui kontak seksual sehingga tidak dapat disembuhkan. Kesimpulan yang dapat diambil seseorang tersebut menderita penyakit
 - a. herpes genital
 - b. kriptorkidisme
 - c. dismenore
 - d. clamydia
 - e. sifilis

- 50. Jika seseorang mengalami gangguan aliran darah haid atau nyeri haid tanpa tanda-tanda infeksi, disebabkan oleh sekresi prostaglandin yang berlebihan sehingga merangsang kontraksi otot polos meometrium dan mengkontriksi (menyempitkan) pembuluh darah uterus. Kesimpulan yang dapat diambil, seseorang tersebut menderita
 - a. dismenore
 - b. kriptorkidisme
 - c. hipogonadisme
 - d. amenore primer
 - e. amenore sekunder
- 51. Pemberian pil KB kepada peserta keluarga berencana mendukung untuk
 - a. menghambat terjadinya ovulasi
 - b. mempercepat teriadinya ovulasi
 - c. membunuh sel telur yang telah dibuahi
 - d. menghambat pertumbuhan embrio dalam rahim
 - e. mematikan sel sperma di dalam saluran reproduksi wanita
- 52. Hormon yang dapat merangsang kelenjar mammae untuk pengeluaran air susu merupakan pernyataan yang memperjelas fungsi dari
 - a. progesteron
 - b. oksitosin
 - c. estrogen
 - d. FSH
 - e. LH
- 53. Pembesaran payudara pria akibat produksi estrogen yang berlebihan, pernyataan tersebut menyimpulkan tentang penyakit
 - a. hipogonadisme
 - b. kriptorkidisme
 - c. ginekomastia
 - d. prostatitis
 - e. orkitis
- 54.* Penyakit radang panggul (PRP) disebabkan oleh infeksi bakteri seperti *Escherichia coli, Neisseria gonorrhoeae,* dan *Chlamydia trachomatis*. Hal ini menyimpulkan penyakit yang terjadi pada radang saluran genitalia yaitu
 - a. vulva, uterus, dan ovarium
 - b. vulva, vagina, dan ovarium
 - c. vagina, uterus, dan ovarium
 - d. vagina, tuba fallopi, dan ovarium
 - e. uterus, tuba fallopi, dan ovarium

55. Sel-sel blastosit bagian dalam, berkembang menjadi embrioblas (bakal embrio) yang memiliki 3 lapisan jaringan dasar, yaitu ektoderm, mesoderm, dan endoderm. Pada bagian mesoderm akan membentuk

...

- a. sistem rangka, urinaria, sistem sirkulasi, dan sistem reproduksi
- b. sistem saraf, indra, kulit, dan kelenjar endokrin
- c. sistem reproduksi, kulit, rambut, dan mata
- d. saluran pencernaan dan pernapasan
- e. jantung, dan pembuluh darah
- 56.* Janin dilingdungi oleh beberapa membran, yaitu: amnion, kantong kuning telur, korion, dan alantois. Alantois merupakan membran yang mengandung banyak pembuluh darah (arteri dan vena umbilikus), dan akan membentuk
 - a. tali pusar yang berfungsi untuk menghubungkan janin dengan vagina ibu
 - b. tali pusar yang berfungsi untuk menghubungkan janin dengan uterus ibu
 - c. tali pusar yang berfungsi untuk menghubungkan janin dengan plasenta
 - d. tali pusar yang berfungsi untuk menghubungkan janin dengan amnion
 - e. tali pusar yang berfungsi untuk menghubungkan janin dengan korion
- 57.* Angka kelahiran dapat diatur dengan
 - a. metode kontrasepsi yang dilaksanakan secara berbeda-beda
 - b. metode kontrasepsi yang dilaksanakan secara berangsur
 - c. metode kontrasepsi yang dilaksanakan secara intensif
 - d. menyiapkan metode metode kontrasepsi
 - e. merencanakan metode kontrasepsi
- 58. Perhatikan metode kontrasepsi berikut ini!
 - 1. Jeli
 - 2. Busa
 - 3. Pil KB
 - 4. Krim
 - 5. IUD
 - 6. Supositoria spermisida

Kategorikanlah yang termasuk metode kontrasepsi jenis kontrasepsi kimiawi

- a. 1, 2, 3, dan 4
- b. 1, 2, 4, dan 6
- c. 1, 3, 5, dan 6
- d. 2, 3, 4, dan 5

- e. 3, 4, 5, dan 6
- 59. Infeksi penyakit menular seksual dapat diciptakan akibat dari
 - a. meminum dengan wadah yang sama dengan penderita
 - b. memakan jenis makanan yang sama dengan penderita
 - c. penggunaan jarum suntik bersama dengan penderita
 - d. bergonta-ganti pasangan dalam melakukan coitus
 - e. berbicara dalam jarak dekat dengan penderita
- 60. Bila X adalah penyebab penyakit menular seksual dan Y adalah nama penyakit menular seksual, maka kombinasi pasangan yang tepat adalah

	X	Y
a.	Chlamydia trachomatis	Klamidia
b.	Neisseria gonorrhoeae	Siflis
C.	Treponema pallidum	Gonorrhea
d.	Virus herpes	AIDS
e.	HIV	Herpes

Lampiran 5. Kunci Jawaban Instrumen Hasil Belajar Kognitif Materi Sistem Reproduksi Manusia

Kunci Jawaban:

1. E	11. B	21. C	31. E	41. B	51. A
2. A	12. D	22. D	32. A	42. B	52. B
3. B	13. D	23. C	33. B	43. B	53. C
4. B	14. B	24. C	34. C	44. D	54. E
5. C	15. A	25. A	35. C	45. D	55. A
6. E	16. B	26. A	36. A	46. B	56. C
7. A	17. A	27. B	37. A	47. B	57. C
8. D	18. E	28. B	38. D	48. A	58. B
9. C	19. E	29. D	39. A	49. A	59. D
10. E	20. C	30. D	40. B	50. A	60. A

Lampiran 6. Pengujian Validitas Intrumen Penelitian

1. Uji Validitas Instrumen Persepsi Diri terhadap Kemampuan Berpikir Kritis dengan Menggunakan *Pearson Product Moment*

a. Hipotesis

H₀ : Data Valid

H₁ : Data Tidak Valid

b. Kriteria Pengujian

Terima H₀, jika r hitung > r tabel

Tolak H₀, jika r hitung < r tabel

c. Hasil Perhitungan

Rumus:

$$r_{hitung} = \frac{(n. \sum XY) - (\sum X)(\sum Y)}{\sqrt{\{n. \sum X^2 - (\sum X)^2\}\{n. \sum Y^2 - (\sum Y)^2\}}}$$

Keterangan

r hitung = Angka korelasi

 $\sum X$ = Jumlah skor tiap butir pernyataan

 $\sum Y$ = Jumlah skor total

n = Jumlah responden

d. Kesimpulan

Berdasarkan hasil validasi instrumen persepsi diri terhadap kemampuan berpikir kritis didapatkan sebanyak 50 butir pernyataan valid dan 10 butir pernyataan yang tidak valid.

Tabel 8. Pengujian Validitas Instrumen Persepsi Diri terhadap Kemampuan Berpikir Kritis

	8	83	217	93	215	88	8	92	83	98	197	88	184	167	88	301	88	219	16	7₫	83	83	\$ \$	3 35	12	12	214	88	Ø	83	88	23	38	191	89	23	1			
F	8	2 '	3	60	2 2	2	-	3	%	20	_ر	, 7	3	3	, +	3 ,	, 7	2 2	,	60	2		-4 0	_	2	20	7	-	7	-		e .	7	2 '	2		\$	334	9	83
	8	5	þ	3	2	4	4	3	3	†	3	9	3	1	4	3	2	3	3	33	4	-	4 0	, e	7	4	2	2	~	4		e	2	2	2	4		0,334 0,334	JITWI (OTWA	0816 1.279
	28	2	3	en	2	2	-	~	3	4	en	2	3	+	2	2	2	3	33	2	e	2	2 0	. ~	-	-	2	en	-	7	en	es	-	-	-	-	0.16456 0.35	038 038	MALD	82
	25	3	7		3	S	S	3	4	7	8	en	3	5	+	+		2	3		2	S	4 0	, 4	-	4	4	S	S	4	-	~		4	S.	4	88	038	VALD	0.593
	æ	4	3	4	4	5	4	3	4	†	3	3	3	5	4	4	†	2	3	~+	5	~+	- 	>	4	~+	7	2	S	2	-3	e	~+	3	5	S	0,63	0,334	(WALID	0.593
	នេ	3	2	~	2	~	7	3	2	4	~	7	3	2	3	3	7	3	4	~	e	7	en e	7 ~	7	2	4	~	~	7	7	en	~	e	2		038	0,334 0,334 0,334	/ALD\VALD\VALD\VALD	0.771 0.797 0.593 0.593
	35	3	2		S	~+	~	2	4	7	es	4	2	5	4	5	4	2	4	S	4	S	4 0	_	4	4	~	S	4	~				4		en	1 0.41		D/W	
	æ	3	2	2	3	2	4	3	2	S	3	2	3	1	3	3	2	2	2	3	2	2	~ ~	2	3	7	~	2	7	_	_	~	2	3	2	7	0.2111	4 0,334	DWA	2 0.961
	51 52	3 4	2	2	3 4	4	~	3	4 5	5	3 3	3 3	3 3	5 4	†	†	7	4 2	3 4	4	4 4	7	4 0	, -	3 4	-	3	2	~	~	3	3 4	3 4	3 5	5	4	0.4 0.47	0,334 0,334 0,334	VALIDIVALDIVALD	0.885 0.707 0.378 0.542
	50	3	2 1	°	3	-	-	3	3	7	3	2	3	1	3 7	3 4	2 '	2	3	°	3	4	e c	, es	en	7	e2	e5	~	7 7	e2	e .	7	2	4	-	880	38403	ALD WA	707
	\$	7	3	2	+	~	-	3	2	7	~	~	3	1	3	3	2	5	7		3	e	e .	. ~	~	2	~	en	~	-	~	7	~	2	~+	en	8	0,334 0	MLIDV.	98
	*	4	3	2	+	2		2	2	7	33	3	4	3	3	4	33	5	4	2	4	2	7	4 ~	~	2	~	4	~	7	en	~	es	2	7	2	0.01421	0334	WALD	0.743
	5	+	7	~+	4	~+	~	3	4	7	60	~	3	2	4	4		+	+		4		-4 0	, -,	-		→	2		2	-3		-,	3		S	8		(ALD N	
	9	3	2		3	~+	-,	3	2	2	~	e	3	5	4	4	7	3	2	2	-,		4 0	> -3	-	4	4	2	4	-	-3	-3		3	7	20	89	0,334 0,334 0,334	VALDIV	1216 0.485 0.307
	\$	†	7	2	4	4	2	2	4	7	4	5	2	4	3	4	7	4	3	2	4	4	4 0		2	2	7	2	_	2	-3	2	~	1	2	2	쫎	0,334	U/A/LD	1216
	#	7	3	2	4	S		e	2	7	2	~	3	-	2	2	2	4	2	S	4	4	2 0	-	S	7	en	en	\rightarrow	en		~	→	e		S	038	4 0334	DWALC	5 1.152
	42 43	4 3	2 4	7	5 4	2		3	5	2		5 +	3 3	5 5	3	3	5	5	7		2		~ ·		4	ε.	5 4	2	22	- -	→	~	~ *	2	2	5	0.4 0.52	0,334 0,334 (0	UD/WIT	290 GH
	4	3 4	3,	-3	2	~,	~	3	٠,	5	3	3 4	3 3	5	3	3	4	5	3	-3	4 4	-4	3 3	3 6	2 5	7	2	~,		2,	4	4	~	٠,	4	2	039	0334 03	4LD/VA	700 05
	9	2	3	2			-	3	2	-	es	2	3	_	3	3	2	2	3	~	~	-	e e	-				7	-	~	7	~	7		~	en	8	0,334 0,	VALDÍVALDÍVALDÍVALDÍVALDÍVALDÍVALDÍVALD	0.936 0.702 0.549 0.625 1.152
	æ	2	-	2	4	2	2	3	4	S	~	2	3	2	3	~	2	-	3	2	~	-,	e .	4 %	-	2	4	-	7	~	7		2	2	~	2	00000	0334	WALD	0800
	25	3	7		2	'n		3	~	4	es	2	3	+	2	3	2	2	3		4		7 .	2	-	en	7	S	7	~	~	7	2	~	2	2	75	0,334	WALIDIN	989
	37	3	3	~+	4	3	3	3	3	->	3	ţ	3	1	3	3	3	3	2	2	3	~+	e .	. ~	-	4	4	4	4	2	٠,		٠,	4	->	2	0.31318	0,334	MALD	7970
	×	3	2	~+	->	~+		3	2	2	~	7	3	+	4	4	7	4	2	2	-3	~+	4 0	, 4	-			2	S		-3	~	-,	3	>		000	0,334 0,334	VALDÍVALDÍVALDÍVALDÍVALDÍVALDÍVALDÍ	1.035 0.479
	×	4	3	7	4	~+	~	3	3	7	7	33	3	3	4	4	-	7	2	2	7	2	4 0	> -4	-	2	7	~	~	-	7	2	2	2	2	-	0.37	0,334	WILD	108
嵳	25	3	3	4	2	2	-	e	e	20	7	2	3	3	3	3	2	2	3	e	က	4	en e		7	4	7	e	-+	7	m	7	7	က	7	m	042	4 0,334	DWALIC	. 1090 9
epikir	33	+	2		*		~	3	4	5	3	4 5	3 3	9 1	3 3	3	3	5 3	3	4	S.	4	en -	-		~	3	3	_	22	7	~ ~	3	1 2	2	2	035 0.51	0,334 0,334 (0	LD/ML	98
puan B	3	3 '	7		+		~	3	2	~	3	~	3	2	3	3	2	5	,	Z,	4		e -	- ~	-	7		-			~ ~	e5	e5	3	4		0,63	38 03	AUD/VA	0.675 0.847 0.492 0.504 0.886
Keman	30	3	3	~	3	S		3	-	es	~	2	3	1	+	+	2	2	2		4		7	, -,	~		~	-		-	e	7		4		S	0.37	0,334 0,334 0,334	WID!	0847
myataar	Ø	2	3	2	2	2	~	3	3	†	2	2	3	2	2	2	3	3	3	2	4	4	2	, «	~	4	~	+	4	7	-3	2	2	4	2	4	88		UNID	900
Butir Pernyataan Kemampuan Berpikir Krifis	25	3	3	2	2	es	es	3	4	-	-	4	3	2	3	3	4	2	3	2	~		en =	· ~	7		2	-		S		e	~	S	7	S	697700	0334	NWALD	9180
	11	2	3	4	4	4	~	3	2	2	2	†	3	5	4	4	7	5	2	3	5	2	-	~ ~	2	4	7	2	4	2	-3	2	4	4	3	4	990	0,334 0,334 0,334	NALD VALDVALDVALD	0.752 0.636 0.886
	8	3	7	~+	4	es	en	3	4	7	2	2	3	5	3	3	7	2	3	~+	4	S	→ ~	_	-		-	S		→		~	→	7	2	S	9036	¥ 039	DWAL	25 063
	83	+	7	-4	-3	S	S		S	50	+	7	3	5	3	3	2	+	3	e	4	4	en -	+		4	~	S	-	4				2	e.	4	600		ID VAI	73
	23 24	3	3	~	4	~	2 1	3 3	1 3	5 3	2 4	3	3 3	1	3 3	3	3	4 2	3	5	3 3			_	2 4	4	4	_	2	_	2 2	2	~	3 1	_	4	5 02268	34 034 34	/ALD N/A	120021
		\sim						~	_	2	~	m										-		o د	2	4	2	2	2	7	7	7	~	~	5	4	9000000	0,334 0,334	IM/Q1	30 1342
		_	3		4	٠.								-		3	_	7	+				_	.				~				-4-1			43	-	18		Ź	0300
	7	3	3	7	4 4	2	2	3	+	7	7	7	3	2 1	3	3 3	4	1	1 1	4	4	4	e e			4	\dashv	_	\rightarrow	\dashv	\rightarrow	\rightarrow	4				-		9	1221
1	7	3 3	3 3	7 7	4 4	5 2	2 2	3 3	5 1	7	7	7 7	3 3	4 2 1	3 3	3 3	3 4 1	5 1	† †	5 4	3 4	4 4	en e		4	2	7	-3-	S		2		3	2	2	4	8	34 0,334	OTW/OT	21 0.778
	20 21	4 3 3	3	3 4 4 4	4 4 4 4	2	2	2 3 3	5 5 1	5 4	2 4 4	2 4 4	3 3 3	2 4 2 1	4 3 3	4 3 3 3	1 3 4 1	1	2 4 4 4	4	1 3 4	1 4 4	2 3 3	> -4	3 4 4	2 5 4	7 7	2 4	\rightarrow	4	4 2	2 4	2 3 4	3 2 3	~	2 4	020679 0.58	0334	WALD	1321
	19 20 21		3 3	7 7	4 4	5 2	2 2			7	7		3 3	3 2 2 4 2 1	3 3	3 3	2 2 1 3 4 1	5 1	† †	5 4	4 1 3 4	4 1 4 4	en e	3 0	4 4 3 4 4		7 7 7	3 3 2 4	3 2	2 2 1 4	\dashv	3 3 2 4	\dashv	-		4 2 4	037 028679 0.58	0,334 0,334	WALD	1321
	20 21	7 7	3 3	7 7	4 4	3 5 5 2	2 3 2 2	3 2	3 5	3 5 4	4 2 4	1 2	3 3 3 3	2	3 4 3 3	3 3	4 2 2 1 3 4 1	4 2 5 1	2 2 4 4	3 3 5 4	1 3 4	4 4 1 4 4	3 2 3 3	9 6	4 4 3 4 4		4 4 4 4	es	3 2	4 2 2 1 4	3 4	~	\dashv	4 3	~	4 4 4 2 4	020679 0.58	0,334 0,334 0,334	WALD	1321
	16 17 18 19 20 21	2 4 4	3 3	7 7	4 4	3 3 5 5 2	2 3 2 2	3 3 2	3 3 5	4 3 5 4	4 4 2 4	2 1 2	3 3 3 3 3	2	3 4 3 3	3 3	2 2 1	4 2 5 1	2 2 4 4	3 3 3 4	4 4 1 3 4	-	3 3 2 3	3 0	3 4 4 3 4 4		7 7	es	5 4 4 3 5	5 4 2 2 1 4	3 3 4	3	4 4 2	4 4 3	4 3 3	7 7	0.48 0.36 0.51 0.37 0.28679 0.58	0,334 0,334 0,334 0,334	WALD	1321
	15 16 17 18 19 20 21	2 4 4	3 3	7 7	4 4	4 4 5 3 3 5 5 2	2 3 2 2	3 3 2	3 4 5 3 3 5	5 4 5 4 3 5 4	4 4 4 2 4	2 1 2	3 3 3 3 3 3	2	3 4 3 3	3 3	4 2 2 1	4 2 5 1	4 3 2 2 4 4	3 3 3 4	2 4 4 1 3 4	-	4 3 3 5 7		4 3 4 4 4 3 4 4		7 7 7	es	4 5 4 4 3 5	4	3 3 4	4 4 3 3	4 4 2	3 4 4 3	4 3 3	7 7	0.36 0.48 0.36 0.51 0.37 0.28679 0.58	0,334 0,334 0,334 0,334 0,334	WALD	1321
	14 15 16 17 18 19 20 21	3 3 3 4 2 4 4	4 3 4 3 4 4 2 3 3	2 2 4 4 4 3 3 4 4	3 2 3 4 4 4 4 4 4 4	5 4 4 5 3 3 5 5 2	1 3 2 2 3 2 2	3 3 3 3 3 3 3 2	5 3 4 5 3 3 5	5 5 4 5 4 3 5 4	4 4 2 4 4 4 2 4	2 2 4 3 2 1 2	3 3 3 3 3 3 3 3 3 3	1 2 4 3 3 2	4 3 3 4 3 3 4 3 3	4 3 3 4 3 3 4 3 3	1 3 5 4 2 2 1	5 1 4 4 5 4 2 5 1	3 2 3 4 3 2 2 4 4	3 3 4 5 3 3 3 5 4	4 4 4 2 4 4 1 3 4	4 2 4 4	2 3 3 4 3 3 2 3 3		4 4 3 4 4 4	5 5 4 3 3 3 2	4 4 3 4 4 4	4 3 4 3 3 3	3 3 4 5 4 4 3 5	3 2 5 4	5 2 4 4 3 3 4	3 3 4 4 3 3	4 3 2 5 4 4 2	2 2 3 3 4 4 3	3 3 4 5 4 3 3	7 7 7 7 7	0.63 0.36 0.48 0.36 0.51 0.37 0.28679 0.58	0,334 0,334 0,334 0,334 0,334	WALD	330 0771 0.657 0.559 0.561 0.600 1.321
	13 14 15 16 17 18 19 20 21	3 4 2 4 4	4 3 4 4 2 3 3	4 4 3 3 4 4	3 4 4 4 4 4 4	4 4 5 3 3 5 5 2	1 3 2 2 3 2 2	3 3 3 3 2	5 5 3 4 5 3 3 5	4 5 5 4 5 4 3 5 4	4 4 4 2 4 4 4 2 4	3 2 2 4 3 2 1 2	3 3 3 3 3 3 3 3	2	3 4 3 3 4 3 3	3 4 3 3 4 3 3	5 4 2 2 1	4 2 5 1	3 4 3 2 2 4 4	3 3 3 4 5 3 3 3 5 4	3 4 4 4 2 4 4 1 3 4	7 7	3 4 3 2 3 3		4 4 4 3 4 4 4 3 4 4	4 3 3 3 2	4 4 3 4 4 4	4 3 3 3	3 3 4 5 4 4 3 5	5 4	4 5 2 4 4 3 3 4	3 3 3 4 4 3 3	2 5 4 4 2	4 2 2 3 3 4 4 3	4 5 4 3 3	7 7	0.53 0.63 0.36 0.48 0.36 0.51 0.37 0.28679 0.58	0,334 0,334 0,334 0,334 0,334 0,334 0,334	ארום אינים איני	0.788 1.330 0.771 0.667 0.559 0.561 0.600 1.321
	14 15 16 17 18 19 20 21	2 3 3 3 4 2 4 4	4 3 4 3 4 4 2 3 3	3 2 2 4 4 4 3 3 4 4	3 3 2 3 4 4 4 4 4 4 4	4 5 4 4 5 3 3 5 5 2	1 1 3 1 3 2 2 3 2 2 2	3 3 3 3 3 3 3 3 2	5 3 4 5 3 3 5	5 5 4 5 4 3 5 4	4 4 2 4 4 4 2 4	2 2 4 3 2 1 2	3 3 3 3 3 3 3 3 3 3 3 3	2 1 2 4 3 3 2	4 3 3 4 3 3 4 3 3	4 3 3 4 3 3 4 3 3	5 1 3 5 4 2 2 1	5 5 1 4 4 5 4 2 5 1	3 2 3 4 3 2 2 4 4	3 3 4 5 3 3 3 5 4	4 4 4 2 4 4 1 3 4	4 2 4 4	3 2 3 3 4 3 2 2 3 3		4 4 3 4 4 4	5 5 4 3 3 3 2	4 4 4 3 4 4 4	4 3 4 3 3 3	3 3 4 5 4 4 3 5	3 2 5 4	5 2 4 4 3 3 4	3 3 3 4 4 3 3	3 4 3 2 5 4 4 2	2 2 3 3 4 4 3	3 3 3 4 5 4 3 3	7 7 7 7 7 7 7	0.53 0.63 0.36 0.48 0.36 0.51 0.37 0.28679 0.58	0,334 0,334 0,334 0,334 0,334 0,334 0,334	ארום אינים איני	0.788 1.330 0.771 0.667 0.559 0.561 0.600 1.321
	12 13 14 15 16 17 18 19 20 21	4 2 3 3 3 4 2 4 4	4 3 4 3 4 4 2 3 3	3 2 2 4 4 4 3 3 4 4	3 3 2 3 4 4 4 4 4 4 4	5 4 5 4 4 5 3 3 5 5 2	1 1 3 1 3 2 2 3 2 2 2	3 3 3 3 3 3 3 3 2	5 5 3 4 5 3 3 5	5 4 5 5 4 5 4 3 5 4	4 4 4 2 4 4 4 2 4	4 3 2 2 4 3 2 1 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 2 1 2 4 3 3 2	4 3 3 4 3 3 4 3 3	4 3 3 4 3 3 4 3 3	4 5 1 3 5 4 2 2 1	5 5 1 4 4 5 4 2 5 1	3 2 3 4 3 2 2 4 4	3 3 3 4 5 3 3 3 5 4	3 4 4 4 2 4 4 1 3 4	4 2 4 4	4 3 2 3 3 4 3 3 2 3 3	3 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 4 3 4 4 4	5 5 4 3 3 3 2	7 7 7 7 7 7 7 7 7 7 7 7	4 3 4 3 3 3	3 4 3 3 3 4 5 4 4 3 5	4 3 4 3 2 5 4	4 4 5 2 4 4 3 3 4	4 3 3 3 4 4 3 3	3 3 4 3 2 5 4 4 2	4 4 2 2 3 3 4 4 3	4 3 3 3 4 5 4 3 3	7 7 7 7 7 7 7	0.53 0.63 0.36 0.48 0.36 0.51 0.37 0.28679 0.58	0,334 0,334 0,334 0,334 0,334 0,334 0,334	ארום אינים איני	0.788 1.330 0.771 0.667 0.559 0.561 0.600 1.321
	11 12 13 14 15 16 17 18 19 20 21	3 4 2 3 3 3 4 2 4 4	3 4 4 4 3 4 3 4 4 2 3 3	3 5 3 2 2 4 4 4 3 3 4 4	3 4 3 3 2 3 4 4 4 4 4 4 4	5 5 4 5 4 4 5 3 3 5 5 2	1 2 1 1 3 1 3 2 2 3 2 2	3 3 3 3 3 3 3 3 3 3 3 2	4 5 5 5 3 4 5 3 3 5	5 5 4 5 5 4 5 4 3 5 4	4 4 4 4 2 4 4 2 4	5 4 3 2 2 4 3 2 1 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 5 2 1 2 4 3 3 2	3 4 3 4 3 3 4 3 3 4 3 3 4 3 3	3 4 3 4 3 3 4 3 3 4 3 3 4 3 3	3 4 5 1 3 5 4 2 2 1	4 5 5 5 1 4 4 5 4 2 5 1	4 3 3 3 2 3 4 3 2 2 4 4	4 5 3 3 3 4 5 3 3 3 5 4	4 5 3 4 4 4 2 4 4 1 3 4	4 4 4 2 4 4	3 4 3 2 3 3 4 3 3 2 3 3	+ E + E + E + E + E + E + E + E + E + E	7 7 7 7 7 7 7	4 5 4 5 5 4 3 3 3 2	7 7 7 7 7 7 7 7 7 7 7 7	4 5 5 4 3 4 3 3 3	3 4 3 3 3 4 5 4 4 3 5	4 3 4 3 2 5 4	2 4 4 5 2 4 4 3 3 4	2 4 3 3 3 4 4 3 3	3 3 3 4 3 2 5 4 4 2	3 4 4 2 2 3 3 4 4 3	3 4 3 3 3 4 5 4 3 3	2 4 4 4 4 4 4 4	0.53 0.63 0.36 0.48 0.36 0.51 0.37 0.28679 0.58	0,334 0,334 0,334 0,334 0,334 0,334 0,334	ארום אינים איני	0.788 1.330 0.771 0.667 0.559 0.561 0.600 1.321
	10 11 12 13 14 15 16 17 18 19 20 21	3 4 2 3 3 3 4 2 4 4	3 4 4 4 3 4 3 4 4 2 3 3	3 4 2 3 5 3 2 2 4 4 4 3 3 4 4	3 4 3 3 2 3 4 4 4 4 4 4 4	5 5 4 5 4 4 5 3 3 5 5 2	2 1 2 1 2 1 1 3 1 3 2 2 3 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 2	3 4 5 5 5 3 4 5 3 3 5	5 5 3 5 5 4 5 5 4 5 4 3 5 4	4 2 4 4 4 4 4 2 4 4 7 5 7	4 2 2 5 4 3 2 2 4 3 2 1 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 5 2 1 2 4 3 3 2	3 4 3 4 3 3 4 3 3 4 3 3 4 3 3	3 4 3 4 3 3 4 3 3 4 3 3 4 3 3	3 4 5 1 3 5 4 2 2 1	4 5 5 5 1 4 4 5 4 2 5 1	2 4 3 3 3 2 3 4 3 2 2 4 4	3 4 5 3 3 4 5 3 3 3 5 4	3 3 3 4 5 3 4 4 4 2 4 4 1 3 4	2 4 4 4 4 4 2 4 4	2 3 4 3 5 3 3 4 3 5 5 3 3 5 5 5 5 5 5 5 5	4 C	7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 5 4 5 5 4 3 3 3 2	4 4 4 4 4 3 4 4 4	5 4 3 4 5 5 4 3 4 3 3 3	4 4 3 3 4 3 3 3 4 5 4 4 3 5	4 1 2 4 3 4 3 2 5 4	5 2 4 4 5 2 4 4 3 3 4	2 2 2 4 3 3 3 3 4 4 3 3	2 2 2 3 3 3 4 3 2 5 4 4 2	3 3 4 4 2 2 3 3 4 4 3	2 4 3 3 4 3 3 4 5 4 3 3	2 3 2 2 4 4 4 4 4 4 4 4	0.53 0.63 0.36 0.48 0.36 0.51 0.37 0.28679 0.58	0,334 0,334 0,334 0,334 0,334 0,334 0,334	ארום אינים איני	0.788 1.330 0.771 0.667 0.559 0.561 0.600 1.321
	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	3 4 2 3 3 4 2 3 3 4 4 7	5 4 3 3 3 4 4 4 3 4 3 4 3 4 3 5 3 3	5 3 4 2 3 5 3 2 2 4 4 4 3 3 4 4	3 4 3 3 2 3 4 4 4 4 4 4 4	4 4 4 3 5 5 4 5 4 4 5 3 3 5 5 2	2 2 1 2 1 2 1 1 3 1 3 2 2 3 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2	4 3 3 3 4 5 5 5 3 4 5 3 3 3 5	5 3 5 5 4 5 5 4 5 4 3 5 4	4 4 4 4 4 2 4 4 2 6	5 4 2 2 5 4 3 2 2 4 3 2 1 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 3 1 2 3 5 2 1 2 4 3 3 2	2 4 3 4 3 4 3 3 4 3 3 8 3 3 8 3 8 8 3 8	3 4 3 4 3 3 4 3 3 4 3 3 4 3 3	2 2 3 4 5 1 3 5 4 2 2 1	3 5 3 3 4 5 5 5 1 4 4 5 4 2 5 1	3 2 4 3 3 3 2 3 4 3 2 2 4 4	3 4 5 3 3 4 5 3 3 3 5 4	5 3 3 3 4 5 3 4 4 4 2 4 4 1 3 4	4 4 4 4 4 2 4 4	4 3 4 2 2 3 4 3 2 2 3 3 4 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 C C C C C C C C C C C C C C C C C C C	† † † † † † † † † † † † † † † † † † †	4 5 4 5 5 4 3 3 3 2	4 4 4 4 4 3 4 4 4	5 5 4 3 4 5 5 4 3 4 3 3 3	4 4 3 3 4 3 3 3 4 5 4 4 3 5	4 3 4 3 2 5 4	5 2 4 4 5 2 4 4 3 3 4	3 2 2 2 4 3 3 3 3 4 4 3 3 3	3 2 2 2 3 3 3 4 3 2 5 4 4 2	4 3 2 3 3 4 4 2 2 3 3 4 4 3	5 2 4 3 3 4 3 3 3 4 5 4 3 3	4 2 3 2 2 4 4 4 4 4 4 4 4	0.53 0.63 0.36 0.48 0.36 0.51 0.37 0.28679 0.58	0,334 0,334 0,334 0,334 0,334 0,334 0,334	ארום אינים איני	0.788 1.330 0.771 0.667 0.559 0.561 0.600 1.321
	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	4 2 3 3 4 2 3 3 4 2 4 4	4 3 3 3 4 4 4 3 4 3 6 3 6 6 3 3 3	3 4 2 3 5 3 2 2 4 4 4 3 3 4 4	3 4 3 3 2 3 4 4 4 4 4 4 4	4 4 3 5 5 4 5 4 4 5 3 3 5 5 2	2 1 2 1 2 1 1 3 1 3 2 2 3 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2	5 4 3 3 3 4 5 5 5 3 4 5 3 3 5	4 5 5 5 3 5 5 4 5 5 4 5 4 3 5 4	4 2 4 4 4 4 4 2 4 4 7 5 7	4 2 2 5 4 3 2 2 4 3 2 1 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 1 2 3 5 2 1 2 4 3 3 2	3 2 4 3 4 3 4 3 3 4 3 3 4 3 3 4 3 3 8	3 4 3 4 3 3 4 3 3 4 3 3 4 3 3	4 2 2 3 4 5 1 3 5 4 2 2 1	5 3 3 4 5 5 5 1 4 4 5 6 4 2 5 1	3 3 2 4 3 3 3 2 3 4 3 2 4 4 4	3 4 5 3 3 4 5 3 3 3 5 4	5 5 3 3 3 4 5 3 4 4 4 2 4 4 1 3 4	2 4 4 4 4 4 2 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 C C C C C C C C C C C C C C C C C C C	7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 4 4 4 5 4 5 5 4 3 3 3 2	2 4 4 4 4 4 4 3 4 4 4	5 4 3 4 5 5 4 3 4 3 3 3	4 4 3 3 4 3 3 3 4 5 4 4 3 5	4 1 2 4 3 4 3 2 5 4	4 4 5 2 4 4 5 2 4 4 3 3 4	2 3 2 2 2 4 3 3 3 3 4 4 3 3 3	2 2 2 3 3 3 4 3 2 5 4 4 2	5 4 3 2 3 3 4 4 2 2 3 3 4 4 3	2 4 3 3 4 3 3 4 5 4 3 3	2 3 2 2 4 4 4 4 4 4 4 4	0.6 0.45 0.37 0.72 0.29755 0.42 0.7 0.53 0.63 0.58 0.48 0.38 0.51 0.37 0.28679 0.58	0,334 0,334 0,334 0,334 0,334 0,334 0,334	ארום אינים איני	0.788 1.330 0.771 0.667 0.559 0.561 0.600 1.321
	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	3 4 2 3 3 4 2 3 3 4 4 7	5 4 3 3 3 4 4 4 3 4 3 4 3 4 3 5 3 3	5 3 4 2 3 5 3 2 2 4 4 4 3 3 4 4	3 4 3 3 2 3 4 4 4 4 4 4 4	4 4 4 3 5 5 4 5 4 4 5 3 3 5 5 2	2 2 1 2 1 2 1 1 3 1 3 2 2 3 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2	4 3 3 3 4 5 5 5 3 4 5 3 3 3 5	5 5 3 5 5 4 5 5 4 5 4 3 5 4	4 2 4 4 4 4 4 2 4 4 7 5 7	5 4 2 2 5 4 3 2 2 4 3 2 1 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 3 1 2 3 5 2 1 2 4 3 3 2	3 2 4 3 4 3 4 3 3 4 3 3 4 3 3 4 3 3 8	3 4 3 4 3 3 4 3 3 4 3 3 4 3 3	4 2 2 3 4 5 1 3 5 4 2 2 1	3 5 3 3 4 5 5 5 1 4 4 5 4 2 5 1	3 3 2 4 3 3 3 2 3 4 3 2 4 4 4	3 4 5 3 3 4 5 3 3 3 5 4	5 3 3 3 4 5 3 4 4 4 2 4 4 1 3 4	2 4 4 4 4 4 2 4 4	4 3 4 2 2 3 4 3 2 2 3 3 4 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 C C C C C C C C C C C C C C C C C C C	7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 4 4 4 5 4 5 5 4 3 3 3 2	2 4 4 4 4 4 4 3 4 4 4	5 5 4 3 4 5 5 4 3 4 3 3 3	4 4 3 3 4 3 3 3 4 5 4 4 3 5	4 1 2 4 3 4 3 2 5 4	4 4 5 2 4 4 5 2 4 4 3 3 4	3 2 2 2 4 3 3 3 3 4 4 3 3 3	3 2 2 2 3 3 3 4 3 2 5 4 4 2	4 3 2 3 3 4 4 2 2 3 3 4 4 3	5 2 4 3 3 4 3 3 3 4 5 4 3 3	4 2 3 2 2 4 4 4 4 4 4 4 4	0.6 0.45 0.37 0.72 0.29755 0.42 0.7 0.53 0.63 0.58 0.48 0.38 0.51 0.37 0.28679 0.58	0,334 0,334 0,334 0,334 0,334 0,334 0,334	ארום אינים איני	0.788 1.330 0.771 0.667 0.559 0.561 0.600 1.321
	6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	3 4 2 3 3 4 2 3 3 4 4 7	5 4 3 3 3 4 4 4 3 4 3 4 3 4 3 5 3 3	5 3 4 2 3 5 3 2 2 4 4 4 3 3 4 4	3 4 3 3 2 3 4 4 4 4 4 4 4	4 4 4 3 5 5 4 5 4 4 5 3 3 5 5 2	2 2 1 2 1 2 1 1 3 1 3 2 2 3 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2	5 5 4 3 3 3 4 5 5 5 3 4 5 3 3 5	4 5 5 5 3 5 5 4 5 5 4 5 4 3 5 4	4 4 4 4 2 4 4 4 4 4 7 2 4 4 7 2 4	5 4 2 2 5 4 3 2 2 4 3 2 1 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4 3 1 2 3 5 2 1 2 4 3 3 2	3 2 4 3 4 3 4 3 3 4 3 3 4 3 3 4 3 3 8	3 4 3 4 3 3 4 3 3 4 3 3 4 3 3	4 2 2 3 4 5 1 3 5 4 2 2 1	5 5 3 5 3 3 4 5 5 5 1 4 4 5 6 1 7 1 1 1 2 5 1	4 4 3 3 3 2 4 3 3 3 2 3 4 3 4 3 4 4	3 4 5 3 3 4 5 3 3 3 5 4	5 5 3 3 3 4 5 3 4 4 4 2 4 4 1 3 4	2 4 4 4 4 4 2 4 4	4 4 4 3 4 2 3 3 3 3 4 3 3 5 3 3 4 3 5 5 3 3 4 3 5 5 5 5	1	7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 4 4 4 5 4 5 5 4 3 3 3 2	4 4 4 3 2 4 4 4 4 4 4 4 3 4 4 4	4 4 5 5 5 4 3 4 5 5 4 3 4 3 3 3	3 5 4 4 4 3 3 4 3 3 3 4 5 4 4 4 3 5	4 1 2 4 3 4 3 2 5 4	4 4 5 2 4 4 5 2 4 4 3 3 4	3 2 3 2 2 2 4 3 3 3 3 4 4 3 3 3	4 5 3 2 2 2 3 3 3 4 3 2 5 4 4 2	5 5 4 3 2 3 3 4 4 2 2 3 3 4 4 3	5 2 4 3 3 4 3 3 3 4 5 4 3 3	3 4 4 2 3 2 2 4 4 4 4 4 4 4 4	0.6 0.45 0.37 0.72 0.29755 0.42 0.7 0.53 0.63 0.58 0.48 0.38 0.51 0.37 0.28679 0.58	0,334 0,334 0,334 0,334 0,334 0,334 0,334	ארום אינים איני	0.788 1.330 0.771 0.667 0.559 0.561 0.600 1.321
	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	4 4 3 3 4 2 3 3 4 2 3 4 7 4 7 8 3 4 7 4 4	4 5 5 5 6 4 3 3 4 4 4 3 4 3 4 3 7 3 7 3 3 3	3 4 5 5 3 4 2 3 5 3 2 2 4 4 4 3 3 4 4	4 4 4 4 3 4 3 4 3 3 2 3 4 4 4 4 4 4	5 3 4 5 5 4 4 4 3 5 5 4 5 4 4 5 3 3 5 5 2	3 2 2 2 2 2 2 2 1 2 1 2 1 1 2 1 1 3 1 3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 5 3 5 5 4 3 3 3 4 5 5 5 5 3 4 5 3 3 5	3 2 3 5 4 5 5 5 3 5 5 4 5 5 4 5 4 5 4 5 4 3 5 4	4 4 4 4 5 4 4 4 4 4 7 7 7 7	4 4 2 2 3 5 4 2 2 5 4 3 2 2 4 3 2 1 1 2	4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 5 3 4 5 4 3 1 2 3 5 2 1 2 4 3 2	2 3 4 4 3 2 4 3 4 3 4 3 4 3 4 3 4 3 3 4 3 3 4 3 3	3 3 4 4 3 2 4 3 4 3 4 3 4 3 3 4 3 3 4 3 3 8 3 3	5 4 2 2 4 5 4 2 2 3 4 5 1 3 5 4 2 2 1	5 5 5 3 5 3 3 4 5 5 5 1 4 4 5 4 2 5 1	5 4 4 3 3 3 3 2 4 3 3 3 2 3 4 3 4 3 4 4	3 4 4 4 4 3 3 4 5 3 3 4 5 3 4 5 3 3 5 4	3 5 5 5 5 3 3 3 4 5 3 4 4 4 2 4 4 1 3 4	4 4 4 4 2 4 4 4 4 4 4 2 4 4	4 3 3 4 4 5 3 4 5 5 3 3 4 5 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1	* * * * * * * * * * * * * * * * * * *	3 3 4 4 4 4 4 5 4 5 5 4 3 3 2 2	4 4 4 4 3 2 4 4 4 4 4 4 4 4 4 5	5 5 4 4 5 5 5 4 3 4 5 5 4 3 4 3 3 3	4 5 3 5 4 4 4 4 3 3 4 3 3 4 5 4 4 4 3 5	2 2 4 5 4 1 2 4 3 4 3 2 5 4	4 4 4 4 4 5 2 4 4 5 2 4 4 3 3 4	3 3 2 3 2 2 2 4 3 3 3 4 4 3 3 3	3 4 5 3 2 2 2 3 3 3 4 3 2 5 4 4 2	3 3 5 5 5 4 3 2 3 3 4 4 2 2 3 3 4 4 3	5 5 4 5 5 5 2 4 3 3 4 3 3 4 5 4 5 4 3 3	5 3 4 4 2 3 2 2 4 4 4 4 4 4 4 4 4	0.6 0.45 0.37 0.72 0.29755 0.42 0.7 0.53 0.63 0.58 0.48 0.38 0.51 0.37 0.28679 0.58	0,334 0,334 0,334 0,334 0,334 0,334 0,334	ארום אינים איני	0.788 1.330 0.771 0.667 0.559 0.561 0.600 1.321
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	4 4 3 3 4 2 3 3 4 2 3 4 7 4 7 8 3 4 7 4 4	4 4 3 4 5 5 5 4 3 3 3 4 4 4 3 4 4 3 4 3	5 5 4 3 4 5 5 3 4 2 3 5 3 2 2 4 4 4 3 3 4 4	4 4 4 4 4 4 4 3 4 3 4 3 4 3 2 3 4 4 4 4	3 4 5 5 4 4 4 3 5 5 4 5 4 4 5 3 3 5 5 2	3 3 2 2 2 2 2 2 1 2 1 2 1 1 3 1 3 2 2 3 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 3 5 5 4 3 3 3 4 5 5 5 3 4 5 3 3 5	2 3 5 4 5 5 5 3 5 5 4 5 5 4 5 4 5 4 5 4 5	4 4 4 4 4 2 4 4 4 4 4 4 4 7 7 4 4 7 7 7	2 2 3 5 4 2 2 5 4 3 2 2 4 3 1 2 1 2	4 3 2 4 4 3 3 3 3 3 3 3 3	5 5 5 5 3 4 5 4 3 1 2 3 5 2 1 2 4 3 3 2	2 3 4 4 3 2 4 3 4 3 4 3 4 3 4 3 4 3 3 4 3 3 4 3 3	3 3 4 4 3 2 4 3 4 3 4 3 4 3 3 4 3 3 4 3 3 8 3 3	4 2 2 4 5 4 2 2 3 4 5 1 3 5 4 2 2 1	5 5 5 5 8 3 8 3 3 4 5 5 5 1 4 4 5 6 4 2 5 1	5 4 4 3 3 3 3 2 4 3 3 3 2 3 4 3 4 3 4 4	4 4 3 4 4 4 3 3 4 5 3 3 4 5 3 3 4 5 3 3 5 4	4 3 5 5 5 5 3 3 3 4 5 3 4 4 4 4 2 4 4 1 3 4	4 4 4 4 4 4 2 4 4 4 4 4 4 4 6 4	4 4 3 3 4 4 4 5 3 4 5 7 5 3 3 4 6 3 5 5 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1	**************************************	4 3 4 3 3 4 4 4 4 4 6 6 5 6 4 3 3 3 2	4 4 4 4 6 3 2 4 4 4 4 4 6 4 6 6 6	5 4 4 5 5 5 4 3 4 5 5 4 3 4 3 3 3	5 4 5 3 5 4 4 4 4 3 3 4 4 5 3 3 4 5 4 4 3 5	2 2 4 5 4 1 2 4 3 4 3 2 5 4	4 4 4 4 4 5 2 4 4 5 2 4 4 3 3 4	3 3 3 3 3 2 3 2 2 2 2 4 3 3 3 3 4 4 3 3 3	4 4 4 3 4 5 3 2 2 2 3 3 3 4 3 2 5 4 4 2	5 3 3 5 5 5 4 3 2 3 3 4 4 2 2 3 3 4 4 3	5 5 5 4 5 5 2 4 3 3 4 3 3 4 5 4 3 3	4 5 3 4 4 2 3 2 2 4 4 4 4 4 4 4 4	0.53 0.63 0.36 0.48 0.36 0.51 0.37 0.28679 0.58	0,334 0,334 0,334 0,334 0,334	WALD	0.788 1.330 0.771 0.667 0.559 0.561 0.600 1.321
	Ur 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	F t t t t t 3 3 t 2 3 3 t 2 3 3 3 3 t 2 t t t	P 4 4 3 4 5 5 5 4 3 3 3 4 4 4 3 4 3 4 3 5 5 8 3 3	P 5 5 4 3 4 5 5 3 4 2 3 5 3 2 2 4 4 4 3 3 4 4	P 4 4 4 4 4 4 4 8 8 4 3 4 3 8 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	L 5 5 3 4 5 5 4 4 4 3 5 5 4 5 4 4 5 3 3 5 5 2	P 3 3 2 2 2 2 2 2 1 2 1 2 1 2 1 1 3 1 3 2 2 3 2 2	L 3 3 3 3 3 3 3 3 3	L 5 5 5 5 3 5 5 4 3 3 3 4 5 5 5 5 3 4 5 3 3 5	L 5 3 2 3 5 4 5 5 5 3 5 6 4 5 6 4 5 4 5 4 3 5 4	T 4 4 4 4 4 4 4 5 4 4 4 6 4 4 6 4 6 7 7 8 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	T 5 4 4 2 2 3 5 4 2 2 5 4 3 2 2 4 3 2 1 2	P 4 3 2 4 4 3 3 3 3 3 3 3 3	P 5 5 5 3 4 5 4 3 1 2 3 5 2 1 2 4 3 3 2	T 4 4 4 2 3 4 4 3 2 4 3 4 3 4 3 3 4 3 3	L 4 4 4 8 8 8 4 4 8 2 4 8 4 8 4 8 4 8 8 8 8	L 5 5 4 2 2 4 5 4 2 2 3 4 5 1 3 5 4 2 2 1	L 5 5 5 5 5 5 5 8 3 5 3 3 4 5 5 5 1 4 4 5 4 5 5 1	T t t t t 2 t t 3 3 3 5 t 3 3 3 5 3 t 3 5 5 t t 4	P 4 4 4 3 4 4 4 8 3 3 4 5 3 3 3 4 5 3 3 5 4 5 4 5 8 8 5 4 8 8 8 8 8 8 8 8 8 8 8	1 4 4 4 3 5 5 5 3 3 3 4 5 3 4 4 4 2 4 4 1 3 4	P 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	**************************************	* * * * * * * * * * * * * * * * * * *	P 4 3 4 3 3 4 4 4 4 4 4 5 4 5 5 4 3 3 2 2	P 4 4 4 4 4 5 2 5 4 4 4 4 4 4 4 5 4 4 4 4	L 5 5 5 4 4 5 5 5 4 3 4 5 5 4 3 4 3 3 3 3	P 5 4 5 3 5 4 4 4 4 3 3 4 3 3 3 4 5 4 4 3 5	L 4 4 3 2 2 4 5 4 1 2 4 3 4 3 2 5 4	1444444554455444334	P 3 3 3 3 3 2 3 2 2 2 4 3 3 3 3 4 4 3 3 3	P 4 4 4 3 4 5 3 2 2 2 3 3 3 4 3 2 5 4 4 2	P 5 3 3 5 5 5 4 3 2 3 3 4 4 2 2 3 3 4 4 3	P 5 5 5 4 5 5 2 4 3 3 4 3 3 4 5 4 3 3	1 4 4 4 5 3 4 4 2 3 2 2 4 4 4 4 4 4 4 4 4	850 0380 038 038 038 038 030 030 037 037 038 030 030 030 030 030 038 038 038 038	। । । । । । । । । । । । । । । । । । ।	אידם איל האידם אילים אידם אילים אילם אילם אילם אילם אילם אילם אי	1.036 0.467 0.662 0.816 0.461 0.663 0.403 0.403 0.404 0.463 0.471 0.467 0.467 0.469 0.661 0.601 1.201
1	US98 UT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 9 20 10 21 12 13 14 15 16 17 18 19 20 21	4 4 3 3 4 2 3 3 4 2 3 4 7 4 7 8 3 4 7 4 4	16 P 4 4 3 4 5 5 5 4 3 3 3 4 4 4 3 4 3 4 1 2 3 3 3	5 5 4 3 4 5 5 3 4 2 3 5 3 2 2 4 4 4 3 3 4 4	4 4 4 4 4 4 4 3 4 3 4 3 4 3 2 3 4 4 4 4	17 L 5 5 3 4 5 5 4 4 4 3 5 5 4 5 4 5 5 2 2	16 P 3 3 2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 2 2 2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 5 3 5 5 4 3 3 3 4 5 5 5 5 3 4 5 3 3 5	3 2 3 5 4 5 5 5 3 5 5 4 5 5 4 5 4 5 4 5 4 3 5 4	4 4 4 4 4 2 4 4 4 4 4 4 4 7 7 4 4 7 7 7	4 4 2 2 3 5 4 2 2 5 4 3 2 2 4 3 2 1 1 2	4 3 2 4 4 3 3 3 3 3 3 3 3	5 5 5 5 3 4 5 4 3 1 2 3 5 2 1 2 4 3 3 2	2 3 4 4 3 2 4 3 4 3 4 3 4 3 4 3 4 3 3 4 3 3 4 3 3	3 3 4 4 3 2 4 3 4 3 4 3 4 3 3 4 3 3 4 3 3 8 3 3	5 4 2 2 4 5 4 2 2 3 4 5 1 3 5 4 2 2 1	5 5 5 5 5 5 3 5 3 8 4 5 5 5 1 4 4 5 4 5 1 1	5 4 4 3 3 3 3 2 4 3 3 3 2 3 4 3 4 3 4 4	4 4 3 4 4 4 3 3 4 5 3 3 4 5 3 3 4 5 3 3 5 4	4 3 5 5 5 5 3 3 3 4 5 3 4 4 4 4 2 4 4 1 3 4	4 4 4 4 4 4 2 4 4 4 4 4 4 4 6 4	4 4 3 3 4 4 4 5 3 4 5 7 5 3 3 4 6 3 5 5 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	**************************************	**************************************	4 3 4 3 3 4 4 4 4 4 6 6 5 6 4 3 3 3 2	P 4 4 4 4 4 5 2 5 4 4 4 4 4 4 4 5 4 4 4 4	L 5 5 5 4 4 5 5 5 4 3 4 5 5 4 3 4 3 3 3 3	P 5 4 5 3 5 4 4 4 4 3 3 3 4 3 3 3 4 5 4 4 3 5	L 4 4 3 2 2 4 5 4 1 2 4 3 4 3 2 5 4	4 4 4 4 4 5 2 4 4 5 2 4 4 3 3 4	P 3 3 3 3 3 2 3 2 2 2 4 3 3 3 3 4 4 3 3 3	4 4 4 3 4 5 3 2 2 2 3 3 3 4 3 2 5 4 4 2	5 3 3 5 5 5 4 3 2 3 3 4 4 2 2 3 3 4 4 3	5 5 5 4 5 5 2 4 3 3 4 3 3 4 5 4 3 3	16 L 4 4 4 5 3 4 4 2 3 2 2 4 4 4 4 4 4 4 4	850 0380 038 038 038 038 030 030 037 037 038 030 030 030 030 030 038 038 038 038	। । । । । । । । । । । । । । । । । । ।	אידם איל האידם אילים אידם אילים אילם אילם אילם אילם אילם אילם אי	1.036 0.467 0.662 0.816 0.461 0.663 0.403 0.403 0.404 0.463 0.471 0.467 0.467 0.469 0.661 0.601 1.201
Insial	Ur 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	F t t t t t 3 3 t 2 3 3 t 2 3 3 3 3 t 2 t t t	. 16 P 4 4 3 4 5 5 5 4 3 3 3 4 4 1 3 4 3 4 3 3 3 3 5 5 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	P 5 5 4 3 4 5 5 3 4 2 3 5 3 2 2 4 4 4 3 3 4 4	17 P 4 4 4 4 4 4 4 8 4 3 4 3 4 3 2 3 4 4 4 4 4 4	17 L 5 5 3 4 5 5 4 4 4 3 5 5 4 5 4 5 5 2 2	P 3 3 2 2 2 2 2 2 1 2 1 2 1 2 1 1 3 1 3 2 2 3 2 2	L 3 3 3 3 3 3 3 3 3	L 5 5 5 5 3 5 5 4 3 3 3 4 5 5 5 5 3 4 5 3 3 5	L 5 3 2 3 5 4 5 5 5 3 5 6 4 5 6 4 5 4 5 4 3 5 4	T 4 4 4 4 4 4 4 5 4 4 4 6 4 4 6 4 6 7 7 8 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	16 L 5 4 4 2 2 3 5 4 2 2 5 4 3 2 2 4 3 2 2 1 2 3 2 1 3 2 1 2	P 4 3 2 4 4 3 3 3 3 3 3 3 3	16 P 5 5 5 3 4 5 4 3 1 2 3 5 2 1 2 4 3 2	77 1 4 4 2 3 4 4 3 2 4 3 4 3 4 3 3 4 3 3	L 4 4 4 8 8 8 4 4 8 2 4 8 4 8 4 8 4 8 8 8 8	L 5 5 4 2 2 4 5 4 2 2 3 4 5 1 3 5 4 2 2 1	16 L 5 5 5 5 5 5 3 5 3 3 4 5 5 5 1 4 4 5 4 5 1 1 1 1 1 1 1 1 1 1	T t t t t 2 t t 3 3 3 5 t 3 3 3 5 3 t 3 5 5 t t 4	17 P 4 4 4 3 4 4 4 4 3 3 4 5 3 3 4 5 3 3 4 5 3 5 4	1 4 4 4 3 5 5 5 3 3 3 4 5 3 4 4 4 2 4 4 1 3 4	16 P 4 4 4 4 4 4 2 4 4 4 4 4 4 4 4 4 2 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	17 P 4 3 4 3 3 4 4 4 4 4 4 5 4 5 6 4 3 3 3 2	17 P 4 4 4 4 4 4 3 2 4 4 4 4 4 4 4 4 4 4 4 4	77 L 5 5 5 4 4 5 5 5 4 3 4 5 5 4 3 4 3 3 3 3	P 5 4 5 3 5 4 4 4 4 3 3 4 3 3 3 4 5 4 4 3 5	77 L 4 4 3 2 2 4 5 4 1 2 4 3 4 3 2 5 4	16 L 4 4 4 4 4 4 4 5 2 4 4 5 2 4 4 3 3 4	16 P 3 3 3 3 2 3 2 2 2 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 3 3 3 4 4 4 3 3 4 4 4 3 3 4 4 4 3 4	77 P 4 4 4 3 4 5 3 2 2 2 3 3 3 4 3 2 5 4 4 2	P 5 3 3 5 5 5 4 3 2 3 3 4 4 2 2 3 3 4 4 3	Y 17 P 5 5 5 4 5 5 5 2 4 3 3 4 3 3 4 5 5 4 3 3	PBD 16 L 4 4 4 5 3 4 4 2 3 2 2 4 4 4 4 4 4 4 4 4	0.6 0.45 0.37 0.72 0.29755 0.42 0.7 0.53 0.63 0.58 0.48 0.38 0.51 0.37 0.28679 0.58	। । । । । । । । । । । । । । । । । । ।	ארום אינים איני	0.364 0.467 0.682 0816 0.381 0.683 0.683 0.683 0.703 0.888 0.701 0.588 0.703 0.771 0.687 0.589 0.581 0.690 0.521

2. Uji Validitas Instrumen Hasil Belajar Kognitif dengan Menggunakan *Korelasi Point Biserial*

a. Hipotesis

H₀ : Data Valid

H₁ : Data Tidak Valid

b. Kriteria Pengujian

Terima H₀, jika r hitung > r tabel

Tolak H₀, jika r hitung < r tabel

c. Hasil Perhitungan

Rumus:

$$r_{pbi} = \frac{M_p - M_q}{S_t} \sqrt{pq}$$

Keterangan

r pbi = Koefisien korelasi point biserial

M_p = Jumlah responden yang menjawab benar

M_q = Jumlah responden yang menjawab salah

St = Standar deviasi untuk semua item

p = Proporsi responden yang menjawab benar

q = Proporsi responden yang menjawab salah

d. Kesimpulan

Berdasarkan hasil validasi instrumen hasil belajar kognitif didapatkan sebanyak 47 butir soal pertanyaan yang valid dan 13 butir soal pertanyaan yang tidak valid.

Tabel 9. Pengujian Validitas Instrumen Hasil Belajar Kognitif

1			12	8	74	88	83	2	, [8	z	~	14	8	88	88	83	=	20	9	#	39	38	88	23	\$	88	2	es es	83	용	83	_1	88	_1	<u>.</u>	8	_	b-	ı							
-	8	-3	1 0	0 30	1 24	1 30	0 30	0	0	7 0	-	1/	1 30	0 38	1 38	7	0	1 20	0 40	0 4	1 30	0 38	- %	0	4		0			-0 -∓	7	0		1 37	0	0	1 33	18 997	0200	0200	31.389	77.694	333	0356	0334	NAUD
	83	0	+	+	0	,	,	0	-	-	-	0	-	0	0	_	0	0	1	1	1	0	-	-	-	-	0	-	0	-	-	0	-	0	-	-	-	83	0639	0361	30609 31	7,697	10373 10373 10.373	0374 0	0334 0	WLD
	æ	0	-	-	0	-	+	-	0	-	-	-	-	0	0	-	0	0	+	+	+	+	0	0	-	-	0	0	-	-	0	0	-	-	0	0	-	71	0.83	0.417	30.762 3	27.694 27.694 2	10373	0.30	0.334	VALD
	25	-	0	-	,	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	,	0	0	0	-	0	-	-	0	0	0	-	0	0	-	-	#	0300	1690	31.455	27.894 2	10.373	0240	033	MED
	æ	0	0	_	0	+	0	0	0	_	0	0	0	_	0	_	0	+	0	0	1	,	-	0	-	0	0	0	0	0	-	0	0	0	_	0	-	13	-	690	30.538	27.694	10.373		0334	MO M
	83	0	0	0	0	0	0	-	0	0	0	0	_	0	0	0	0	1	1	0	1	1	-	~	~	0	0	-	-	-	_	0	0	~	0	-	0	15	0,417	0583	31933 3	27.694 2	10373 1		0334 (VALUD N
	35	_	0	1	1	0	1	0	-	_	-	0	0		0	0	_	0	1	1	0	1	0	0	0	-	0	-	0	_	0	-	_	-	0	0	0	8		0200	29444 3	27.694 2	10373 1		0334 0	All V
	æ	0	0	1	0	0	1	0	-	-	0	0	0		0		0	0	1	1	0	1	0	0	0	0	0	0	0	_	0	0	0	_	0	0	_	Ξ	0306 0		33.273 29	77.694 27	10.373 10	0.357 0	0334 0	WAUD N
	23	-	0	0	1	1	0	0	-	0	0	-	-	0	-	0	-	+	1	1	0	1	-	-	-	-	_	-	0	-	-	0	-	-	-	0	0	22	00111	0389 0	30.727 33	7.894	10.373 10	0 2960	0334 0	N OTWA
	25	-	0	0	1	0	1	0	-	0	-	0	-	0	_	_	0	1	1	1	1	0	-	0	-	-	0	-	0	-	-	0	-	-	0	0	0	20	0,556 0	0,444	3220) 3	27.694 27.694	10373 10	0.486	0334	VALID V
	8	-	+	-	+	1	0	-	0	0	0	0	_	0	0	-	-	+	1	0	0	1	-	0	~	-	0	-	-	-	-	0	~	~	0	-	~	23	0.639	0.391	30522 3	7694 2	10373 1			WLD \
	\$	-	0	+	,	,	0	0	-	0	-	-	-	-	0	0	0	0	1	1	0	1	-	0	-	-	0	-	-	0	0	0	-	0	0	-	-	30	0.56	0.444	31.700 3	27694 27694 2	10373	0.432	0.334 0.334	VALD
	零	-	0	+	1	1	0	0	-	0	0	0	-	-	-	-	0	1	0	0	1	1	0	0	0	-	0	0	-	0	-	0	0	0	0	0	0	15	0417	0583	30.933	7.694	10.373		033 E	WALD
	4	-	0	+	+	0	,	0	-	0	0	-	_	-	-	0	0	+	1	1	1	,	-	0	-	-	0	-	-	0	-	0	-	0	-	-	0	23	0630	1980	30.913	7.694	0.373	0,413		WAUD N
	46	-	0	1	1	0	0	0	0	_	0	-	0	-	0	0	0	0	0	0	0	1	0	0	0	-	-	-	0	0	0	0	-	0	0	0	-	2		1990	27.000	27.694	10373 1	-0047	0334	Mello
	₽	_	0	0	0	0	-	-	-	0	0	0	0	0	_		0	0	-	-	-	0	_	-	~	0		0	0	-	_	_	-	0	0	-	-	9	0.444		32500 27	7694	9373 1	0.414 -0		VALD N
	3	-	0	-	0	-	0	-	-	-	0	-	-	0	0	0	-	0	-	-	-	0	-	-	-	-	0	-	-	0	-	0	-	-	0	-	-		0.639	0.361	30826 33	27694 27694	10373 10373	0.402	0.334	N OTW
	8 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	_		0972	30.000	77.894 2	10.373	0038	0334	WLD
	42	0	0	-	0	0	+	-	-	0	0	0	0	0	-	-	0	+	-	-	-	0	-	0	-	0	0	0	0	-	-	0	0	0	0	0	0	12	0333 0	0.087	3.917	7.694	333		0334 0	VALID N
	¥.	0	0	-	0	-	0	0	0	0	0	-	-	-	0	0	0	0	-	0	-	-	0	-	0	-	0	-	-	-	0	0	0	-	0	0	-	92		0583	3228	7.694	10373 10	0373 0	0334	WLD
	묶	0	0	-	0	-	-	0	0	0	0	0	0	-	0	0	0	0	-	-	0	-	0	-	0	0	0	0	-	-	0	-	-	-	0	-	-	15		0.833	32333	27.694	10373		0.334	VALD
	æ	-	-	0	0	-	-	0	0	-	-	0	-	-	-	-	0	-	0	-	-	0	-	-	-	0	0	-	-	-	-	0	-	-	0	0	-	22	1190	0380	39.854	77.894	10.373		033 8	WALD
	88	0	0	0	0	0	-	0	-	-	0	0	0	0	-	-	0	-	-	-	-	0	-	-	-	0	0	0	-	-	-	0	0	-	-	0	-	8		020	31.444 29.854	7.894	10.373	0382	0334	MW.
	33	0	0	0	0	-	-	0	0	-	0	-	-	0	-	-	0	+	-	-	-	-	-	0	-	-	0	-	0	-	-	-	0	-	_	0	-	2	0611	0380	30727	27.69	10373	1367	0334	WAUD
	æ	-	0	0	-	-	-	0	-	0	0	-	-	0	-	-	-	-	-	-	-	0	-	0	-	-	0	-	0	-	-	0	-	-	0	0	0		0.611	0.339	31.773	27.694	10373	0.493	0.34	VALD
	æ	-	0	0	0	-	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	-	-	0	-	-	0	-	-	0	0	0		0.29)	0.79	31.105 35,444 31,773	27.694 27.694 27.694	10.373 10.373	0.431	0.334	VALD VALD VALD VALD
	ಷ	0	0	-	-	-	0	0	-	-	-	-	0	-	-	-	0	0	-	0	-	-	-	0	~	0	0	-	0	-	0	~	-	~	0	0	-		0538	042	331.06	7.84	3 10.373	0348	0334	OTAN (
100	æ	-	0	-	0	+	+	0	-	0	0	0	-	-	0	0	0	0	-	0	-	-	0	-	~	0	0	-	0	0	-	0	0	0	0	-	0	\$2	2 0.417	8 0583	6 32533	4 27.69	10373 10373	1 0394	4 0334) WILL
jar Kogn	8	-	0	-	-	-	0	0	-	0	-	0	-	0	0	0	-	+	0	-	-	-	-	~	0	-	0	0	-	0	-	0	0	~	0	-	-		3 0.472	2 0.528	34 31.76	34 27.69	73 1037	3 0.371	34 0.334	0 1/4.11
asil Bela	~	_	0	-	-	-	0	-	_	0	0	0	0	-	-		-	0	-	-	-	0	-	-	~	-	-	-	-	-	0	-	-	~	0	0	-	19	50 0.538	0750 0.472	96 326	34 27.66	10.373 10.373	038 020	0334 0.334	, OTKA OTKA
Butir Scal Hasil Belajar Kognitif	30	_	0	-	0	0	0	0	0	0	0	0	0		0		0	0	0 0		_	-	_	_	_	_	_	2		_	0	_	_	_	_	_	0	6	0250 0250	0.750 0.75	35.111 34.556 32.684 31.765	27.694 27.694 27.694	10373 10.3	0,413 0.38	0334 033	WLD WL
쿒	83	_	0	Ē	_	_	_	-		Ë	-	Ë	Ë	H		H		_	_		Ė		_	_	_	_	_	-	_	_	_	_		_	0	_	-	18 9		0.500 0.78	38	304 27.0	10373 103			E M
	77 38		0	_	-	-	-	0	-	-	-		-	H		Ē	-	0	_	_	-	-		_							_	_		_	_	_	-	LI		72 0.5	163 31,056	194 27.694	10373 103		34 0.34	W O
	79 73	_	0	-	0	-	-	0	-	-	-		-		1	1	0) 0	_	_	-	-		_							_	-	_		0 0	_	-	15 19	0.417 0.5	058 0.472	32.000 31.053	77.894 27.694	10.373 10.3	0351 0.342	334 0.334	VALD VALD
	25	_			0	-	0			0	Ē							_	_	_	_	_		_	_	_	0			_		_	_	0		_	0	17 1	0.472 0.4	0528 05	31529 22.0	27.694 27.6	10373 10.3	0350 03	0334 0334	VAUD VA
	 æ	0	-	0	0	0	0	0	0	0	_	0	0	0	0	0	0	0	_	0	0	0		0	_	_		_	0		_	_	0	_	0	_	0		0222	0.778	24875 31	27.694 27	10373 10		0334 03	M ON
	83	_	0	-	_	-	-	0	-	0	0	0	0		_		0	0	_	0	-	_		_	~	_	_	_		_	0	_	_	~	0	0	-	71	0.583 0.	0.417 0.	3238 24	7694 2			0.334 0.	VALD N
	2	-	0	-	-	-	-	-	0	0	0	0	0	0	-	-	-	-	-	0	0	0	-	0	~	_	_			-	_	0	-	~	0	-	0	8	0200 03	0200 0.	32,056 33,238	27.694 27.694	10373 10373	0,420	0334 0.	WLD V
	74	0	1	0	0	0	0	0	0	0	0	0	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0	0	0	0	_	-	0	3		0.917 0	18667 3	27.694 2	10373 1		0.334	ALD V
	8	_		_	0	-	-	-	-	-	-	0	0		_		-	-	_	_	_	_		0	-		0	0		_	_	0	0	-	0	-	0		0.583 0.	0.417 0.	32.190 18	27.694 27	10373 10	0.513 0.	0.334 0.	W O'N
	6	_	_	0	_	0	-	-	-	0	-	0	0	0	0	0	0	0	_	_	0	_	_	-	_	_	0	0	_	_	0	_	-	_	0	0	0	91		0.596 0.	28.188 32	77.894 27	10.373 10		0334 0.	<u> </u>
	æ	_		-	_	_	0	-	0	-	0	0	_	0			0	0	0	-		_		0	~					_	0	_	_	~	0	0	-	_			806					VALID N
	4	0	_	0	0	0	0	0	-	0	0	0	-	0	-	-	0	0	_	_	_	_	_	0	-	0	0	0	_	_	0	0	0	-	0	0	-	9	0.417 0.	.0	1000	7,694 27	10373 10.373	0514 03	0334 03	VALD VV
	æ	-	0	_	-	-	-	0	-	-	-	0	0	0	0	0	0	0	_	-	0	0	_	-	~	-	_	0	0	-	_	_	-	0	-	0	0	18	0.500	060	1066 3	7697	9373 1.	124		D
	15	_	0	-	0	-	0	0	-	-	0	0	-	0	-	-	0	0	0	0	_	-	-	-	~			0	0	0	0	0	-	~		-	0	91	7	989	1.750 3	7694 2.	1373 1	(38)	3 85	7/LD N
	7	0	0	0	0	-	0	0	-	-	0	0	-	0	-	0	0	-	-	-	0	-	-	-	-	-	-	0	-	-	0	0	0	-	-	-	-	00	0.556 0.444	344 0	0.900	7.894 2.	0.373 11	1346	1334	100
	₽	0	0	0	0	0	-	0	0	0	0	0	0	0	-	-	0	0	-	-	-	0	-	0	-	0	0	0	0	-	0	0	0	-	0	-	0	#	0306 (989	35727	7,697.	10373	0514	0.334 0.334 0.334 0.334	MID
	7	-	-	-	0	-	-	0	0	-	0	0	-	-	0	0	0	0	-	-	0	0	-	-	-	-	-	0	0	-	-	0	-	-	0	-	0	D	0.556	0.44	30850	27694	10373	0.36	0.34	WD
	Ŧ	-	-	0	0	-	-	-	-	0	0	-	-	-	0	-	-	0	-	-	-	-	0	0	-	-	0	-	-	-	-	0	-	-	0	-	0	24	0.667	0.333	28.82 28.82 24.12 24.12 24.02 25.03 25.000 25.02 26.03	27.694 27.694 27.694 27.694 27.694 27.694 27.694 27.694 27.694 27.694 27.694 27.694 27.694 27.694	10373	0.384 0.371 0.331 0.555 0.378 0.408 0.350 0.451 0.342 0.439 0.340 0.514 0.346 0.359 0.324	0.334 0.334 0.334 0.334 0.334 0.334 0.334 0.334 0.334 0.334 0.334 0.334 0.334 0.334	WLD
	e	-	0	-	-	-	0	-	0	-	0	0	0	0	0	-	-	0	0	1	-	1	-	0	-	0	0	0	-	-	-	0	-	-	ļ	0	0	10	0528	0472	31.053	7.84	10.373	0342	0334	WILD
	6	-	0	-	0	0	0	0	0	0	0	0	-	-	-	0	0	0	0	-	-	-	-	0	~	0	0	-	0	0	0	0	-	0	0	0	~	13	0.361	690	33333	127.69	3 10373	0.451	0334	MED
	~	0	0	-	0	-	-	0	-	0	-	0	0	0	0	0	0	0	0	-	0	0	0	-	-	0	0	0	-	-	0	0	-	-	0	-	0	13	9 0.333	10.667	0 32830	4 27.694	3 1037.	3 0.350	0.34	J/M/C
	-	-	0	0	-	-	-	0	-	0	0	0	0	0	0	0	0	0	0	-	0	-	0	-	0	\rightarrow	0	-	-	-	0	0	~	0	0	-	0		7 0389	3 06%	3 3300.	¥ 2769	3 1037.	8 0408	4 033	0 VALL
	ۍ	-	0	0	-	-	-	-	-	0	0	0	0	-	0	0	0	0	-	-	0	0	0	0	0	\dashv	0	-	0	-	0	0	~	-	0	0	-	12	44 0417	999	233	97.8	73 10.37	5 037.	74 033	D Will
	~	-	-	-	-	1	1	0	-	-	0	0	-	0	0	0	-	0	-	-	0	+	0	0	0	\dashv	0	-	-	-	0	0	-	~	0	-	-	9	2 0.444	38 056	38.17	34 27.6.	73 103.	M 056	930	O MAL
	7	0	0	0	0	0	0	-	0	0	0	0	0	-	-	-	0	0	0	0	-	-	-	0	~	0	0	0	-	0	0	0	0	0	0	0	0	~	7 0.222	3 0.77.	7 34.12	M 27.66	3 103	1 0.33	4 0.33	D N/AL
	~	_	-	-	0	1	0	-	-	-	0	0	0		-	0	-	1	-	-	-	1	-	-	~	-	_	-	-	-	0	-	-	-	0	-	-	3 24	0538 0.667	7 0.33	83 3041	34 27.66	73 103	\$ 0.3	34 0.33	D W.L
	7	0	0 0	_	0 0	-	0 0	-	-	0	0	0	-					1 1	-	-	-	-	0	0		\rightarrow	0	0			0		-	0	0	0	-	27 19	0.750 0.52	50 04	32.3	30 Z.B	373 10.3	0360 036	34 03	JD 1/4L
9		_	P 0	Ь	D 0	1	0 d	_	-	_	-		P 1	٦.	_		_	0	_	P 1	1	P 1	٦	_	_	_	0	0		_	_	_	۳	۳	P 1	Р 1	_	7.	07	02	88	27.6	9	83	83	¥
		<u></u>	9,	4	U.	1 4	9,	<u>\$0</u>	9	1	<u></u>	9,	1	9	<u></u>	9	1	9,	9,	1	1	9	9	99	 \$0	_	_	\rightarrow	<u>_</u>	¢=	<u>.</u>	şe	şe	¢=	_	ů.	şe	Н						П	_	ug)
2.	3																		_	_																										
2.	Responde	AM	NCS	4B0	AR.	dS/	ATM	#	A/B	CV	F.	CBV	DP//	83	æ	≅	×	ᆿ	KRS	KS	ИН	NDY	Q/	¥	MR.	E	W	£	₩	≥	RN N	S.	S	೭೭	0//	٨	880	-	۵	5	g	Š	Ø	B	霓	Keterangan

Lampiran 7. Pengujian Reliabilitas Instrumen Penelitian

- 1. Reliabilitas Instrumen Persepsi Diri terhadap Kemampuan Berpikir Kritis dengan *Alpha Cronbach*
 - a. Data Statistik

$$\sum$$
 Si = 37,259

$$St = 381,473$$

$$k = 50$$

b. Perhitungan

Rumus

$$r_{11} = \left[\frac{k}{k-1}\right] \left[1 - \frac{\sum Si}{St}\right]$$
$$= \left[\frac{50}{50-1}\right] \left[1 - \frac{37,259}{381,473}\right]$$
$$= \left[\frac{50}{49}\right] [1 - 0,098]$$
$$= 0.920$$

Interpretasi =
$$(r_{11})^2$$
 x 100%
= $(0.920)^2$ x 100%
= 0.84640 x 100%
= 84.640 %

c. Kesimpulan

Berdasarkan hasil perhitungan, koefisien reliabilitas instrumen persepsi diri terhadap kemampuan berpikir kritis menunjukkan nilai reliabilitas sebesar 0,920. Koefisien reliabilitas yang didapat kemudian diinterpretasikan dan diperoleh nilai sebesar 84,640%. Hal ini menunjukkan bahwa instrumen persepsi diri terhadap kemampuan berpikir kritis dapat dipercaya.

Tabel 10. Pengujian Reliabilitas Instrumen Persepsi Diri terhadap Kemampuan Berpikir Kritis

-		I_ I			ا ـــا	1	I	ا۔		I	_	_			_	_			1		ایہ	I	_ 1.	J.	J-		1	_1	_ 1	٦,,		I	. I -	J	ı							
열	166	191	83	8	88	হ্	\$	88	215	≇	(9)	150	177	191	169	160	196	88	93	197	£6 :	æ !	75	3 8	8 8	180	300	£ ;	19	£ 5	2 8	2 2	+	+		1						
8	2	~	en	2	S	-	en	m	S	m	2	~	3	4	3	2	2		e	S	→ .	- ·	~ ~	9 6	4 50	2	4	7	-	4 (9 0	7 0	y 45	-	1279							
23	5	4	~	2			~	~	4	~	2	3			3	2	3	~	~	-4	-	·	7	- ارد	-	5	9	~	-	4	9	7 (7 5	-	9180							
15	3	4	-	~	2	S	~	-	-	~	es	3	5		4		2	~	-	2	S.	٠,	~	-[-			2	2	-	-4 (-	-	+ 40		0.593							
æ	7	65	-	-3	2	-,	~	4	-	~	~	%	2	4	7	4	2	~	4	S	-	٠,	m =	- -		4	S	20	2	4,	-	+ ~	- uc		0.593	1						
is:	3	2	~	2	~	~	~	<u>ر</u>	4	~	2	3	2	_	3	7	3	4	~	~	7	l	2 6	7 6	7 7	4	~	e .	7	7 .	,	2 0	1		0.797	l						
\vdash	3	2		_	_				H	-	H		2	H	2	H	2	H	2	1	H	Ŧ		+	+		2	-	_	+	1	Ŧ		1-		l						
25	-		4	43	7		~	4	-	<u> </u>	-	7	٤	H	- 5	H		-	2	7	47)	4	-	+	-	-	-	-	-	4	7	7	+	-	1771							
23	4	2	S	4	4	~	e	S	2	~	~	3	7	7	4	7	2		7	4	4	4	~	1	-	7	2	2	2		1	+ 4	2 40	-	0.542							
25	3	4	4	en	4	4	en	4	4	m	m	~	2	7	4	7	4	en	4	4	4	4	4 <	- ~	> -#	en	S	4	4	en e	9 0	2 ~	2 40	4	0.378							
S	3	2	en	en	4	-	~	en	4	m	7	~	-	e	3	7	2	~	~	en	→ .	~ ·	7 0	-	> -+	e	es	∾ .	~	e	9	4 0	₂	-	0.707							
2	1	3	7	4	en	-	~	'n	4	~	en	3	-	3	3	2	2	-	7	~	ლ,	es .	~ ~	> ~	2	e	3	en .	-	en e	7 <	2 0	7 7	· ~	980	1						
4	7	4	4	4	4	~	~	4	4	~	~	3	2	4	7	4	7	-	4	4	4	٠,	m =		,	4	2	4	2	-		+ ~	, ,	- 2	0307	ĺ						
99	3	2		_	╛	╛	~	· C	2	~	~	_	2	H		H	3	5	20	1	_	,	l	.†-	,	H	2	_	⇟	_ -	ا.	+ ~	, ,	- 1.5	0.485	l						
\vdash	H	H	Ĥ	-1	\dashv		_	-1	H	É		H	H	H	H	H		H	H	\dashv	-1	+	+	+	Ť	Н	H	-	1	+	+	+	+	Ë	1216 0.4							
\$	4	4	2	4	4	2	7	4	7	4	2	2	7	3	4	7	4	~	2	4	4	4	7	- "	2 2	4	2		7	4 0	1	7	- 40	2								
#	4	3	7	→	S	~ታ	es	7	->	7	es	~	-	7	2	7	4	7	2	~+	→ ·	7	2	y 4	2	e	e	~	~	-4 c	٠ -	+ ~	> =	5	1.152							
\$	3		→		5	~ ,	en		2	~	S	3	2	~	3	~	2			2	→	~ ·	~	-	+ ~		2	S.		→ «	<u>-</u>	+ 4	2 40	-	9290							
42	+	2	4	S	2	-	~	'n	2	en	4	3	2	4	+	2	+	-	4	4	4	-	4		2	2	2	2	S	-	-	+ u	- v	2	950							
2	3	4	-	2	-	~	~	-	2	~	~	3	2	~	3		5	~	4		J.	e .	~ ~	, .	,	2	4		2			-	,	- 2	0.702	1						
\$	2		2	4	4		~	<u>ر</u>	4	~	2	~		_	3	7	2	~	~	~	_ .	e .	~ ~	, -	,	J	2	_	7	7 0	٦,	7 0	2 60		9560	l						
88	3				· ·				Н	es	_	_	+	2	3	닖	2		٥	1		~ .	m 6	+		H	2			e .	7 0	4 6	+	+	0000							
\vdash			Ť	- 4	-1	-		-	Ĥ		. 4		Ĥ	H		H			-	-	4	1	7	+	+	Ĥ			+	1	Ŧ	+	+	-	80	1						
×	3	2	4	4	4	-5	~	S	2	m	7	3	7	7	4	7	4	2	2	4	4	4	~	1	-	4	2	5	4	4 (7	+ ~	+	7	5 0.479							
×	4	3			4	~	es	e	->	-	en	3	3	→	4	-	4	7	2	-5	7	4	~ ~	1	+ 40		e	€.	-	7	7 9	7 0	1 0	-	1005							
25	3	3		7	7	-	en	e	2		7	3	~	~	3	7	2	es	3	~	→ .	~ ·	~ ~	9	4	7	3	~	~	~	٠	7 0	-	~	290							
æ	4	2	-		-	~	es	-3	2	~	2	3	5	3	3	~	3	3	-	2	→ ,	e .	~ ~	> ~	+ ~	~	4		2	7 .	۰ ،	7 0	4 40	2	980	l						
33	7	4	4	~	4	-,	~	S	4	~	4	3	4	~	3	4	2	-	2	4	J .	es -	4 ~	, -	,	~	~	8	2	4 (٦,	-		2	7050	ĺ						
27 29 30 31 32	3	-	4	_	4			50	3	~		3	2	3	3	2	2	-,	2	-,	J.	e .	4 ~	, -		4	_	-,	_	e .	,	2 0	, ,	-	0,492	l						
-		H			-	-	_		H	Ĺ			H	Н	H	Н	2 8	H	H	-	-1	+	1	+	1	H	H	+	\dashv	e .	+	Ŧ	Ŧ	1	0.847 0.4	1						
8	3		6.5		43	4	د->	4		<u>ش</u>	7		Ė	H	4	-7	3	~	4	4	7	7	-	Ŧ	1	·	4	4	4		1	+	F	150								
82	2	~	7	2	7	en	~	m	4	2	2	~	2	2	2	e	~	~	2	4	→ .	7	2 0	2 6	> 4	e	4	4	7	4 0	7 0	7	+ ~	4	3 0675							
11	2	~	-	4		es	es	S	2	7		~	2		4		2	7	~	S	S.	<u>-</u>	4 6	2	9	7	2	4	2	- 	7	+ -	+ ~	-	9870							
16	3	4	-	4	~	~	~	4		7	2	3	5	3	3		2	~	-	4	ص	-	4 ~				5		- [-4 (- [-	<i>-</i>	+ 40	2	939							
×	4	4	-	~	2	S	es	S	2		2	3	5	3	3	2	4	es	~	-5	J,	· ·	4 ~		9	33	2		-	٠,		۰ ۰	4 ~	-	0752	1						
83	3	~	4	-	2	~	~	_	2	7	~	3	_	~	3		7	-	2	~	4	en .	~ ~	, .	1 -4	2	2	· 22	7	7 0	٦,	2 0		-	1342	İ						
7	3	3	_	_	<u></u>			20	٦	-	-	-		닖	3		2		2	e .		<u>.</u>	4 6	1-	+ 40	H	۲	<u></u>	_	7 -	1	1.	, .c.		1.	1						
19 2	H	H	H	-1	-}	-	-		H	Ė	F	H	H	H	H	H		H	Ĥ	7	\pm	+	+	+	Ť	H	H	+	+	+	+	Ŧ	+	Ť	0000							
	4	4	~	4	~	7	~	~	~	4	Ţ	3	2	~	3	2	4	2	~	4	4			+		4	~	4	7	c	'	-	+ ~	, ,								
**	2	7	4	4	en	7	en	m	4	4	2	~	3	~	3	2	2	~	~	4	→ .	e .	~ ~	1	+ ~	7	~	4	7	en e	-	* ~	+ -	4	1990							
Þ	7	3	4	4	S	en	en	S	S	-	en	~	e	4	7	4	7		S	2	→ .	-	-	-	+ ~	7	~	S.	→	-	+ .		2 40	-	0990							
9	3	4	4	~	4	-	es	4	4	2	4	3	4	3	3	2	4	~	4	4	⊸.	en .	~ ~	-	> -4	8	4	4	S	- -	+ <	7 0	9	-	7890							
\$	3		7	7	4	~	en	en	S		2	3	2	es	~	es	+	2	~	-	7	ω,	~ ~	> -	+ 40	4	~	€.	7	~ ~	٠,٠	0 0	y e-	-	177.0	1						
==	3	4	7		2	_		20	2	-	2	3	_	4	+		2	3	3	-,	٠,	7 .	m ~	.†-	+ 40	4	-	e .	~	٠ .	٠.	+ ~	4 60	, -,	1330	l						
13		Н			Ⅎ	_			H	L	_					H	2				╁	+	_	+	1	H	2	_	_	\pm	+	+	1-	1	1 897.0	l						
\vdash	7	4			-4	-		43	-	F	~	~>	7	-	٠->	43		>	>		7		1	1	+	4		-	-	~ (1	7	f	1		1						
12	7	7	S	4	S	7	~	ς.	2	4	4	3	2	7	7	7	5	~	2	S	4	4	· ·	+	+ 40	7	2	\rightarrow	m	4 (9 0	2 ~	, ~,	4	0.593							
₽	3	3	e	e	S	~	e	4	2		2	3	3	~	3	~	4		4	~	→ ·	~ ·	4 ~	1	-		4		4	7	+ 4	9 0	۰ ~	2	0.711							
ச	2	~	-	en	-	-	es	e	2	7	2	3	-	2	2	7	3	3	3	~	→	<u>-</u>	~ ~	<u>-</u>	-		4		-	- 	₂ «	4 0	<u> </u>		1.073							
	†	4	es	4	4	7	en	en	2		4	3	3	3	3	4	5	3	4	~	7	en .	~ ~	- T-		2	2		-	-4 (٦,	7 0	0	2	080							
_	3	2	S	-		7	~	-3	2		2	3	->		4	2	3		4	2	٠,	J.	J -		> -4	3	2		2	- J (٦,	-			990	1						
۰	3	2	20	J	20	~		50	4	-	~	3	5	Ш	4	7	2	-,	-	2	J.	٠,	m =	, _			2	_	-	.	7,		2 40		0 8890	l						
2	H	2	-	\exists	\dashv	-1				H	É	H	H	H		H	5 5	H	H	-	\exists	+	+	+	+	H		+	+	+	+	+	+	+	3	1						
	4	2	4	4	2	7	~	ς.	2	4	2	4	4	3	3	1		4	4	2	4	4	7	+	+ ~	4	4	20	7	4 ('	+ 4	+	+	0.816 0.961							
-	4	4	e	-5	4	7	e	e	~	4	2	7	3	2	3	2	5	2	3	~	→ ·	~ ·	7 0	1	+ ~	7	4		~	4 (? (2 4	+	+								
~	4	e	4	4	en	7	e	S	2	4	7	2	2	4	4	4	2		4	4	→ .	ო -	- ·	> -	+ -+	4	2	ς.	~	~ -	-	+ ~	2 40	-	0.692							
2	4	4	2	4	S	es	3	S	3		4	3	5	4	4	5	5	-	4	4	→	4	- ·	- اد	+ ~	4	5		- -[-4	o -	+ ~	2 40	4	754:0							
		П	\Box	T	\dashv	\exists			П		Г		П	П		П			П	\exists	\top	\top	T	Ť	T	П	П		\top	\dagger	Ť	†	T	T		22	53	<u></u>	74	75	30	Į
-	4	4	S	4	2	~	~	ď	2	7	22	4	2	4	4	2	2	-	4	4	4	4	-	-	-	4	2	w.	→	4 (1	+ 4	2 40	-	0384	37.259	381.473	760	0334	84.824	Pelabel	A PARAMA
<u>-</u>	_	Ь	۵	۵	_	۵	_	_		_	_	Ь	۵				_	_	۵		۵,	۵.	_ _	ه د		۵		۵.	_					_			T	T	t	Ī		1
Usia	- 1	9	4	17	4	92	15	92	17	4	9	17	16	4	9	4	16	91	47	17	-	+	φ φ	5 5	+	17	47	4	4	+	+	- 4	+	+	_	區	_		1	æ		J
		Ĥ	-						H	Ě	É	H	H	H	_	H	=	-	H		7	7	-	+	+	Ĥ		-	7	7	+	+	Ŧ	+	Varians Ibm	Jumlah Varians Bem	Varians Total	ping	riabel	Hepretsi (%)	Keterangan	-0-1
, ළ				- 1	- 1					ı	ı	_	1_	ıl		ıl			ı 1	-1	⊸ Ι.	\neg	- I	1_	J-	ا۔ا	×	- 1.		- 1	-1	Ι.	.1	8	1	雹	1.5	1-	1 -	量	<u>a</u>	:1
Responde	WW.	ANGS	99	¥	\$2	Æ	⋛	罢	≿	ಆ	11 08/	Ы	13 ESJ	æ	15 IR	×	17 JP	18 KRS	19 KS	퐃	≧ 9	≗ :	23 MH	E	: ≥	쮼	8	≥	≥ I	क्र रू ह	ક્રોફ	2 §	≧ >	- 8	l	틍	_			_		ı

2. Reliabilitas Instrumen Hasil Belajar Kognitif dengan *Kuder Richardson-20* (KR-20)

a. Data Statistik

$$S^2 = 89,750$$
 $\sum pq = 11,059$ $n = 47$

b. Perhitungan

Rumus

$$r_{11} = \left[\frac{n}{n-1}\right] \left[\frac{S^2 - \sum pq}{S^2}\right]$$
$$= \left[\frac{47}{47-1}\right] \left[\frac{89,750 - 11,059}{89,750}\right]$$
$$= \left[\frac{47}{46}\right] \left[\frac{78,691}{89,750}\right]$$

Interpretasi =
$$(r_{11})^2$$
 x 100%
= $(0.896)^2$ x 100%
= 0.80282 x 100%
= 80.282 %

c. Kesimpulan

= 0.896

Berdasarkan hasil perhitungan, koefisien reliabilitas instrumen hasil belajar kognitif menunjukkan nilai reliabilitas sebesar 0,896. Koefisien reliabilitas yang didapat kemudian diinterpretasikan dan diperoleh nilai sebesar 80,282%. Hal ini menunjukkan bahwa instrumen hasil belajar kognitif dapat dipercaya.

Tabel 11. Pengujian Reliabilitas Instrumen Hasil Belajar Kognitif

	aı	J	71	•	ı	•	•	C	11	y١	J	ıa			,,	711	a	U	1111	a	3	"	13	OLI	u	111	ıc	711	•	ıc	J		יט	CI	aj	a	•	1 \	υį	J١		LII						
100	5	83	35	83	S82	1225	976	12	芝	88	\$	144	384	324	926	96	189	88	1225	982	38	88	88	88	23	蒸	6	83	ŧ	28 6	8 8	88	53	121	929	83	22562											
VI of the last	2	83		23	17	35 1	74	ļ.	88		_	. 21	. 82	92	75	75	13	4	38	_	~ æ	ص ج	٠٠ ج	_	_	88	_	-	_	-	₹ ∝	ص ج	H	ξ.			834 22											
>	. 09	7	-	2	-	3	2	-	7	F	-	-	2	_	7	- 5	1	-	~	~	~	~	~		~	7	-	7 .	7	e	7	1 60	·~	-	2	7		8	8	8								
	-	_	-	0	_	1	0	-	-	-	_	-	1	-	-	_	0	_	-	-	_		_	-	_		7	-	1	-	- -	-	-	-	-	_	-		0200									
	ස	_	-	1	-	1	1	-	-	-	-	0	1	0	-	-	0	-	-	_	_	_	-	_	-	_	9	- '	7	-		-	0	-	-	_	83	8 0.639	8	83								
	æ	-	-	1	0	+	-	-	-	-	-	-	1	0	0	-	0	0	-	-	-	-	0	0	-	-	9	0	1	- <	-	-	-	-	0	-		0.583	25	1024								
	ន	0	0	0	0	0	0	-	0	0	-	0	+	0	0	0	0	-	-	0	-	-	-	-	-	0	0		-	- -		0	-	0	-	0	\$0	0.417	88	0.249								
	ន	0	0	1	0	0	+	0	-	-	-	0	0	-	0	0	0	0	-	-	0	-	0	0	0	0	0	0	>	- <		0	-	-	0	-	£	0.306	89	0.212								
	25	-	0	0	-	-	0	0	-	0	-	-	+	0	-	0	-	-	-	-	0	-	-	-	-	-	0	- -	-	- -	- -	-	-	-	0	0	22	0.611	388	0.238								
	क	-	0	0	-	0	-	0	-	0	-	0	+	0	-	-	0	-	-	-	-	-	-	0	-	-	0		-	- -	- -	-	-	0	0	0	8	0.556	0444	0.247								
	8	-	-	1	-	1	0	-	0	0	0	0	1	0	0	-	1	-	-	0	0	-	-	0	-	-	-		-			-	-	0	-	-	Ø	000	0.444 0.361 0.444 0.389 0.694 0.563 0.417 0.361	0.231								
	\$	-	0	1	-	+	0	-	-	0	-	-	1	_	0	0	0	-	-	-	0	-	-	-	-	-	-		7	0		-	0	-	-	-	8	9990	₹	0.247								
	4	-	0	1	-	0	+	0	-	0	-	-	1	_	-	0	0	-	-	-	-	-	-	0	-	-	-		_	٥,		, -	0	-	-	0												
	45	_	0	0		0	+	_	-	-	-	0	0	0	_	_	0	_	_	_	_	_	_	_	_		_	0,	_	_		-	-	-	_	_	91	0.444	0296	0247 0.231								
	44		_	1	_	1	0	_	-	-	-		1				1			_				_				_	_		- -	-	-	_					0361	31								
	45			_			Н		H			Н	_		\exists		_	٥				\exists		_	Ⅎ	_	\pm		+	#	+	+	L		\exists		12	0333	0.067	0.243 0.243 0.222 0.231								
	_	Ĭ	$\overline{}$	_	$\overline{}$	_	_	_	Ė	Ĕ	_	H	_	_	Ì	Ì	_	Ì	Ì	Ì	Ì	$\overline{}$	Ì	_	Ì	7	\exists		+	+	Ŧ	+	F	_	H	_	15	0,417 0.3	90	20								
	*	-	-	1	_	1	_	_	-	-	_	-	1	_	-	-	0	_	_	-			-		7		7	-	4	-1°	7	-	-	-	-	_		7 04	8	13 02								
	\$	0	0	1	0	,	1	0	0	0	0	0	0	-	0	-	0	0	-	_	0		0	_	-	0		0	1	- 0	7	-	-	0	-	_	æ	0.417	0283	0.24								
	æ	0	0	0	0	0	+	0	-	-	-	0	0	0	-	-	0	-	-	-	-	-	-	-	-	0	9	0	1			0	-	-	0	-			0200	0238 0238 0250								
	37	0	0	0	0	+	-	0	0	-	-	-	+	0	-	-	0	-	-	-	-	-	-	0	-	-	0		>		-	- 0	-	-	0	-	22	0.611 0.611	0389	0738								
	æ	-	0	0	-	+	1	0	-	0	0	-	+	0	-	-	1	-	-	-	-	0	-	0	-	-	-	- (-			-	-	-	0	0			0388	028								
	ĸ	-	0	0	0	-	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	-		-	- -		-	-	0	0	0		0220	0.750	0.249 0.188								
	इड	-	0	+	-	-	0	0	-	-	-	-	0	-	-	-	0	0	-	0	-	-	-	0	-	0	0	- -	-	- -	-	-	0	0	0	-	60		0.472	0.249								
	æ	-	0	1	0	1	1	0	-	0	0	0	1	+	0	0	0	0	+	0	-	-	0	-	-	0	0		-	٥,			0	0	1	0	5	0.417	0.583	0.188 0.188 0.249 0.249 0.243								
	32	-	0	0	-	1	0	0	-	0	-	0	1	0	0	0	1	-	0	-	-	-	-	0	0	-	-	٥.	-	٥,			-	0	+	-	4	0.472	0.528	0.249								
)jijijiji	ج	-	0	0	-	+	0	-	-	0	-	0	0	0	-	-	0	-	-	-	-	0	-	-	-	-	-	.	_	0 0	-	· -	-	-	0	-	6	0.528	0.472	1249								
elajar K	8	_	0	0	_	0	0	-	-	-	-	0	0	0	0	-	0	_	0	0	_	-	0	0	-	_	_	٥,	_		5 -	, ,	-	-	_	0			22	8								
Butir Soal Hasil Belajar Kognitif	83	_	0	1	_	0	0	0	-	-	_	0	0	_	-	0	0	_	0	_	_	_	0	0	_	_		0 .	_		_	-	-	-	0	_	6	050	0.750 0.750	.08								
ufir Soa	77		_	1	_	_	_	_	-	L	_		-	_			0			_			_	_	_				_		-		-	_														
æ	76				_			Ē	F	Ė		Ė			\dashv			$\overline{}$				\dashv		7	-	+	7	-	7	7	+	F			Ĥ		12	0.417 0.5	0283	0.243 0.249								
		Ĭ		_	$\overline{}$	_	-		ľ	Ė	_	H	_	_	$\overline{}$	\exists	_	Ĭ		_	Ť	\exists		_	_			-		-	+	1	Ė	_	_				88	19 07								
	53	_	-	0	_	1	0	-	-	-	-	-	1	_	-		1	_	_	_	_	-	-	7	_	_	7	-	7	-	+	+	-	-	-	0			7 0.528	3 02								
	8	_	-	1	-	1	1	-	-	-	-	0	0	-	-	-	0	_	-	_	_	_	-	_	-	_	9	- '	7	- (1	-	-	-	0	_	7	0.583	0.417	624								
	2	-	0	0	-	1	1	0	0	0	-	0	0	0	-	-	1	-	-	0	0	-	-	0	-	-	0	۰,		-		-	-	-	-	0	æ	090	020	028								
	8	0	0	+	0	-	+	0	-	-	-	0	0	-	-	-	+	-	-	-	-	-	-	0	-	0	0	۰ .	-	- -		0	-	0	-	0	7	0.583	0.417	0.243								
	e	-	-	0	-	+	0	-	0	-	0	0	+	0	Ļ	-	0	0	0	-	~	-	-	0	-	-	0	-	-	- <	> -	-	-	0	0	-	22		0389	0238								
	Þ	-	-	0	0	0	0	0	-	0	-	0	+	0	-	-	0	0	-	-	-	-	-	0	-	0	0	۰.	-	- -	-	0	-	0	0	-	\$	0.417	0.583	0.247 0.247 0.243 0.238 0.243 0.250 0.243 0.249								
	15	0	0	1	0	1	0	0	-	-	0	0	1	0	-	-	0	0	0	0	-	-	-	-	-	0	-	0	5	0 0	-	-	-	-	1	0	16	0.444	0.556	0.247								
	7	0	0	0	0	1	0	0	-	-	-	0	1	0	-	0	0	-	-	-	0	-	-	-	-	-	-	٥.	-	- <	-		-	-	+	-	8	9830	##	0.247								
	5	0	0	0	0	0	1	0	-	-	-	0	0	0	-	-	0	0	-	-	-	-	-	0	-	-	-	0 .	5	- <	-		-	-	-	0	Ξ	900	7690	0.212								
	12	-	-	1	0	1	+	0	-	-	-	0	1	-	0	0	0	0	-	-	0	-	-	-	-	-	-	0 .	5			-	-	0	-	0		929	#	247								
	1	_	_	0	_	1	_	_	_	0	-	_	1	_	0	_	1	_	_	_	_	_	0		_	_			_	_			_	-	_	0	74	0 299	33	22 0								
	10			_		_	_	_		_	0		0				_			_		\pm					_		_	_	-	-	-	_		0	6	28	172	949								
	_		_	_	_	_	_	-	H	Ŀ		-	_	_	\exists	_	_	\exists	\equiv			\dashv		_	+	7	_	7	+	+	+	+	H	-	-	\exists	13	0.361 0.528 0.667 0.556	8	31 00								
	-	Ť	$\stackrel{\smile}{+}$	_	$\stackrel{\smile}{-}$	_	_		Ľ	Ľ	_	H	_	_	$\overline{}$	\dashv	_	Ĭ	$\overline{}$	_		_	_	\exists	7	7	7	7	+	7	#	+	Ë	Ë	H	-	12	8	0.583 0.611 0.667 0.639 0.472 0.333 0.444	2 02								
		-	-	1	-	1	1	-	_	-	_	-	0	0	-		0	-	-	_	-		-	_	_			0 (7	- (7	, -	-	-	-	-	52	0.389 0.333	- 8	8 02								
	7	_	0	0	-	+	1	0	-	0	-	0	0	0	0	0	0	-	0	_	0	-	0	_	-	_	9		7	- <	9	, -	0	-	+	0	**	7	90	3 02								
	9	-	0	0	-	+	-	-	-	0	-	0	0	-	0	0	0	0	-	-	0	-	0	0	0	-	0		>	- 0	-	-	-	0	0	-	5	0.417	99	024								
	2	-	0	0	-	+	-	0	-	0	_	0	+	0	0	0	0	_	-	—	0	-	0	0	0	-	0	- -	-	- -		-	-	0	-	-	9	0440	9990	0.247								
	4	4		_	Н			L	H	\vdash		Н			\dashv		_	Н	\vdash	4	4	_	4	4	\dashv	4	\downarrow	+	+	+	+	+	┡	L	Н	_		- 1										
	~	_	-	1	0	1	0	0	-	-	0	0	0	-	-	0	1	-	-	_	_	_	_	_	_	_		0	1	9	7	-	-	-	-	-	75	9000	88	9 02								
	7	~	0	-	0	+	0	0	-	0	0	0	+	-	-	-	-	-	-	-	-	-	0	0	-	9	9	0	1	- -	1		0	0	0	-	6	0.750 0.528	0.250 0.472 0.333	0.240	-	_	_	-			, I =	5 I I
	-	0	0	-	0	-	0	-	-	-	0	-	+	-	-	-	-	0	-	-	-	-	-	-	-	-	-	0		- -	> -	-	-	-		-	77	0.750	029	0.188	11,059	72	\$	89.750	980	0.334	OU.202 Refahal	Ingi
9		_	٩	٩	۵.	_	٩	_	_	_	_	_	Ь	۵	_	_	_	_	_	۵.	_	۵	٩	_	_	ما	۵.	۵.	_	۵.	-1-	ے ب	۵	مـ	۵	_						Ì	1					
-1	2000	17	16	17	17	17	91	15	91	4	17	16	17	16	4	91	17	16	16	17	4	9	91	9	9	Þ	₽	ţ= 1	1	¢= 0	- 4	9	17	91	17	16					g		1			. S	(ar) IS	japel
lisia	Responde	AM	ANGS	ABP	AR.	ASP	ATIN	W.	BB	≿	R	CBV	MdQ	ESI	Æ	¥	×	굨	KRS	જ	돌	λQM	OW OW	폴	용	E	2	<u>ه</u> :	€.	& 8	Z 2	S S	73	9	Υ	8780	=	۵	0	В	Juniahpo	=	F	82	= :	rian	Kataran	Tingkat Refabel
=	æ		×.	-	H	5 A	×	ŀ.	Ē	-	0	11	12 D	13 E		15	16	17	18 K	-	7 02	71 71	_	-	-	+	\dashv	+	_	-	3 25	32		34		36 B						Ì				1	-	=
	=	_	. 7		-3"	3	٩	Ľ	<u> </u> ~	تًا		_	7	_	÷	-	-	_	-	₹-	7	7	7	7	7	7	7	2 3	7	2 6	ے اد		ب	ب	ي.	က်						<u></u>		Ш		\perp	丄	Ш

Lampiran 8. Foto Kegiatan Penelitian di SMA Negeri 45 Jakarta

Gambar 13. Penyebaran Instrumen Penelitian pada Kelas Uji Coba (XI MIA 1)

Gambar 14. Peserta Didik Kelas Uji Coba (XI MIA 1) sedang Mengerjakan Instrumen Penelitian

Gambar 15. Peserta Didik Kelas Penelitian (XI MIA 3) sedang mengerjakan Instrumen Penelitian

Gambar 16. Peserta Didik Kelas Penelitian (XI MIA 4) sedang mengerjakan Instrumen Penelitian

Gambar 17. Peserta Didik Kelas Penelitian (XI MIA 2) sedang mengerjakan Instrumen Penelitian

Lampiran 9. Perhitungan Kategori Nilai Per Variabel

1. Perhitungan Kategori Nilai Persepsi Diri terhadap Kemampuan Berpikir Kritis

Jumlah nilai mentah persepsi diri terhadap kemampuan berpikir kritis yang didapatkan dari responden dijadikan nilai kriteria dengan rumus sebagai berikut:

$$Nilai\ kriteria = rac{Jumlah\ nilai\ yang\ diperoleh}{Jumlah\ maksimal\ nilai}\ x\ 100\%$$

Tabel 12. Nilai Mentah dan Nilai Kriteria Persepsi Diri Terhadap Kemampuan Berpikir Kritis

			Nilai	
No	Inisial	Nilai	Kriteria	Kategori
	Responden	Mentah	(%)	
1	HAN	112	44.800	SEDANG
2	HAAH	114	45.600	SEDANG
3	MGAH	117	46.800	SEDANG
4	SNF	118	47.200	SEDANG
5	KDAP	124	49.600	SEDANG
6	RNR	124	49.600	SEDANG
7	APP	125	50.000	SEDANG
8	MRF	128	51.200	SEDANG
9	WKP	131	52.400	SEDANG
10	ASP	140	56.000	SEDANG
11	ARF	140	56.000	SEDANG
12	MSB	140	56.000	SEDANG
13	ADL	145	58.000	SEDANG
14	WAS	146	58.400	SEDANG
15	RP	152	60.800	TINGGI
16	ADCSR	152	60.800	TINGGI
17	MW	153	61.200	TINGGI
18	RM	154	61.600	TINGGI
19	MR	155	62.000	TINGGI
20	MSH	155	62.000	TINGGI
21	RRP	155	62.000	TINGGI
22	RRA	156	62.400	TINGGI
23	HLR	157	62.800	TINGGI
24	FPTM	157	62.800	TINGGI
25	NRF	159	63.600	TINGGI
26	DHNI	160	64.000	TINGGI
27	CHW	160	64.000	TINGGI
28	SJ	163	65.200	TINGGI
29	RS	163	65.200	TINGGI
30	RRS	164	65.600	TINGGI
31	VDP	164	65.600	TINGGI
32	BS	164	65.600	TINGGI
33	NS	164	65.600	TINGGI
34	AIP	166	66.400	TINGGI
35	IGASV	166	66.400	TINGGI
36	UKGA	166	66.400	TINGGI
37	N	167	66.800	TINGGI
38	APKP	168	67.200	TINGGI
39	DGP	168	67.200	TINGGI
40	DCSO	168	67.200	TINGGI
41	DW	169	67.600	TINGGI
42	FES	169	67.600	TINGGI
43	FMI	170	68.000	TINGGI
44	GH	170	68.000	TINGGI
45	PAE	171	68.400	TINGGI

		1	Nilai	
No	Inisial	Nilai	Kriteria	Kategori
NO	Responden	Mentah	(%)	Rategori
46	ABN	171	68.400	TINGGI
47	GAS	171	68.400	TINGGI
48	MAR	171	68.400	TINGGI
49	NR	171	68.400	TINGGI
50	NLR	171	68.400	TINGGI
51	DC	172	68.800	TINGGI
52	EPK	172	68.800	TINGGI
53	PE	172	68.800	TINGGI
54	RA	172	68.800	TINGGI
55	S	172	68.800	TINGGI
56	NAAP	172	68.800	TINGGI
57	NMM	172	68.800	TINGGI
58	KSP	173	69.200	TINGGI
59	DAR	173	69.200	TINGGI
60	YEP	173	69.200	TINGGI
61	LN	174	69.600	TINGGI
62	RAGA	174	69.600	TINGGI
63	NIF	175	70.000	TINGGI
64	ISAR	177	70.800	TINGGI
65	SL	177	70.800	TINGGI
66	OSD	177	70.800	TINGGI
67	AM	179	71.600	TINGGI
68	RAR	179	71.600	TINGGI
69	ARI	179	71.600	TINGGI
70	LTS	180	72.000	TINGGI
71	RZ	182	72.800	TINGGI
72	ARP	182	72.800	TINGGI
73	EZC	182	72.800	TINGGI
74	DPS	182	72.800	TINGGI
75	SSPEA	183	73.200	TINGGI
76	PDM	183	73.200	TINGGI
77	MNAI	184	73.600	TINGGI
78	SA	185	74.000	TINGGI
79	JAS	186	74.400	TINGGI
80	AAS	186	74.400	TINGGI
81	FD	188	75.200	TINGGI
82	LAP	191	76.400	TINGGI
83	K	193	77.200	TINGGI
84	SK	199	79.600	TINGGI
85	SAS	200	80.000	SANGAT TINGGI

Tabel 13. Kategori Nilai Kriteria Persepsi Diri terhadap Kemampuan Berpikir Kritis

No.	Rentang nilai (%)	Kriteria	Frekuensi Kumulatif	Frekuensi Relatif (%)
1.	0%SM < K < 20%SM	Sangat Rendah	0	0
2.	20%SM < K ≤ 40%SM	Rendah	0	0
3.	40%SM < K ≤ 60%SM	Sedang	14	16,471
4.	60%SM < K ≤ 80%SM	Tinggi	70	82,353
5.	80%SM < K ≤ 100%SM	Sangat Tinggi	1	1,176
	JUMLAH		85	100

Sumber: Suwarma (2009)

2. Perhitungan Kategori Nilai Hasil Belajar Kognitif

Jumlah nilai mentah hasil belajar kognitif yang didapatkan dari responden dijadikan nilai skor dengan rumus sebagai berikut:

$$Nilai = \frac{Jumlah \ nilai \ yang \ diperoleh}{Jumlah \ maksimal \ nilai} \ x \ 100$$

Tabel 14. Nilai Mentah dan Nilai Hasil Belajar Kognitif

No	Inisial Responden	Nilai Mentah	Nilai	Kategori
1	HAN	9	19,149	KURANG
2	HAAH	11	23,404	KURANG
3	MGAH	17	36,170	KURANG
4	FD	18	38,298	KURANG
5	MNAI	19	40,426	KURANG
6	SSPEA	21	44,681	KURANG
7	SNF	21	44,681	KURANG
8	SL	22	46,809	KURANG
9	DAR	22	46,809	KURANG
10	KDAP	22	46,809	KURANG
11	SA	23	48,936	KURANG
12	LN	23	48,936	KURANG
13	RAGA	23	48,936	KURANG
14	APP	24	51,064	KURANG
15	RZ	24	51,064	KURANG
16	RAR	24	51,064	KURANG
17	RNR	24	51,064	KURANG
18	NIF	25	53,191	KURANG
19	MRF	25	53,191	KURANG
20	NAAP	25	53,191	KURANG
21	S	26	55,319	KURANG
22	WKP	26	55,319	KURANG
23	ARP	26	55,319	KURANG
24	MAR	26	55,319	KURANG
25	NR	26	55,319	KURANG
26	WAS	26	55,319	KURANG
27	NMM	26	55,319	KURANG
28	ASP	27	57,447	KURANG
29	FES	27	57,447	KURANG
30	RP	27	57,447	KURANG
31	ADL	27	57,447	KURANG
32	DPS	27	57,447	KURANG
33	K	28	59,574	KURANG
34	GAS	28	59,574	KURANG
35	LTS	28	59,574	KURANG
36	PDM	28	59,574	KURANG
37	ADCSR	28	59,574	KURANG
38	MSB	28	59,574	KURANG
39	YEP	28	59,574	KURANG
40	DCSO	29	61,702	KURANG
41	MW	29	61,702	KURANG
42	NRF	29	61,702	KURANG
43	ARF	29	61,702	KURANG
44	FMI	29	61,702	KURANG
45	MSH	29	61,702	KURANG
70	INIOII	23	1 01,102	LICHAING

	Inisial	Nilai		
No	Responden	Mentah	Nilai	Kategori
46	N	29	61,702	KURANG
47	OSD	29	61,702	KURANG
48	ISAR	30	63,830	KURANG
49	PAE	30	63,830	KURANG
50	PE	30	63,830	KURANG
51	RM	30	63,830	KURANG
52	LAP	30	63,830	KURANG
53	NLR	30	63,830	KURANG
54	DW	31	65,957	KURANG
55	RA	31	65,957	KURANG
56	AAS	31	65,957	KURANG
57	MR	31	65,957	KURANG
58	CHW	31	65,957	KURANG
59	NS	31	65,957	KURANG
60	DGP	32	68,085	KURANG
61	EPK	32	68,085	KURANG
62	JAS	32	68,085	KURANG
63	RRP	32	68,085	KURANG
64	RS	32	68,085	KURANG
65	HLR	33	70,213	KURANG
66	RRA	33	70,213	KURANG
67	VDP	33	70,213	KURANG
68	BS	33	70,213	KURANG
69	FPTM	33	70,213	KURANG
70	AM	34	72,340	KURANG
71	ARI	34	72,340	KURANG
72	DHNI	34	72,340	KURANG
73	SJ	34	72,340	KURANG
74	GH	34	72,340	KURANG
75	IGASV	34	72,340	KURANG
76	RRS	35	74,468	KURANG
77	EZC	35	74,468	KURANG
78	SK	35	74,468	KURANG
79	APKP	36	76,596	CUKUP
80	AIP	36	76,596	CUKUP
81	KSP	36	76,596	CUKUP
82	DC	37	78,723	CUKUP
83	ABN	37	78,723	CUKUP
84	UKGA	37	78,723	CUKUP
85	SAS	38	80,851	CUKUP

Tabel 15. Kategori Nilai Hasil Belajar Kognitif Peserta Didik

No.	Skala	Predikat	Keterangan	Frekuensi Kumulatif	Frekuensi Relatif (%)
1.	>92 - 100	Α	Sangat Baik	0	0
2.	>83 - 92	В	Baik	0	0
3.	>75 - 83	С	Cukup	7	8,235
4.	< 75	D	Kurang	78	91,765
	,	Jumlah		85	100

Sumber: Permendikbud No. 23 (2016)

Lampiran 10. Perbandingan Kategori Nilai Kriteria Persepsi Diri terhadap Kemampuan Berpikir Kritis dengan Kategori Nilai Hasil Belajar Kognitif

Tabel 16. Perbandingan Kategori Nilai Kriteria Persepsi Diri terhadap Kemampuan Berpikir Kritis dengan Kategori Nilai Hasil Belajar Kognitif

No	Inisial Responden	Persepsi Diri Terhadap Kemampuan Berpikir Kritis	Kategori	Hasil Belajar Kognitif	Kategori
1	HAN	44,800	SEDANG	19,149	KURANG
2	HAAH	45,600	SEDANG	23,404	KURANG
3	MGAH	46,800	SEDANG	36,170	KURANG
4	SNF	47,200	SEDANG	44,681	KURANG
5	KDAP	49,600	SEDANG	46,809	KURANG
6	RNR	49,600	SEDANG	51,064	KURANG
7	APP	50,000	SEDANG	51,064	KURANG
8	MRF	51,200	SEDANG	53,191	KURANG
9	WKP	52,400	SEDANG	55,319	KURANG
10	ASP	56,000	SEDANG	57,447	KURANG
11	MSB	56,000	SEDANG	59,574	KURANG
12	ARF	56,000	SEDANG	61,702	KURANG
13 14	ADL WAS	58,000	SEDANG SEDANG	57,447 55,319	KURANG
15	RP	58,400		55,319	KURANG
	ADCSR	60,800	TINGGI TINGGI		KURANG
16 17	MW	60,800 61,200	TINGGI	59,574 61,702	KURANG
18	RM	61,600	TINGGI	63,830	KURANG
19	MSH		TINGGI	61,702	KURANG
20	MR	62,000 62,000	TINGGI	65,957	KURANG
21	RRP	62,000	TINGGI		KURANG
22	RRA	62,000 63,400	TINGGI	68,085	KURANG
23	HLR	62,400 62,800	TINGGI	70,213 70,213	KURANG
24	FPTM	62,800	TINGGI	70,213	KURANG
25	NRF	63,600	TINGGI	61,702	KURANG
26	CHW	64,000	TINGGI	65,957	KURANG
27	DHNI	64,000	TINGGI	72,340	KURANG
28	RS	65,200	TINGGI	68,085	KURANG
29	SJ	65,200	TINGGI	72,340	KURANG
30	NS	65,600	TINGGI	65,957	KURANG
31	VDP	65,600	TINGGI	70,213	KURANG
32	BS	65,600	TINGGI	70,213	KURANG
33	RRS	65,600	TINGGI	74,468	KURANG
34	IGASV	66.400	TINGGI	72,340	KURANG
35	AIP	66,400	TINGGI	76,596	CUKUP
36	UKGA	66,400	TINGGI	78,723	CUKUP
37	N	66,800	TINGGI	61,702	KURANG
38	DCSO	67,200	TINGGI	61,702	KURANG
39	DGP	67,200	TINGGI	68,085	KURANG
40	APKP	67,200	TINGGI	76,596	CUKUP
41	FES	67,600	TINGGI	57,447	KURANG
42	DW	67,600	TINGGI	65,957	KURANG
43	FMI	68,000	TINGGI	61,702	KURANG
44	ARI	68,000	TINGGI	72,340	KURANG
45	GH	68,000	TINGGI	72,340	KURANG
46	MAR	68,400	TINGGI	55,319	KURANG
47	NR	68,400	TINGGI	55,319	KURANG
48	GAS	68,400	TINGGI	59,574	KURANG
49	PAE	68,400	TINGGI	63,830	KURANG
50	NLR	68,400	TINGGI	63,830	KURANG
51	ABN	68,400	TINGGI	78,723	CUKUP
52	NAAP	68,800	TINGGI	53,191	KURANG
53	S	68,800	TINGGI	55,319	KURANG
54	NMM	68,800	TINGGI	55,319	KURANG
55	PE	68,800	TINGGI	63,830	KURANG
56	RA	68,800	TINGGI	65,957	KURANG
57	EPK	68,800	TINGGI	68,085	KURANG
58	DC	68,800	TINGGI	78,723	CUKUP
59	DAR	69,200	TINGGI	46,809	KURANG
60	YEP	69,200	TINGGI	59,574	KURANG
61	KSP	69,200	TINGGI	76,596	CUKUP
62	LN	69,600	TINGGI	48,936	KURANG
63	RAGA	69,600	TINGGI	48,936	KURANG
64	NIF	70,000	TINGGI	53,191	KURANG
65	SL	70,800	TINGGI	46,809	KURANG
66	OSD	70,800	TINGGI	61,702	KURANG
67	ISAR	70,800	TINGGI	63,830	KURANG
68	RAR	71,600	TINGGI	51,064	KURANG
69	AM	71,600	TINGGI TINGGI	72,340	KURANG
70	LTS	72,000	TINGGI	59,574	KURANG
71	RZ ARP	72,800 72,800		51,064 55,319	KURANG
72	555	72,800	TINGGI	55,319	KURANG
73	EZC	72,800	TINGGI	37,447	KURANG
75	SSPEA	72,800 73,200	TINGGI TINGGI	74,468 44,681	KURANG KURANG
					KURANG
76	PDM	73,200	TINGGI TINGGI	59,574	
77 78	MNAI	73,600		40,426	KURANG
79	SA AAS	74,000 74,400	TINGGI	48,936 65,957	KURANG
80		74,400	TINGGI		KURANG
81	JAS FD	75,200	TINGGI	68,085 38,298	KURANG
	ı· —				KURANG
	LAP	76.400			
82	LAP K	76,400 77,200	TINGGI	63,830 59.574	
	LAP K SK	76,400 77,200 79,600	TINGGI TINGGI TINGGI	59,574 74,468	KURANG KURANG

Lampiran 11. Persentase Skor Indikator Instrumen Persepsi Diri terhadap Kemampuan Berpikir Kritis

Rumus:

$$Skor\ Indikator = \frac{Skor\ Total}{Skor\ Total\ Maksimal}\ X\ 100\%$$

Tabel 17. Persentase Skor Indikator Instrumen Persepsi Diri terhadap Kemampuan Berpikir Kritis

			Butir Pe	rnyataan	Skor
No.	Aspek	Indikator	Positif	Negatif	Indikator (%)
	Memberikan	Memfokuskan pertanyaan atau pokok permasalahan	1, 2, 3	4, 5	28,608
1.	penjelasan sederhana	Menganalisis argumen	6, 7, 8	9	23,647
		Bertanya dan menjawab pertanyaan	11, 12, 13	14, 15	26,275
2.	Membangun	4. Mempertimbang- kan apakah sumber dapat dipercaya atau tidak	16, 17	18, 19	22,314
	keterampilan	5. Mengamati dan mempertimbang-kan suatu laporan hasil observasi	21	23, 25	14,549
		6. Mendeduksi dan mempertimbang-kan hasil deduksi	26, 27	29, 30	20,922
3.	Menyimpul- kan	7. Menginduksi dan mempertimbang-kan hasil induksi	31, 32, 33	34, 35	28,725
		Membuat dan menentukan hasil pertimbangan	36	38, 40	14,039
4.	Memberikan penjelasan	9. Mendefinisikan istilah dan pertimbangan suatu definisi	41, 42, 43	44, 45	28,196
lanjut		10. Mengidentifikasi asumsi-asumsi	46, 47	49, 50	23,157
	Mengatur	11. Menentukan suatu tindakan	51, 52	54, 55	20,471
5.	strategi dan taktik	12. Berinteraksi dengan orang lain	56, 57	59, 60	23,118

Lampiran 12. Perhitungan Distribusi Frekuensi Skor Per Variabel

1. Persepsi Diri terhadap Kemampuan Berpikir Kritis

Tabel 18. Nilai Persepsi Diri terhadap Kemampuan Berpikir Kritis

No	Inisial	×	X-M	(X-M)^2
	Responden			
2	HAN	44,8	-20,965	439,531
3	HAAH MGAH	45,6 46,8	-20,165 -18,965	406,627 359,671
4	SNF	47,2	-18,565	344,659
5	KDAP	49,6	-16,165	261,307
6	RNR	49,6	-16,165	261,307
7	APP	50	-15,765	248,535
8	MRF	51,2	-14,565	212,139
9	WKP	52,4	-13,365	178,623
10	ASP	56	-9,765	95,355
11	ARF	56	-9,765	95,355
12	MSB ADL	56 58	-9,765	95,355
14	WAS	58 58,4	-7,765 7,265	60,295
15	RP	60,8	-7,365 -4,965	54,243 24,651
16	ADCSR	60,8	-4,965	24,651
17	MW	61,2	-4,565	20,839
18	RM	61,6	-4,165	17,347
19	MR	62	-3,765	14,175
20	MSH	62	-3,765	14,175
21	RRP	62	-3,765	14,175
22	RRA	62,4	-3,365	11,323
23 24	HLR FPTM	62,8 62,8	-2,965 -2,965	8,791 8,791
25	NRF	63,6	-2,965 -2,165	4,687
26	DHNI	64	-1,765	3,115
27	CHW	64	-1,765	3,115
28	SJ	65,2	-0,565	0,319
29	RS	65,2	-0,565	0,319
30	RRS	65,6	-0,165	0,027
31	VDP	65,6	-0,165	0,027
32	BS	65,6	-0,165	0,027
33	NS	65,6	-0,165	0,027
34	AIP	66,4	0,635	0,403
35 36	IGASV UKGA	66,4	0,635	0,403 0,403
37	N	66,4 66,8	0,635 1,035	1,071
38	APKP	67,2	1,435	2,059
39	DGP	67,2	1,435	2,059
40	DCSO	67,2	1,435	2,059
41	DW	67,6	1,835	3,367
42	FES	67,6	1,835	3,367
43	ARI	68	2,235	4,995
44	FMI	68	2,235 2,235	4,995
45	GH	68	2,235	4,995
46	PAE	68,4	2,635	6,943
47 48	ABN GAS	68,4	2,635	6,943
49	MAR	68,4 68,4	2,635	6,943 6,943
50	NR	68,4	2,635 2,635	6,943
51	NLR	68,4	2,635	6,943
52	DC	68,8	3,035	9,211
53	EPK	68,8	3,035	9,211
54	PE	68,8	3,035	9,211 9,211
55	RA	68,8	3,035	9,211
56	S	68,8	3,035	9,211
57	NAAP	68,8	3,035	9,211
58	NMM	68,8	3,035	9,211
59 60	KSP DAR	69,2	3,435	11,799
61	YEP	69,2 69,2	3,435 3,435	11,799 11,799
62	LN	69,6	3,835	14,707
63	RAGA	69,6	3,835	14,707
64	NIF	70	4,235	17,935
65	ISAR	70,8	5,035	25,351
66	SL	70,8	5,035	25,351
67	OSD	70,8	5,035	25,351
68	AM	71,6	5,835	34,047
69	RAR	71,6	5,835	34,047
70	LTS	72	6,235	38,875
71 72	RZ ARP	72,8 72,8	7,035 7,035	49,491 49,491
73	EZC	72,8	7,035	49,491
74	DPS	72,8	7,035	49,491
75	SSPEA	73,2	7,435	55,279
76	PDM	73,2	7,435	55,279
77	MNAI	73,6	7,835	61,387
78	SA	74	8,235	67,815
79	JAS	74,4	8,635	74,563
80	AAS	74,4	8,635	74,563
81	FD	75,2	9,435	89,019
82	LAP	76,4	10,635	113,103
83 84	K SK	77,2 79,6	11,435	130,759
84 85	SAS	79,6 80	13,835 14,235	191,407 202,635
	TOTAL	5590	-0,025	4999,454
1	MEAN			,765
	VARIANSI		59	,517
	SD		7,	715

a. Data Statistik

$$\sum X$$
 = 5590
 $\sum (X - M)^2$ = 4999,454
n = 85

b. Perhitungan

Menghitung Mean

$$\bar{X} = \frac{Jumlah\ seluruh\ data}{jumlah\ sampel}$$

$$= \frac{5590}{85}$$

$$= 65,765$$

Menghitung Variansi

$$S^{2}X = \frac{\Sigma(X - M)^{2}}{N - 1}$$
$$= \frac{4999,454}{84}$$
$$= 59,517$$

Menghitung Simpangan Baku

$$SD = \sqrt{S^2X}$$
$$= \sqrt{59,517}$$
$$= 7,715$$

Mencari Nilai Rentangan

Mencari Interval Kelas

$$K = 1 + 3.3 \log n$$

$$= 1 + 3.3 \log (85)$$

$$= 1 + 6.367$$

$$= 7.367 \approx 8$$

Mencari Panjang Kelas

P = R/K
=
$$35,2/8$$

= $4,4 \approx 5$

Tabel 19. Distribusi Frekuensi Nilai Persepsi Diri terhadap Kemampuan Berpikir Kritis

NO.	INTERVAL KELAS	BATAS BAWAH	BATAS ATAS	FREKUENSI KUMULATIF	FREKUENSI RELATIF (%)
1.	44 – 48	43,5	48,5	4	4,706
2.	49 – 53	48,5	53,5	5	5,882
3.	54 – 58	53,5	58,5	5	5,882
4.	59 – 63	58,5	63,5	10	11,765
5.	64 – 68	63,5	68,5	27	31,765
6.	69 – 73	68,5	73,5	25	29,412
7.	74 – 78	73,5	78,5	7	8,235
8.	79 – 83	78,5	83,5	2	2,325
	JUI	MLAH	85	100	

2. Hasil Belajar Kognitif

Tabel 20. Nilai Hasil Belajar Kognitif

No	Inisial	Y	Y-M	(Y-M)^2
	Responden			
1	HAN	19,149	-41,527	1724,497
2	HAAH	23,404	-37,272	1389,183
3 4	MGAH	36,170	-24,506	600,534
5	FD MNAI	38,298 40,426	-22,378	500,781
	SNF		-20,250	410,081 255,845
6 7	SSPEA	44,681	-15,995	
8	DAR	44,681 46,809	-15,995	255,845
	KDAP		-13,867	192,307
9		46,809	-13,867	192,307
10	SL	46,809	-13,867	192,307
11 12	LN	48,936	-11,740	137,824 137,824
13	RAGA SA	48,936	-11,740	137,824
	APP	48,936	-11,740	
14		51,064	-9,612	92,394 92,394
15	RAR	51,064	-9,612	
16	RNR	51,064	-9,612	92,394
17	RZ MRF	51,064	-9,612	92,394
18		53,191	-7,485	56,018
19	NAAP	53,191	-7,485	56,018
20	NIF	53,191	-7,485	56,018
21	ARP	55,319	-5,357	28,696
22	MAR	55,319	-5,357	28,696
23	NMM	55,319	-5,357	28,696
24	NR	55,319	-5,357	28,696
25	S	55,319	-5,357	28,696
26	WAS	55,319	-5,357	28,696
27	WKP	55,319	-5,357	28,696
28	ADL	57,447	-3,229	10,428
29	ASP	57,447	-3,229	10,428
30	DPS	57,447	-3,229	10,428
31	FES	57,447	-3,229	10,428
32	RP	57,447	-3,229	10,428
33	ADCSR	59,574	-1,102	1,213
34	GAS	59,574	-1,102	1,213
35	K	59,574	-1,102	1,213
36	LTS	59,574	-1,102	1,213
37	MSB	59,574	-1,102	1,213
38	PDM	59,574	-1,102	1,213
39	YEP	59,574	-1,102	1,213
40	ARF	61,702	1,026	1,053
41	DCSO	61,702	1,026	1,053
42	FMI	61,702	1,026	1,053
43	MSH	61,702	1,026	1,053
44	MW	61,702	1,026	1,053
45	N	61,702	1,026	1,053
46	NRF	61,702	1,026	1,053
47	OSD	61,702	1,026	1,053
48	ISAR	63,830	3,154	9,946
49	LAP	63,830	3,154	9,946
50	NLR	63,830	3,154	9,946
51	PAE	63,830	3,154	9,946
52	PE	63,830	3,154	9,946
53	RM	63,830	3,154	9,946
54	AAS	65,957	5,281	27,894
55	CHW	65,957	5,281	27,894
56	DW	65,957	5,281	27,894
57	MR	65,957	5,281	27,894
58	NS	65,957	5,281	27,894
59	RA	65,957	5,281	27,894
60	DGP	68,085	7,409	54,895
61	EPK	68,085	7,409	54,895
62	JAS	68,085	7,409	54,895
63	RRP	68,085	7,409	54,895
64	RS	68,085	7,409	54,895
65	BS	70,213	9,537	90,950
66	FPTM	70,213	9,537	90,950
67	HLR	70,213	9,537	90,950
68	RRA	70,213	9,537	90,950
69	VDP	70,213	9,537	90,950
70	AM	72,340	11,664	136,059
71	ARI	72,340	11,664	136,059
72	DHNI	72,340	11,664	136,059
73	GH	72,340	11,664	136,059
74	IGASV	72,340	11,664	136,059
75	SJ	72,340	11,664	136,059
76	EZC	74,468	13,792	190,222
77	RRS	74,468	13,792	190,222
78	SK	74,468	13,792	190,222
79	AIP	76,596	15,920	253,438
80	APKP	76,596	15,920	253,438
81	KSP	76,596	15,920	253,438
82	ABN	78,723	18,047	325,709
83	DC	78,723	18,047	325,709
84	UKGA	78,723	18,047	325,709
85	SAS	80,851	20,175	407,033
ļ	TOTAL	5157,447	-0,013	11422,470
ļ	MEAN			0,676
	VARIANSI			5,982
L	SD		11	1,661

a. Data Statistik

$$\sum Y$$
 = 5157,447
 $\sum (Y - M)^2$ = 11422,470
n = 85

b. Perhitungan

Menghitung Mean

$$\bar{Y} = \frac{Jumlah \ seluruh \ data}{jumlah \ sampel}$$
$$= \frac{5157,447}{85}$$
$$= 60,676$$

Menghitung Variansi

$$S^{2}Y = \frac{\Sigma(Y - M)^{2}}{N - 1}$$
$$= \frac{11422,470}{84}$$
$$= 135,982$$

Menghitung Simpangan Baku

$$SD = \sqrt{S^2Y}$$

= 135,982
= 11,661

Mencari Nilai Rentangan

Mencari Interval Kelas

K = 1 + 3,3 log n
= 1 + 3,3 log (85)
= 1 + 6,367
= 7,367
$$\approx$$
 8

Mencari Panjang Kelas

P = R/K
=
$$61,702/8$$

= $7,713 \approx 8$

Tabel 21. Distribusi Frekuensi Nilai Hasil Belajar Kognitif

NO.	INTERVAL KELAS	BATAS BAWAH	BATAS ATAS	FREKUENSI KUMULATIF	FREKUENSI RELATIF (%)
1.	18 – 25	17,5	25,5	2	2,353
2.	26 – 33	25,5	33,5	0	0,000
3.	34 – 41	33,5	41,5	3	3,529
4.	42 – 49	41,5	49,5	8	9,412
5.	50 – 57	49,5	57,5	19	22,353
6.	58 – 65	57,5	65,5	21	24,706
7.	66 – 73	65,5	73,5	22	25,882
8.	74 – 81	73,5	81,5	10	11,765
	JUI	MLAH	85	100	

Lampiran 13. Uji Prasyarat Pengujian Hipotesis Uji Normalitas Menggunakan *Kolmogorov-Smirnov*

a. Hipotesis

H₀: Data populasi berdistribusi normal

H₁: Data populasi berdistribusi tidak normal

b. Kriteria Pengujian

Terima H₀ jika signifikansi > α (0,05)

Tolak H_0 jika signifikansi $< \alpha (0,05)$

c. Hasil Perhitungan

Perhitungan uji normalitas menggunakan program SPSS 22.0

One-Sample Kolmogorov-Smirnov Test

		Unstandardized
		Residual
N		85
Normal Parameters ^{a,b}	Mean	.000
	Std. Deviation	5.009
	Absolute	.112
Most Extreme Differences	Positive	.049
	Negative	112
Test Statistic		.112
Asymp. Sig. (2-tailed)		.011°

a. Test distribution is Normal.

d. Kesimpulan

Berdasarkan hasil perhitungan diperoleh nilai signifikansi $< \alpha$ (0,05), yaitu 0,011 < 0,05 maka tolak H₀ pada α = 0,05 yang berarti data populasi berdistribusi tidak normal.

b. Calculated from data.

c. Lilliefors Significance Correction.

Lampiran 14. Pengujian Hipotesis Penelitian

1. Uji Signifikansi Model Regresi

a. Hipotesis

H₀: Model regresi tidak signifikan

H₁: Model regresi signifikan

b. Kriteria Pengujian

Terima H_0 , jika nilai signifikansi > α (0,05)

Tolak H_0 , jika nilai signifikansi $< \alpha (0.05)$

c. Hasil Perhitungan

Perhitungan uji regresi menggunakan program SPSS 22.0

ANOVA^a

I	Mode	I	Sum of Squares	df	Mean Square	F	Sig.
	1	Regression	406.257	1	406.257	15.928	.000b
		Residual	2116.967	83	25.506		
L		Total	2523.224	84			

a. Dependent Variable: Hasil Belajar Kognitif

Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	9.771	4.729		2.066	.042
	Kemampuan Berpikir Kritis	.114	.029	.401	3.991	.000

a. Dependent Variable: Hasil Belajar Kognitif

d. Kesimpulan

Berdasarkan hasil perhitungan diperoleh nilai signifikansi < α (0,05), yaitu 0,000 < α (0,05), maka tolak H₀, yang berarti model regresi \hat{Y} = 9,771 + 0,114 X signifikan.

b. Predictors: (Constant), Kemampuan Berpikir Kritis

2. Uji Linearitas

a. Hipotesis

H₀: Bentuk hubungan tidak linear

H₁: Bentuk hubungan linear

b. Kriteria Pengujian

Terima H_0 , jika nilai signifikansi > α (0,05)

Tolak H_0 , jika nilai signifikansi $< \alpha (0,05)$

c. Hasil Perhitungan

Perhitungan uji linearitas menggunakan program SPSS 22.0

	ANOVA Table								
			Sum of	df	Mean	F	Sig.		
			Squares		Square				
		(Combined)	1970.676	43	45.830	3.401	.000		
Hasil Belajar	Between	Linearity	406.257	1	406.257	30.145	.000		
Kognitif *	Groups	Deviation	1564.419	42	37.248	2.764	.001		
Kemampuan		from Linearity							
Berpikir Kritis	Within Groups		552.548	41	13.477				
	Total		2523.224	84					

d. Kesimpulan

Berdasarkan hasil perhitungan diperoleh nilai signifikansi deviasi dari linearitas $< \alpha$ (0,05), yaitu 0,001, maka tolak H₀. Hal tersebut menunjukkan bahwa model regresi linear.

3. Uji Analisis Koefisien Korelasi

a. Hipotesis

 H_0 : $\rho_{xy} = 0$ H_1 : $\rho_{xy} > 0$

b. Kriteria Pengujian

Terima H_0 jika nilai $r_{xy} < r$ tabel (0,05) (85)

Tolak H_0 jika nilai $r_{xy} > r$ tabel (0,05) (85)

c. Hasil Perhitungan

Perhitungan uji analisis koefisien korelasi dengan uji *Spearman Rank* menggunakan program SPSS 22.0 dengan dikonversi ke data ordinal terlebih dahulu, sehingga menghasilkan data sebagai berikut:

Model Summary

Model	R	R Square	Adjusted R	Std. Error of the
			Square	Estimate
1	.401ª	.161	.151	5.050

a. Predictors: (Constant), Kemampuan Berpikir Kritis

d. Kesimpulan

Berdasarkan hasil perhitungan diperoleh koefisien korelasi sebesar $r_{xy} > r$ tabel, yaitu 0.401 > 0.1775, maka tolak H_0 pada $\alpha = 0.05$. Hal tersebut berarti terdapat hubungan positif yang signifikan antara persepsi diri terhadap kemampuan berpikir kritis dengan hasil belajar kognitif materi sistem reproduksi manusia pada peserta didik SMA Negeri 45 Jakarta, yaitu sebesar 0.401.

4. Koefisien Determinasi dan Kontribusi

Model	Summary	y
-------	---------	---

Model	R	R Square	Adjusted R	Std. Error of the
			Square	Estimate
1	.401a	.161	.151	5.050

a. Predictors: (Constant), Kemampuan Berpikir Kritis

a. Hasil Perhitungan

Rumus :

Koefisien Determinasi
$$= (r_{xy})^2$$

 $= (0,401)^2$
 $= 0,161$
Koefisien Kontribusi $= (r_{xy})^2 x 100\%$
 $= (0,401)^2 x 100\%$
 $= 0,161 x 100\%$
 $= 16,1\%$

b. Kesimpulan

Berdasarkan hasil perhitungan, kekuatan hubungan antara variabel X dan Y yaitu sebesar 0,401 yang termasuk dalam kategori cukup tinggi. Sementara itu, hasil dari koefisien determinasi yaitu sebesar 0,161. Hal tersebut dapat diartikan bahwa persepsi diri terhadap kemampuan berpikir kritis memberikan kontribusi sebesar 16,1% terhadap hasil belajar kognitif materi sistem reproduksi manusia pada peserta didik SMA Negeri 45 Jakarta, sedangkan 83,9% dikontribusi oleh faktor lain.

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI JAKARTA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Kampus B, Jl. Pemuda No. 10 Rawamangun Jakarta 13220

Telepon: (021) 4894909 Fax.: (021) 4894909 E-mail: dekanfmipa@unj.ac.id

Building Future Leaders

No

: 589/6.FMIPA/DT/2017

Hal

: Permohonan Ijin Melaksanakan Penelitian

8 Mei 2017

Kepada Yth. Bapak/Ibu Kepala SMA Negeri 45 Jakarta Jl. Perintis Kemerdekaan Kelapa Gading Timur, Jakarta Utara di tempat

Dengan hormat,

Sehubungan dengan persyaratan untuk mendapatkan gelar Sarjana pada Institusi kami maka dengan ini kami memohon kepada **Bapak/Ibu Kepala Sekolah SMA Negeri 45 Jakarta**, untuk memberi kesempatan kepada mahasiswa kami atas nama :

No	Nama	No Reg.	Judul
1.	Novita Lasari	3415131019	Hubungan Antara Kemampuan Berfikir Kritis dengan Hasil Belajar Kognitif Materi Sistem Reproduksi Manusia pada Peserta Didik SMA

Untuk melaksanakan penelitian agar mendapatkan kompetensi yang harus dimiliki sebagai Sarjana nantinya. Adapun observasi penelitian tersebut akan dilaksanakan pada bulan Mei – Juni 2017.

Merupakan suatu kehormatan bagi kami atas kesempatan yang diberikan semoga hal ini bisa memberikan manfaat bagi kedua pihak.

Demikian permohonan ini kami sampaikan atas perhatian dan kerjasamanya yang baik diucapkan terima kasih.

Wakil Dekan Bidang Akademik

Dr. Muktiningslin M.Si.

Tembusan:

- 1. Dekan
- 2. Koordinator Program Studi Pendidikan Biologi
- 3. Kasubag Akademik, Kemahasiswaan dan Alumni
- Mahasiswa ybs.

PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA

DINAS PENDIDIKAN

SMA NEGERI 45 JAKARTA

Jl. Perintis Kemerdekaan, Kelapa Gading, Jakarta Utara Telepon (021) 4527345 Fax. (021) 45850445

Fax: (021) 45850445, Email: sman45 gading@yahoo.co.id, Website: sman45 jkt.sch.id

Kode Pos. 14240

SURAT-KETERANGAN

Nomor: 293 / 1.851.622

Yang bertanda tangan di bawah ini Kepala SMA Negeri 45 Jakarta menerangkan bahwa:

No	NAMA	NOMOR REGISTRASI	PROGRAM STUDI	FAKULTAS
1	Nofita Lasari	3415131019	Biologi	MIPA

Benar nama tersebut di atas telah melaksanakan Penelitian di SMA Negeri 45 Jakarta yang dilaksanakan pada bulan Mei 2017 dengan judul "Hubungan Kemampuan Berfikir Kritis Dengan Hasil Belajar Kognitif Materi Sistem Reproduksi Manusia Pada Peserta Didi SMA"

Demikianlah surat keterangan ini dibuat untuk dapat dipergunakan sebagaimana mestinya.

31 Mei 2017

ala SMA Negeri 45 a Adamnistrasi Jakarta Utara

SMAN 45 Drs Tulie Winardi, S.H., M.Si

K. 1967 0251989051001/149529

SURAT PERNYATAAN KEASLIAN SKRIPSI

Dengan ini saya yang bertanda tangan di bawah ini, mahasiswa Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Jakarta:

Nama : Nofita Lasari No. Registrasi : 3415131019

Program Studi : Pendidikan Biologi

Menyatakan bahwa skripsi yang saya buat dengan judul "HUBUNGAN ANTARA PERSEPSI DIRI TERHADAP KEMAMPUAN BERPIKIR KRITIS DENGAN HASIL BELAJAR KOGNITIF MATERI SISTEM REPRODUKSI MANUSIA PADA PESERTA DIDIK SMA" adalah:

- Dibuat dan diselesaikan oleh saya sendiri, berdasarkan data yang diperoleh dari hasil penelitian pada bulan Mei-Juni 2017.
- Bukan merupakan duplikat skripsi yang pernah dibuat oleh orang lain atau jiplakan karya tulis orang lain dan bukan terjemahan karya tulis orang lain.

Pernyataan ini saya buat dengan sesungguhnya dan saya bersedia menanggung segala akibat yang timbul jika pernyataan saya ini tidak benar.

DAFTAR RIWAYAT HIDUP

NOFITA LASARI lahir di Jakarta, 14 November 1995, anak kesembilan dari sembilan bersaudara, anak dari pasangan Bapak Mardani dan Ibu Umi Hani. Bertempat tinggal di Jl. Masjid Al-Jihad No.20 RT 002/RW 04, Kelurahan Kelapa Gading Timur, Kecamatan Kelapa Gading, Kota Jakarta Utara, Kode Pos 14240.

Riwayat Pendidikan:

Pendidikan formal dimulai di TK AL-JIHAD Kelapa Gading Timur Jakarta (2000 – 2001), kemudian melanjutkan sekolah di SD Negeri 02 Petang Kelapa Gading Timur Jakarta (2001 – 2007), lalu melanjukan di SMP Negeri 123 Jakarta (2007 – 2010), kemudian melanjutkan di SMA Negeri 45 Jakarta (2010 – 2013). Kemudian menyelesaikan perguruan tinggi di Universitas Negeri Jakarta pada Fakultas Matematika dan Ilmu Pengetahuan Alam, Program Studi Pendidikan Biologi (2013 – 2017).

Pengalaman Mengajar:

Mengikuti program Kuliah Kerja Nyata (KKN) di Desa Kalijati, Kecamatan Jatisari, Kabupaten Karawang, Provinsi Jawa Barat pada bulan Januari – Februari 2016. Pengalaman Program Keterampilan Mengajar di SMA Negeri 45 Jakarta pada bulan Juli – Desember 2016. Pengalaman Mengajar Bimbingan Belajar Alam Gita Mandiri (AGM) pada bulan September 2016 – sekarang.

Pengalaman Penelitian:

Mengikuti kegiatan Cakrawala Biologi (CABI) di Gunung Bundar, Bogor (2013); Studi Ilmiah Biologi (SIMBOL) di Taman Wisata Alam Cibulao, Bogor (2014); serta pengalaman Kuliah Kerja Lapangan di Taman Wisata Alam Pangandaran, Jawa Barat (2016).

Pengalaman Organisasi:

Selama masa kuliah, penulis aktif mengikuti Badan Eksekutif Mahasiswa Jurusan (BEMJ) Biologi sebagai Sekretaris Departement *Biology of Center* atau BIO-C periode (2014 – 2015), dan sebagai Wakil Kepala Departement *Biology of Center* atau BIO-C periode (2016 – 2017). Penulis juga aktif mengikuti Kelompok Studi Primata (KSP) *Macaca* UNJ sebagai staff Sekretaris periode (2015 – 2016), dan sebagai staff *Entrepreneur of Macaca* atau ENTOMA periode (2016 – 2017). Penulis juga aktif mengikuti Badan Eksekutif Mahasiswa Fakultas (BEMF) MIPA sebagai staff Divisi Internal Departement Kesejahteraan Mahasiswa dan Lingkungan Hidup atau KESMALINGDUP periode (2016 – 2017). Penulis juga aktif mengikuti organisasi KARANG TARUNA RW 04 Kelapa Gading Timur sebagai staff Divisi Seni dan Budaya periode (2015 – 2018).