SINTESIS DAN UJI SIFAT KATALITIK NIKEL FERIT (NiFe₂O₄) UNTUK MEMECAH UAP PERTAMAX PLUS PADA *HIDROCARBON CRACK SYSTEM* (HCS)

Skripsi

Disusun untuk melengkapi syarat-syarat guna memperoleh gelar Sarjana Sains

ZENTIKA MAODI 3325130967

PROGRAM STUDI KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS NEGERI JAKARTA

2017

LEMBAR PENGESAHAN

SINTESIS DAN UJI SIFAT KATALITIK NIKEL FERIT (NiFe $_2$ O $_4$) UNTUK MEMECAH UAP PERTAMAX PLUS PADA $HIDROCARBON\ CRACK\ SYSTEM\ (HCS)$

Tanda Tangan

Tanggal

23/08-17

21/08-17

18/08-17

16/08-17

Nama Mahasiswa : Zentika Maodi No. Registrasi : 3325130967

Program Studi : Kimia

Nama

Penanggung Jawab

Dekan : Prof. Dr. Suyono, M.Si.

NIP. 19671218 199303 1 00

Wakil Penanggung Jawab

Wakil Dekan I : <u>Dr. Muktiningsih N., M.Si.</u>

NIP. 19640511 198903 2 001

Ketua : <u>Dr. Agung Purwanto, M.Si</u>

NIP. 19640202 199102 1 001

Sekretaris : Irma Ratna Kartika, M.Sc. Tech

NIP. 19721204 200501 2 001

Anggota:

Penguji : <u>Dr. Setia Budi, M.Sc.</u>

NIP. 19790621 200501 1 001

Pembimbing I : Prof. Dr. Erdawati, M.Sc

NIP. 19510912 198103 2 001

Pembimbing II : Drs. Darsef Darwis, MSI / Dassef / O

NIP. 19650806 199003 1 004

Dinyatakan lulus ujian skripsi pada tanggal: 15 Agustus 2017

LEMBAR PERNYATAAN

Saya menyatakan dengan sesungguhnya bahwa skripsi dengan judul "Sintesis dan Uji Sifat Katalitik Nikel Ferit (NiFe₂O₄) untuk Memecah Uap Pertamax Plus pada *Hidrocarbon Crack System* (HCS)" yang disusun sebagai syarat untuk memperoleh gelar Sarjana Sains dari Program Studi Kimia Universitas Negeri Jakarta adalah karya ilmiah saya dengan arahan dari dosen pembimbing.

Sumber informasi yang diperoleh dari penulis lain yang telah dipublikasikan yang disebutkan dalam teks skripsi ini, telah dicantumkan dalam Daftar Pustaka sesuai dengan norma, kaidah dan etika penulisan ilmiah.

Jika dikemudian hari ditemukan sebagian besar skripsi ini bukan hasil karya saya sendiri dalam bagian-bagian tertentu saya bersedia menerima sanksi pencabutan gelar akademik yang saya sanding dan sanksi-sanksi lainnya sesuai dengan peraturan perundang-undangan yang berlaku.

Jakarta, 21 Agustus 2017

Zentika Maodi

Lembar Persembahan

Kupersembahkan karya ilmiah ini untuk kedua orang tua tercinta Bapak dan Mamah, yang tak henti memberikan doa untuk keberhasilanku, semangat, motivasi dan cinta untuk terus maju dan menjadi lebih baik lagi.

Terima kasih kuucapkan untuk Kakak, Kakak Ipar dan Mas Akbar tercinta, yang selalu memberikan dukungan, motivasi, semangat dan membantu dalam kehidupan baik senang ataupun susah hingga akhirnya aku lulus. Terima kasih banyak:D

Terima kasih juga kuucapkan kepada kedua dosen pembimbingku, Bu Erda dan Pak Darsef. Terima kasih untuk waktunya dan segala kebaikan serta kesabaran Ibu dan Bapak untuk membimbingku hingga aku bisa mendapatkan gelar sarjana ini.

Kemudian tak lupa kuucapkan terima kasih kepada keluarga besar kimia 2013 untuk semangat dan dukungannya baik selama dikelas maupun di labolatorium penelitian. Terima kasih Tia, Hilda, Firoh, Maryanti, Hermastuti, Adit K, Nurul H, Nopa, Geta, Ratih, Brilli, Kanza, Ayu, Nurmei, Nurjay, Nurul A, Yuki, Vera, April, Cynthia, Sari, Ines, Erlan, Febri, Rafly, Aditya, Rio, Zaini, Linggar, Nubail, Nadia, Ilma, Delia, Anis, Rini, Anisa, Qiqi, Fuji dan Arum untuk suka, duka dan kebersamaan kita selama 4 tahun ini. Terima kasih juga untuk teman satu penelitianku, Adit K untuk bantuan dan waktunya selama penelitian, karakterisasi dan uji sampel. Kalian semua akan aku ingat sampai kapanpun. Semoga kita bisa sukses kedepannya dalam menjalani kehidupan ini. Amin

ABSTRAK

ZENTIKA MAODI. Sintesis dan Uji Sifat Katalitik Nikel Ferit (NiFe₂O₄) untuk Memecah Uap Pertamax Plus pada *Hydrocarbon Crack System* (HCS). Dibawah Bimbingan ERDAWATI, DARSEF.

Penelitian ini bertujuan untuk mensintesis Nikel Ferit dan mengetahui sifat katalitik Nikel Ferit (NiFe₂O₄) untuk memecah uap pertamax plus pada *Hydrocarbon Crack System* (HCS)). Dalam penelitian ini digunakan Natrium Hidroksida yang berperan sebagai agen presipitasi. Hasil karakterisasi XRD menunjukkan bahwa Nikel Ferit (NiFe₂O₄) bersifat kristalin dengan nilai 2θ di sudut 30,29°; 35,67°; 43,36°; 62,99°; 71,48° dan 74,55°. Hasil karakterisasi SAA menunjukkan bahwa Nikel Ferit (NiFe₂O₄) memiliki pola isoterm adsorpsi tipe IV bersifat mesopori. Uji sifat katalitik Nikel Ferit (NiFe₂O₄) dilakukan dengan dua cara yaitu pengujian dynotest dan uji emisi gas buang. Hasil pengujian menunjukkan bahwa menggunakan HCS dapat meningkatkan daya dan torsi dibandingkan tanpa menggunakan. Hasil pengujian emisi gas buang menunjukkan bahwa penurunan kandungan CO₂ dan HC setelah menggunakan HCS.

Kata kunci. Nikel Ferit, Hydrocarbon Crack System(HCS), Emisi Gas Buang.

ABSTRACT

ZENTIKA MAODI. Synthesis and Testing of Catalytic Properties Nickel Ferrite (NiFe₂O₄) to Break Up Pertamax Plus in Hydrocarbon Crack System (HCS). Under supervised by ERDAWATI, DARSEF.

The study of these research is purpose to synthesis Nickel Ferrite and knows the catalytic properties of Nickel Ferrite (NiFe₂O₄) to break up the pertamax plus vapor in the Hydrocarbon Crack System (HCS). In this study, sodium hydroxide was act as precipitation agent. The XRD characterization results show that Nickel Ferrite (NiFe₂O₄) is crystalline with a value of 2θ at an angle of $30,29^{\circ}$; $35,67^{\circ}$; $43,36^{\circ}$; $62,99^{\circ}$; $71,48^{\circ}$ dan $74,55^{\circ}$. The SAA characterization result show that Nickel Ferrite (NiFe₂O₄) has a mesoporous type IV adsorption isoterm pattern. Testing of catalytic properties of Nickel Ferrite (NiFe₂O₄) is done in two ways, namely dynotest test and exhaust gas emission test. The test results show that using HCS can increase power and torque compared without using HCS. Test of exaust gas emission test results show that by decreasing CO₂ and HC content after using HCS.

Keywords. Nickel Ferrite, Hydrocarbon Crack System, Flue Gas Emission.

KATA PENGANTAR

Segala puji syukur penulis panjatkan kepada Allah SWT, sumber hikmat dan kekuatan, atas segala rahmat dan ridho yang telah diberikan-Nya sehingga penulis dapat menyelesaikan penelitian dan penulisan skripsi ini tepat waktu. Adapun penyusunan skripsi yang berjudul "Sintesis dan Uji Sifat Katalitik Nikel Ferit (NiFe₂O₄) untuk Memecah Uap Pertamax Plus pada *Hydrocarbon Crack System* (HCS)" ini disusun sebagai syarat untuk memperoleh gelar Sarjana Sains Prodi Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Jakarta.

Penulis ucapkan terima kasih juga kepada semua pihak yang membantu memberikan arahan serta bimbingan dari awal hingga akhir demi kelancaran penulisan skripsi ini Dr. Yusmaniar, M.Si. sebagai Ketua Program Studi kimia, Prof. Dr. Erdawati, M.Sc. sebagai dosen pembimbing I., Drs. Darsef, M.Si. sebagai dosen pembimbing II, bapak dan ibu dosen Prodi kimia atas ilmu yang telah diberikan selama perkuliahan, serta teman-teman serta semua pihak yang tidak sempat penulis sebutkan satu per satu yang telah bersedia membantu dan mendukung penulis hingga skripsi ini terselesaikan.

Penulis menyadari bahwa skripsi ini tentunya masih jauh dari sempurna. Untuk ini penulis sangat menghargai kritik dan saran yang membangun dari pembaca guna menyempurnakan skripsi ini. Akhir kata, penulis mengucapkan terima kasih dan semoga skripsi ini dapat bermanfaat bagi semua pihak yang membutuhkan.

Jakarta, 04 Agustus 2017

Zentika Maodi

DAFTAR ISI

Halaman

ABSTRAK	i
ABSTRACT	ii
KATA PENGANTAR	iii
DAFTAR ISI	iv
DAFTAR TABEL	V
DAFTAR GAMBAR	vi
DAFTAR LAMPIRAN	vii
BAB I PENDAHULUAN	1
A.Latar Belakang	1
B.Perumusan Masalah	2
C.Tujuan Penelitian	2
D.Manfaat Penelitian	3
BAB II KAJIAN PUSTAKA	4
A.Katalis	4
B.Spinel Ferit	5
C.Reaksi Katalitik Pemecahan Bahan Bakar	6
D.Hydrocarbon Crack System (HCS)	7
E.Pertamax Plus	8
F.Instrumen	
1.XRD (X-Ray Difractometer)	9
2.Surface Area Analyzer (SAA)	
BAB III METODOLOGI PENELITIAN	12
A.Waktu dan Tempat Penelitian	12
B.Metode Penelitian	12
C.Alat dan Bahan	12
D.Prosedur Penelitian	
BAB IV HASIL DAN PEMBAHASAN	
A.Sintesis Katalis NiFe ₂ O ₄	
B.Karakterisasi Katalis NiFe ₂ O ₄	
C.Proses Pemecahan Uap Pertamax Plus Tabung Katalis	
D.Uji Sifat katalitik NiFe ₂ O ₄ Pertamax Plus pada HCS	
BAB V KESIMPULAN DAN SARAN	
A.Kesimpulan	
B.Saran	
DAFTAR PUSTAKA	25
LAMPIRAN	2.8

DAFTAR TABEL

		Halaman
Tabel	1. Hasil Uji BET	17
Tabel	2. Uji Dynotest terhadap Torsi.	19
Tabel	3. Uji Dynotest terhadap Daya	21
Tabel	4. Hasil Uji Emisi Gas Buang Sebelum dan Setelah Dipasang Pipa HC	2S23

DAFTAR GAMBAR

		Halaman
Gambar	1. Siklus Reaksi Katalisis.	4
Gambar	2. Struktur Kristal Spinel Ferit.	6
Gambar	3. Bentuk dan Bagian-Bagian Pipa Katalis HCS.	8
Gambar	4. Pipa Katalis HCS	8
Gambar	5. Berkas Sinar-X pada XRD.	9
Gambar	6. Pola Difraksi Sinar-X NiFe ₂ O ₄ Suhu (a)500 ^o C dan (b) 600 ^o C	10
Gambar	7. Bagian-Bagian SAA	11
Gambar	8. Pola XRD dari NiFe ₂ O ₄ Hasil Identifikasi Menggunakan Match!	16
Gambar	9. Grafik Isoterm Adsorpsi-Desorpsi NiFe ₂ O ₄ Hasil Sintesis	17
Gambar	10. Grafik Uji Dynotest Sebelum dan Setelah HCS Torsi dan Putaran	n 20
Gambar	11. Grafik Uji Dynotest Sebelum dan Setelah HCS Daya dan Putarai	n 22

DAFTAR LAMPIRAN

	Halamar
Lampiran 1. Bagan Kerja	29
Lampiran 2. Foto Penelitian	31
Lampiran 3. Hasil Uji Dynotest	32

BAB I PENDAHULUAN

A. Latar Belakang

Penelitian ilmiah semakin berkembang pesat beberapa tahun terakhir. Salah satunya dibidang anorganik yaitu sintesis katalis yang berbahan dasar spinel ferit. Spinel ferit adalah material magnetik yang memiliki sifat magnetik yang menarik. Spinel ferit dalam kehidupan sehari-hari digunakan untuk penyimpanan data dengan kapasitas besar, katalis dan pembawa obat (Maensiri *et al.*, 2007).

Salah satu contoh spinel ferit yang telah banyak digunakan sebagai katalis adalah NiFe₂O₄. Struktur spinel NiFe₂O₄ yaitu *inverse* dimana setengah ion Fe mengisi posisi A (posisi tetrahedral) dan sisanya menempati posisi B (posisi oktahedral) dalam struktur kristal (Kasapoglu *et al.*, 2007; Maensiri *et al.*, 2007). NiFe₂O₄ memiliki material yang *soft* magnetik dan memiliki resistivitas listrik yang tinggi sehingga cocok untuk aplikasi sebagai magnetik dan magneto-optik (Joshi *et al.*, 2014).

Beberapa metode yang dikembangkan untuk mensintesis katalis NiFe₂O₄ yaitu metode sol-gel, metode hidrotermal dan metode kopresipitasi (Srivastava *et al.*, 2009). Metode kopresipitasi digunakan karena lebih sederhana dan menghasilkan distribusi ukuran sampel yang lebih sempit dan dilakukan pada kondisi lingkungan normal (Lu *et al.*, 2007). Metode kopresipitasi adalah metode dengan cara mengubah suatu garam logam menjadi endapan dengan menggunakan pengendapan basa hidroksida yang kemudian diubah ke bentuk oksidanya dengan cara pemanasan. Beberapa penelitian telah menggunakan metode kopresipitasi, salah satunya penelitian Rosita *et al.* (2014) menggunakan metode kopresipitasi untuk mensintesis Mangan Ferit.

Katalis NiFe₂O₄ pada penelitian ini akan disintesis menggunakan metode kopresipitasi dan katalis yang dihasilkan akan di uji daya katalitik terhadap bahan bakar pertamax plus dan uji emisi.

Reaksi pembakaran adalah reaksi oksidasi antara oksigen dan bahan bakar berlangsung secara cepat dan memerlukan panas. Penelitian Felani. (2016) menyatakan bahwa katalis Ni/Cu/Al₂O₃ dapat digunakan untuk pemecahan bahan bakar. Semakin tinggi kandungan Ni, maka semakin baik daya katalitiknya dan semakin besar daya konversi bahan bakar menjadi H₂ dan C. *Yield* H₂ dihasilkan sebesar 35,95% dan *yield* C dihasilkan sebesar 4,14% akan diperoleh jika kandungan Ni 70%.

Hasil penelitian Torres *et al.* (2014) menunjukkan bahwa daya katalitik CoFe₂O₄ mengkonversi gas metana menjadi gas hidrogen dan carbon nanotube dicapai pada suhu 400 °C. Chennampilly and Thengumthanam. (2011) menyatakan bahwa daya katalitik NiFe₂O₄ yang baik untuk memecah metana menjadi gas hidrogen dan atom karbon. Suhu 300°C, gas metana mulai terbakar. Suhu 400°C gas metana menjadi gas hidrogen.

Katalis NiFe₂O₄ digunakan untuk memecah senyawa karbon terutama gas metana menjadi gas hidrogen dan carbon nanotube. Penulis mencoba mensintesis katalis NiFe₂O₄ pada penelitian ini dan katalis NiFe₂O₄ diaplikasikan pada pipa katalis *Hydrocarbon Crack System* (HCS) untuk memecah atom hidrokarbon menjadi hidrogen (H₂) dan carbon (C) untuk mengurangi emisi gas CO dan H₂ yang dihasilkan akan masuk kembali ke ruang bakar digunakan sebagai suplemen bahan bakar sehingga hemat bahan bakar.

B. Perumusan Masalah

Berdasarkan masalah diatas, perumusan masalah pada penelitian ini adalah:

- Bagaimana karakteristik katalis NiFe₂O₄ yang disintesis dengan metode kopresitipasi?
- 2. Berapa besar daya katalitik NiFe₂O₄ untuk memecah molekul pertamax plus menjadi gas hidrogen dan atom karbon?
- 3. Berapa jumlah gas emisi buang yang dihasilkan?

C. Tujuan Penelitian

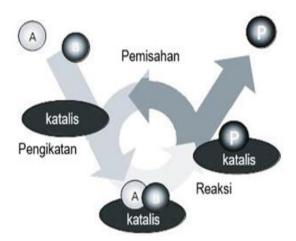
Berdasarkan perumusan masalah diatas, tujuan penelitian ini adalah:

1. Mensintesis katalis NiFe₂O₄ dengan metode kopresipitasi.

- 2. Mempelajari karakteristik katalis NiFe₂O₄.
- 3. Membandingkan jumlah emisi gas buang hasil pembakaran pertamax plus dengan dan tanpa menggunakan katalis NiFe₂O₄.

D. Manfaat Penelitian

Penelitian ini diharapkan mampu memberikan manfaat sebagai berikut:


- Memberikan informasi mengenai cara sintesis katalis NiFe₂O₄ dengan metode kopresipitasi.
- 2. Memberikan informasi mengenai katalis NiFe₂O₄ yang dihasilkan dapat diaplikasikan pada sistem *Hidrocarbon Crack System* (HCS) pada kendaraan mobil.

BAB II

KAJIAN PUSTAKA

A. Katalis

Katalis adalah zat yang dapat meningkatkan laju reaksi agar reaksi berlangsung cepat tanpa mengalami perubahan pada reaksi itu sendiri dan saat reaksi selesai akan kembali lagi seperti kondisi semula (Nasikin dan Susanto, 2010). Katalis dapat membentuk ikatan dengan molekul-molekul yang bereaksi dan membiarkan molekul-molekul tersebut bereaksi untuk membentuk produk kemudian terlepas dari katalis. Siklus katalis merupakan peristiwa dimana katalis berpartisipasi dalam reaksi dan kembali ke bentuk semula pada akhir siklus. Siklus katalis digambarkan pada Gambar 1 (Chorkendroff dan Niemantsvendriet, 2003).

Gambar 1. Siklus Reaksi Katalisis (Chorkendroff dan Niemantsvendriet, 2003).

Gambar 1 menunjukkan siklus katalisis diawali dengan pengikatan molekul-molekul A dan B (reaktan) pada katalis. Kemudian A dan B bereaksi dalam bentuk kompleks lalu membentuk produk P, yang juga terikat pada katalis. Pada tahap akhir, P terpisah dari katalis sehingga siklus kembali ke bentuk semula.

Pemilihan katalis didasarkan pada 5 faktor utama, yaitu:

1. Kekuatan mekanik

Katalis memiliki sifat mekanik yang dapat digunakan pada tekanan tertentu.

2. Selektivitas

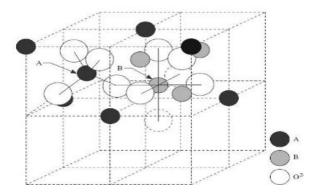
Kemampuan katalis untuk menghasilkan produk yang diinginkan.

3. Stabilitas

Kemampuan katalis menghadapi racun-racun yang dapat mengganggu kinerja katalis.

4. Regenerasi

Kemudahan katalis untuk diregenerasi.


5. Aktifitas

kemampuan katalis untuk mengubah bahan baku menjadi produk yang dikehendaki.

Katalis berdasarkan fase terbentuknya terbagi menjadi dua jenis yaitu katalis homogen dan katalis heterogen. Katalis homogen terdiri dari reaktan dan katalis yang berada pada fase yang sama. Semua reaktan dan katalis berada dalam satu fase tunggal cair atau gas. Katalis heterogen memiiliki fase yang berbeda pada reaktan dan katalisnya. Katalis homogen dapat mempercepat reaksi melalui pembentukan kompleks teraktivasi dengan salah satu pereaksi. Katalis heterogen memiliki wujud yang tidak sama dengan pereaksi tetapi dapat bereaksi karena katalis heterogen memiliki permukaan padat (Istadi, 2011).

B. Spinel Ferit

Spinel ferit merupakan material magnetik yang memiliki sifat magnetik, kestabilan termal dan elektrik yang unik. Beberapa aplikasi spinel ferit dalam kehidupan seharihari diantaranya: pemindai magnetik resonansi, katalis, sistem pembawa obat dan media perekam magnetik (Maensiri *et al.*, 2007).

Gambar 2. Struktur kristal Spinel Ferit (Dionne, 2009).

Struktur kristal spinel ferit terdiri dari bagian A dan B. Bagian A terdiri dari kation-kation bervalensi 2 yang menempati posisi tetrahedral dan B merupakan kation-kation bervalensi 3 yang menempati posisi oktahedral dalam struktur kristal. Struktur spinel ferit dibedakan menjadi tiga bentuk berdasarkan kation yang terdistribusi yaitu normal, terbalik dan diantara terbalik dan normal.

Salah satu contoh spinel ferit yang telah banyak digunakan sebagai katalis adalah Nikel Ferit (NiFe₂O₄). Struktur spinel Nikel Ferit yaitu *inverse* dimana setengah ion Fe³⁺ mengisi posisi A (posisi tetrahedral) dan sisanya menempati posisi B (posisi oktahedral) dalam struktur kristal (Kasapoglu *et al.*,2007; Maensiri *et al.*, 2007).

C. Reaksi Katalitik Pemecahan Bahan Bakar

Pembakaran adalah proses oksidasi yang sangat cepat antara komponen bahan bakar (Hidrokarbon) dan Oksigen yang menghasilkan nyala dan panas. Elemen utama dalam bahan bakar adalah Karbon dan Oksigen. Oksigen yang diperlukan untuk pembakaran diperoleh dari udara yang merupakan campuran dari Oksigen dan Nitrogen. Reaksi pembakaran terbagi menjadi dua, reaksi pembakaran sempurna dan reaksi pembakaran tidak sempurna. Reaksi pembakaran sempurna akan menghasilkan gas buang karbondioksida (CO₂) dan air (H₂O). Proses pembentukan CO₂ dan H₂O dapat terjadi apabila panas dapat memutuskan ikatan antara partikel (O-O) menjadi partikel O dan O dan memutuskan ikatan antara partikel (C-H) menjadi partikel C dan

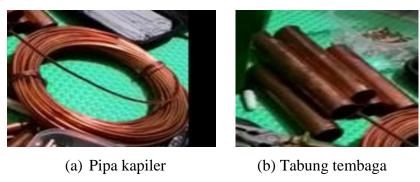
H. partikel O bisa beroksidasi dengan C dan H untuk membentuk CO₂ dan H₂O (Wardono, 2004). Reaksi pembakaran tidak sempurna menghasilkan gas buang beracun, misalnya CO, CH, NOx, Pb dan SOx.

Pada proses pembakaran bahan bakar, hidrokarbon bergabung dengan oksigen untuk membentuk air dan karbon dioksida. Jika tidak cukup tersedia oksigen maka sebagian karbon bergabung dengan oksigen menjadi karbon monoksida, Akibat dari terbentuknya karbon monoksida menghasilkan jumlah panas hanya 30% dari panas yang ditimbulkan dalam pembentukan karbon monoksida, seperti yang ditunjukkan oleh reaksi kimia:

Reaksi cukup oksigen:
$$C + O_2$$
 \longrightarrow CO_2

Reaksi kurang oksigen:
$$C + \frac{1}{2}O_2 \longrightarrow CO$$

Reaksi pembakaran sempurna:


$$C_8H_{18} + 12,5 (O_2 + 3,773 N_2) \rightarrow 8 CO_2 + 9 H_2O + 12,5 (3,773 N_2).$$

D. Hydrocarbon Crack System (HCS)

Hydrocarbon Crack System (HCS) adalah alat yang digunakan untuk menghemat bahan bakar dengan cara memecah atom hidrokarbon menjadi hidrogen (H₂) dan karbon (C). Pada HCS terdapat pipa katalis yang dipanaskan (Sukarmin, 2004) untuk menyuplai proses pembakaran mesin. Panas yang digunakan yaitu panas luar atau eksotermik dari mesin internal *combustion* (mesin kendaraan) yaitu dari panas blok mesin maupun dari knalpot yang bisa mencapai temperatur hingga 400°C (Rahardjo, 2009).

HCS digunakan untuk power suplemen pada kendaraan mobil untuk menghemat bahan bakar. Bahan bakar yang digunakan yaitu premium, pertalite atau pertamax plus yang diisi pada kendaraan mobil. Penggunaan HCS membuat penghematan bahan bakar minimal 50% sampai 60% tergantung dari kran pengaturan aliran gas bahan bakar pada sistem HCS.

Prinsip kerja alat dari HCS dimana uap pertamax plus disalurkan ke *intake* karbulator melalui sebuah pipa katalis yang bisa memecah uap pertamax plus menjadi gas hidrogen dan menghisap unsur partikel karbon sehingga menyebabkan kandungan karbon monoksida pada gas buang akan berkurang secara signifikan. Hidrogen yang terbentuk akan dialirkan ke dalam tangki bahan bakar. HCS dapat menghasilkan gas hidrogen sebanyak 3-5 LPM H₂ (liter per menit) (Seleznev *et al.*, 2009).

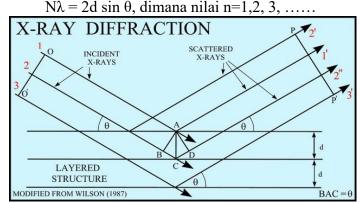
Gambar 3. Bentuk dan Bagian-Bagian Pipa Katalis HCS (Siswanto, 2013).

Gambar 3 menunjukkan bagian-bagian pipa katalis yaitu pipa kapiler dan tabung tembaga.

Gambar 4. Pipa Katalis HCS (Rubijanto dan Amir, 2013).

Sementara Gambar 4 menunjukkan pipa katalis HCS.

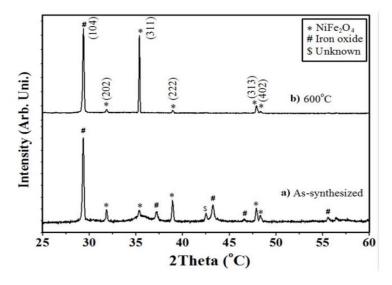
E. Pertamax Plus


Pertamax plus adalah produk bahan bakar minyak dari pengolahan minyak bumi. Pertamax dihasilkan dengan penambahan zat aditif dalam proses pengolahannya di kilang minyak. pertamax plus merupakan bahan bakar ramah lingkungan beroktan tinggi. Pertamax plus memiliki nilai oktan bahan bakar atau RON 95. Pertamax plus diproduksi untuk penyempurnaan produk pertamina sebelumnya yaitu premium (bensin). Pertamax plus memiliki stabilitas oksidasi yang tinggi dan kandungan olefin, aromatik dan benzena pada level yang rendah sehingga menghasilkan pembakaran yang lebih sempurna pada mesin.

Pertamax plus untuk kendaraan yang menggunakan bahan bakar beroktan tinggi tanpa timbal. Pertamax plus direkomendasikan untuk kendaraan yang memiliki kompresi ratio lebih besar dari 10,5 dan kendaraan yang menggunakan teknologi *electronic fuel injection* (EFI) serta *catalytic converters* (Mahdiansah *et al.*, 2010). Pertamax plus memiliki keunggulan dibandingkan premium dan pertalite yaitu dapat membersihkan timbunan kotoran dan kerak pada injector mesin kendaraan dan melarutkan air di dalam tangki mobil sehingga dapat mencegah karat dan korosi pada saluran serta tangki bahan bakar.

F. Instrumen

1. XRD (X-Ray Difractometer)


XRD (*X-Ray Difractometer*) merupakan suatu alat yang digunakan untuk mengidentifikasi struktur kristal dan bahan yang tidak diketahui. Hasil pengukuran XRD disebut sebagai pola difraksi sinar- X dari sampel. Tinggi peak atau luas puncak digunakan untuk analisis kualitatif.

Gambar 5. Berkas Sinar-X pada XRD (Nishikicho, 2013).

Berkas sinar-X pada XRD terjadi ketika radiasi elektromagnetik melewati suatu materi maka terjadi interaksi dengan elektron dalam atom dan sebagian dihamburkan ke segala arah. Beberapa arah, gelombang berada dalam satu fase dan saling memperkuat satu sama lain sehingga terjadi interferensi konstruktif sedangkan terjadi interferensi destruktif apabila gelombang yang tidak berada dalam satu fase dan gelombang tersebut saling meniadakan. Interferensi konstruktif tergantung pada jarak antar bidang (d), besar sudut dan difraksi (θ) serta memenuhi hukum Bragg yaitu setiap bidang kisi memantulkan radiasi. Cara kerja difraktometer yaitu sampel disebar pada bidang datar dan pola difraksi dipantulkan secara elektronik.

Penelitian ini menggunakan instrument XRD untuk mengetahui struktur NiFe₂O₄. Pola acuan difraksi sinar-X yang digunakan pada penelitian ini adalah pola difraksi sinar-X Nife₂O₄ pada penelitian Ansari *et al.* (2017).

Gambar 6. Pola Difraksi Sinar-X NiFe₂O₄ Suhu (a)600°C dan (b) Hasil sintesis (Ansari *et al.*, 2017).

2. Surface Area Analyzer (SAA)

Surface Area Analyzer (SAA) adalah alat yang digunakan untuk menentukan luas permukaan, distribusi pori dari suatu material dan isotherm adsorpsi gas pada suatu bahan.

Metode BET (*Brunaur*, *Emmett and Teller*) merupakan salah satu metode yang digunakan untuk menganalisis data yang dihasilkan alat SAA. Metode BET mengubah data yang dihasilkan alat SAA berupa gas yang diserap tekanan dan suhu tertentu (isotherm adsorpsi) menjadi data luas permukaan, volume pori, distribusi ukuran pori dan ukuran nano pori.

Prinsip kerja alat SAA menggunakan mekanisme adsorpsi gas, yaitu dengan mengukur jumlah gas (gas nitrogen, helium atau argon) yang dapat diadsorbsi oleh permukaan padatan pada tekanan dan suhu tertentu. Alat SAA memerlukan sampel kecil yaitu berkisar 0.01-1gram. Gambar 7 merupakan bagian-bagian dari SAA.

Gambar 7. Bagian-Bagian SAA (Rianto, 2007).

Bagian-bagian alat SAA terdiri dari 4 bagian, yaitu bagian A yang merupakan bagian *degassing* (berfungsi untuk menghilangkan gas yang ada pada permukaan padatan dengan dipanaskan pada suhu vakum). Bagian B merupakan bagian analisa (berfungsi untuk menganalisa sampel padatan), sedangkan bagian C merupakan kontainer (berfungsi untuk menampung zat pendingin) serta bagian D merupakan panel (berfungsi untuk layout pada proses analisa disertai lampu yang menandakan valve dalam posisi dibuka atau ditutup).

BAB III METODOLOGI PENELITIAN

A. Waktu dan Tempat Penelitian

Penelitian ini dilakukan pada bulan Januari 2017 hingga April 2017. Tempat penelitian dilakukan di Laboratorium Penelitian Kimia Kampus A Universitas Negeri Jakarta.

B. Metode Penelitian

Metode penelitian yang dilakukan merupakan metode eksperimental, yang meliputi sintesis katalis NiFe₂O₄ dengan metode kopresipitasi kemudian dikarakterisasi NiFe₂O₄ menggunakan SAA dan XRD setelah itu katalis diuji sifat katalitik NiFe₂O₄ terhadap bahan jenis pertamax plus.

C. Alat dan Bahan

Alat yang digunakan adalah neraca analitik (*OHAUS explorer*), alat-alat gelas (*pyrex*), spatula, termometer, statif, kertas saring, timbangan elektronik, Furnace (*Thermolyne*), hotplate magnetic stirrer, botol sampel, alat karakterisasi SAA Micromeritics ASAP 2000 dan XRD Philips tipe PW1710. Bahan yang digunakan adalah NiCl₂.6H₂O, FeCl₃.6H₂O, NaOH 3 M, aquadest dan pertamax plus.

D. Prosedur Penelitian

1. Pembuatan NiFe₂O₄

Untuk membuat katalis NiFe₂O₄, langkah pertama yaitu memasukkan 1,188 gram Nikel (II) klorida dan 2,710 gram Besi (III) klorida ke dalam 20mL aquadest kemudian kedua larutan dicampurkan hingga larutan homogen.Selanjutnya campuran ditambahkan dengan 50mL larutan NaOH 3M tetes demi tetes dan di *stirrer* selama 60 menit pada suhu 80°C. Setelah itu disaring dan dibilas menggunakan aquadest sampai pH netral dan endapan yang dihasilkan kemudian dikeringkan dalam oven. kemudian digerus menggunakan mortar untuk menghasilkan serbuk. serbuk yang

dihasilkan kemudian dikalsinasi menggunakan furnace. Diperoleh serbuk NiFe₂O₄ berwarna coklat.

2. Karakterisasi NiFe₂O₄

a. Karakterisasi Surface Area Analyzer (SAA).

Brunaeur Emmet Teller (BET) merupakan metode yang dilakukan untuk menentukan luas permukaan, volume dan distribusi ukuran pori menggunakan alat SAA. Sebanyak 2 gram sampel diperlukan untuk analisa. Pengukuran luas permukaan menggunakan nitrogen cair. Proses degassing dikerjakan pada sampel hingga temperature 300°C selama 3 jam, kemudian dilakukan pengukuran adsorpsi-desorpsi menggunakan nitrogen cair.

b. Karakterisasi XRD.

Sebanyak 2 gram sampel yang telah dipersiapkan untuk analisa difraksi sinar-X. *Scan* padatan pada 2θ antara 5-60°C dengan laju 5°/menit. Ditentukan bidang kristal dari difraksi puncak-puncak yang muncul dan ditentukan jarak antar bidang dengan menggunakan persamaan Bragg. Pengolahan data difraksi dapat menggunakan *software* Match! atau HighScore Plus Demo yang disediakan.

3. Uji Sifat Katalitik NiFe₂O₄ untuk memecah uap pertamax plus pada *Hidrocarbon Crack System* (HCS).

Uji Dynotest

Dynotest merupakan suatu pengujian yang dilakukan untuk mengetahui performa maksimal mesin pada semua kendaraan. Uji dynotest menggunakan alat dynamometer. Pertama siapkan kendaraan yang akan diuji. Kemudian menaikkan kendaraan yang akan diuji pada dynamometer. Pasang pengikat kendaraan agar kendaraan aman sewaktu diuji dan perkaitan roda dengan roller sempurna. Lepaskan selang yang menghubungkan dengan pipa katalis HCS dan memasukkan sensor ke dalam knalpot. Setelah itu hidupkan kendaraan dan di gas dengan kecepatan rendah hingga tinggi dan hasil akan di tampilkan pada layar komputer. Setelah itu

mematikan mesin dan menghubungkan dengan pipa katalis HCS dan hidupkan kendaraan lalu digas dengan kecepatan rendah hingga tinggi dan hasil ditampilkan pada layar komputer.

Uji emisi gas buang

Uji emisi adalah uji yang dilakukan untuk mengetahui sisa hasil pembakaran bahan bakar berupa CO, CO₂, NOx, HC dan O₂. Pertama nyalakan alat emisi gas buang dan diamkan selama 1 menit. Kemudian lepaskan selang menghubungkan dengan pipa HCS lalu menyalakan kendaraan yang akan diukur dan memasukkan sensor ke dalam knalpot. Setelah itu data emisi akan di tampilkan pada layar alat tecnotest. Setelah itu mematikan mesin dan menghubungkan dengan pipa katalis HCS dan hidupkan mesin uji dan kendaraan. Hasil di tampilkan pada layar tecnotest.

BAB IV

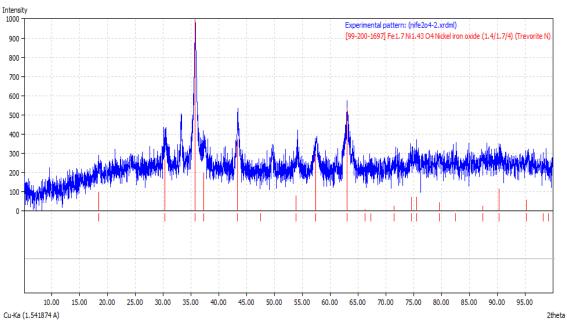
HASIL DAN PEMBAHASAN

Hasil penelitian dibagi menjadi tiga subbab meliputi: Sintesis katalis NiFe₂O₄, karakterisasi NiFe₂O₄ yang dihasilkan dan uji sifat katalitik NiFe₂O₄ untuk memecah uap pertamax plus pada *hydrocarbon crack system* (HCS).

A. Sintesis katalis NiFe₂O₄.

Sintesis katalis NiFe₂O₄ menggunakan metode kopresipitasi. NiFe₂O₄ yang dihasilkan pada penelitian ini didapatkan dari Nikel (II) klorida dan Ferit (III) klorida lalu memasukkan ke dalam air dan di *stirrer*. Kedua larutan dicampurkan hingga larutan menjadi homogen. Kemudian campuran larutan tersebut di tambahkan NaOH setetes demi tetes untuk menghasilkan larutan berwarna coklat muda. Fungsi penambahan NaOH untuk mendapatkan endapan lebih banyak. Kemudian larutan disaring dan dicuci menggunakan aquadest sampai pH netral. Fungsi pencucian dengan aquades untuk menghilangkan pengotor yang larut dalam sampel sehingga diperoleh sampel NiFe₂O₄ murni⁻ Endapan coklat muda dikeringkan menggunakan oven hingga terbentuk butiran berwarna coklat tua. Fungsi dioven untuk menghilangkan molekul air pada sampel. Butiran NiFe₂O₄ yang masih kasar dihaluskan menggunakan mortar dan alu untuk memperbesar permukaan katalis agar katalis menjadi butiran lebih halus. Butiran halus NiFe₂O₄ di kalsinasi menggunakan *furnace* selama 2 jam maka akan terbentuk serbuk halus berwarna coklat.

Reaksi Pembentukan NiFe₂O₄ adalah sebagai berikut:


$$NiCl_2 + 2 FeCl_3 + 8 NaOH$$
 $\longrightarrow NiFe_2O_4 + 8 NaCl + 9 H_2O$

B. Karakterisasi katalis NiFe₂O₄

Katalis NiFe₂O₄ yang telah dibuat kemudian dikaraterisasi menggunakan XRD dan BET. Hasil karakterisasi FTIR dan SEM merujuk pada Kristianingrum (2017).

1. Analisis katalis NiFe₂O₄ dengan instrumen XRD

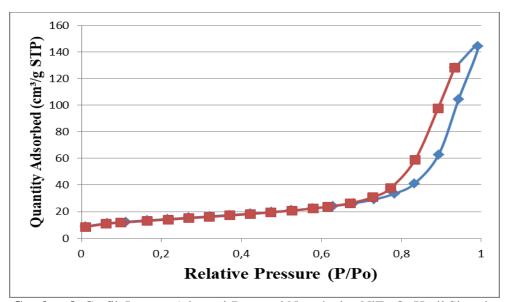
Karakterisasi menggunakan XRD untuk mengetahui struktur kristal padatan dan senyawa yang tidak diketahui.

Gambar 8. Pola XRD dari NiFe₂O₄ Hasil Identifikasi Menggunakan Aplikasi Match!.

Gambar 8 merupakan hasil karakterisasi dengan aplikasi Match!. Gambar 8 menunjukkan fasa kristalin yang sangat tinggi. Puncak yang khas muncul dari pola XRD NiFe₂O₄ ditandai pada 2θ di sudut 30,29°; 35,67°; 43,36°; 62,99°; 71,48° dan 74,55°. puncak lain yang muncul merupakan Fe₂O₃ ditandai pada puncak 2θ di sekitar sudut 33°; 41° dan 49°. Hal ini sejalan pada hasil penelitian Ansari *et al.* (2017).

2. Analisis katalis NiFe₂O₄ menggunakan instrument *Surface Area Analyzer* (SAA).

Sampel katalis NiFe₂O₄ hasil sintesis dikarakterisasi menggunakan instrumen SAA untuk mengukur luas permukaan pori, volume pori, distribusi pori dan isotherm adsorpsi suatu gas pada suatu bahan. Metode *Brunaur*, *Emmett and Teller* (BET)


untuk mengukur luas permukaan, volume dan distribusi pori. Data hasil karakterisasi katalis NiFe₂O₄ menggunakan metode BET dapat dilihat pada Tabel 1.

Tabel 1. Hasil Uji BET.

Katalis	Luas Permukaan (m²/g)	Ukuran Pori (nm)	2	Ukuran Partikel Nano
				(nm)
NiFe ₂ O ₄	50.0773	17.81469	0.223028	119.8147

Tabel 1 menunjukkan analisis uji BET dengan luas permukaan pori katalis $NiFe_2O_4$ yang diperoleh yaitu $50.0773m^2/g$. Distribusi ukuran pori katalis yang diperoleh yaitu 17.81469nm. Volume pori katalis yang diperoleh yaitu $0.223028cm^3/g$ dan ukuran partikel nano yang diperoleh yaitu 119.8147nm.

Pola adsorpsi-desorpsi untuk mengetahui jenis pori dan interaksi antara adsorbent-adsorbat selama pengukuran. Grafik isoterm adsorpsi-desorpsi N₂ terhadap NiFe₂O₄ dapat dilihat pada Gambar 9.

Gambar 9. Grafik Isoterm Adsorpsi-Desorpsi N₂ terhadap NiFe₂O₄ Hasil Sintesis.

Gambar 9 menunjukkan pola adsorpsi-desorpsi dari NiFe₂O₄ hasil sintesis dengan pola isoterm tipe IV. Pola adsorpsi-desorpsi pada NiFe₂O₄ hasil sintesis menunjukkan

material tersebut bersifat mesopori. Mesopiri terlihat pada p/po diatas 0,7 yang ditandai dengan munculnya histerisis.

C. Proses Pemecahan Uap Pertamax Plus pada Tabung Katalis.

Hidrokarbon mengalami pembakaran diruang bakar menghasilkan karbon dioksida dan air.

Persamaan reaksi adalah sebagai berikut:

$$C_{10}H_{22} + \frac{31}{2}O_2 \longrightarrow 10 CO_2 + 11 H_2O$$

Hasil reaksi pembakaran dari hidrokarbon kemudian akan masuk ke tabung katalis *hydrocarbon Crack System* (HCS) akan mengalami pemanasan 250°C, dimana gas CO₂ dan H₂O akan terurai menjadi:

Persamaan reaksi adalah sebagai berikut:

10 CO₂
$$\longrightarrow$$
 10 C + 10 O₂
11 H₂O \longrightarrow 11 H₂ + $\frac{11}{2}$ O₂

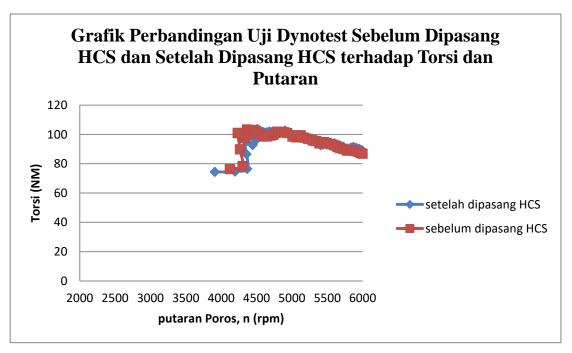
Persamaan reaksi diatas menyatakan bahwa dihasilkan C dan H_2 dalam tabung katalis. Gas H_2 yang dihasilkan akan masuk kembali ke ruang bakar dan digunakan sebagai suplemen bahan bakar sehingga hemat bahan bakar.

D. Uji Sifat katalitik NiFe₂O₄ untuk memecah uap pertamax plus pada

Hydrocarbon Crack System(HCS).

Uji sifat katalitik Nikel Ferit dilakukan dengan dua cara yaitu uji dynotest dan uji emisi gas buang.

Pengujian Dynotest


Hasil uji sifat katalitik Nikel Ferit untuk memecah uap pertamax plus pada HCS. Pengujian dynotest dilakukan di PT. Khatu menggunakan mesin Dynamometer pada mobil tipe mobilio.

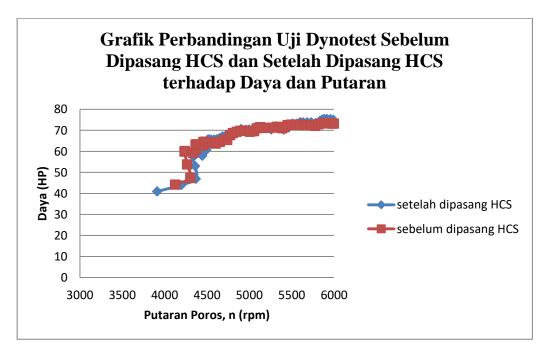
Hubungan Torsi (T) Terhadap Putaran (n).

Tabel 2. Uji Dynotest terhadap Torsi.

	3 2				
Sebelum dipasa	ng HCS	Setelah dipasan	g HCS		
Putaran poros	Torsi	Putaran poros	Torsi		
n (rpm)	Nm	n(rpm)	Nm		
4124	76,4	3911	74,4		
4303	78,3	4197	74,6		
4266	89,8	4369	76,5		
4234	100,8	4360	86,5		
4239	101,1	4309	97		
4337	97,4	4355	95		
4369	99,5	4445	92,8		
4366	103,3	4493	96,2		
4384	103	4446	102		
4423	101,1	4470	101,6		
4456	100,6	4492	101,4		
4458	103	4512	102		
4482	102,6	4510	103,6		
4934	100,9	4904	102,6		
5008	98,5	4955	101		
5057	98	4999	1002		
5087	99,4	5042	99,4		
5126	99,3	5082	98,9		
5174	97,8	5122	99,5		
5228	97	5178	98,8		
5292	96	5259	95,4		
5346	95,5	5278	96,8		
5389	93,8	5317	96,4		
5420	94	5406	92,6		
5389	93,8	5317	96,4		
5420	94	5406	92,6		
5454	94,7	5442	93,1		
5679	90,7	5637	93,2		
5729	90	5684	92,4		
5778	88,9	5731	91,6		
5817	89,3	5781	90,4		
5852	89,2	5832	90,9		
5883	88,8	5862	91,2		
5909	88,5	5883	91,2		
5942	88,1	5915	90,7		
5972	87,3	5955	90,1		
5999	86,8	5992	89,1		
6018	86,2	6005	89,3		

Tabel 2 merupakan tabel perbandingan antara torsi dan putaran sebelum dipasang HCS dan setelah di pasang HCS. Kemudian dibuat grafik perbandingan hubungan torsi terhadap putaran, sehingga terlihat perbedaan sebelum dipasang HCS dan setelah dipasang HCS.

Gambar 10. Grafik Perbandingan Uji Dynotest Sebelum Dipasang HCS dan Setelah Dipasang HCS terhadap Torsi dan Putaran.


Gambar 10 menunjukkan grafik perbandingan uji dynotest sebelum dipasang HCS dan setelah dipasang HCS terhadap torsi dan putaran. Uji dynotest sebelum dipasang HCS menunjukkan bahwa torsi maksimumnya adalah 103,3Nm pada putaran 4366rpm dan torsi minimumnya adalah 86,2Nm yang dicapai pada putaran 6018rpm. Sedangkan uji dynotest setelah dipasang HCS torsi maksimumnya adalah 103,6Nm pada putaran 3510rpm dan torsi minimumnya adalah 74,4Nm yang dicapai pada putaran 3911rpm. Hasil uji dynotest menunjukkan pengaruh torsi terhadap putaran setelah dipasang HCS lebih tinggi torsinya dibandingkan sebelum dipasang HCS.

Hubungan Daya (P) Terhadap Putaran (n)

Tabel 3. Uji Dynotest terhadap Daya.

sebelum dipasang HCS Setelah dipasang HCS Putaran poros Daya n (rpm) HP 4124 44,2 4303 47,3 4266 53,8 4234 59,9 4239 60,2 4337 59,3 4366 63,3 4367 4445 57,9 4366 63,3 4443 60,7 4384 63,4 4445 4446 63,7 4446 445,8 64,5 445,5 4512 64,6 4510 4448 64,6 4515 64,2 4525 65,7 458 64 4552 65,5 4604 63,7 4587 65,6 4652 64,5 4652 64,5 4653 4685 67,1 4774 4774 67,7		****				
n (rpm) HP n(rpm) HP 4124 44,2 3911 40,9 4303 47,3 4197 44 4266 53,8 4369 46,9 4234 59,9 4360 53 4239 60,2 4309 58,7 4337 59,3 4355 58,1 4369 61,1 4445 57,9 4366 63,3 4493 60,7 4384 63,4 4446 63,7 4423 62,8 4470 63,8 4456 63 4492 64 4458 64,5 4512 64,6 44515 64,6 4510 65,6 4515 64,2 4525 65,7 458 64 4552 65,5 4604 63,7 4587 65,6 4652 64,5 4619 65,7 4701 65,5 4649 66,3 <td< td=""><td>_</td><td>-</td><td></td><td></td></td<>	_	-				
4124 44,2 3911 40,9 4303 47,3 4197 44 4266 53,8 4369 46,9 4234 59,9 4360 53 4239 60,2 4309 58,7 4337 59,3 4355 58,1 4369 61,1 4445 57,9 4366 63,3 4493 60,7 4384 63,4 4446 63,7 4458 64,5 4512 64,6 4458 64,5 4510 65,6 4515 64,2 4525 65,7 4558 64 4552 65,5 4604 63,7 4587 65,6 4652 64,5 4619 65,7 4701 65,5 4649 66,3 4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4			•			
4303 47,3 4197 44 4266 53,8 4369 46,9 4234 59,9 4360 53 4239 60,2 4309 58,7 4337 59,3 4355 58,1 4369 61,1 4445 57,9 4366 63,3 4493 60,7 4384 63,4 4446 63,7 4458 64,5 4512 64,6 4458 64,5 4512 64,6 4458 64,5 4510 65,6 4515 64,2 4525 65,7 4558 64 4552 65,5 4604 63,7 4587 65,6 4652 64,5 4619 65,7 4701 65,5 4649 66,3 4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4893 69,8 4869 69,6 4934 69,9 4						
4266 53,8 4369 46,9 4234 59,9 4360 53 4239 60,2 4309 58,7 4337 59,3 4355 58,1 4369 61,1 4445 57,9 4366 63,3 4493 60,7 4384 63,4 4446 63,7 4423 62,8 4470 63,8 4456 63 4492 64 4458 64,5 4512 64,6 4458 64,5 4510 65,6 4515 64,2 4525 65,7 4558 64 4552 65,5 4604 63,7 4587 65,6 4652 64,5 4619 65,7 4701 65,5 4649 66,3 4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 486						
4234 59,9 4360 53 4239 60,2 4309 58,7 4337 59,3 4355 58,1 4369 61,1 4445 57,9 4366 63,3 4493 60,7 4384 63,4 4446 63,7 4423 62,8 4470 63,8 4456 63 4492 64 4458 64,5 4512 64,6 44515 64,6 4510 65,6 4515 64,2 4525 65,7 4558 64 4552 65,5 4604 63,7 4587 65,6 4652 64,5 4619 65,7 4701 65,5 4649 66,3 4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 5057 69,6 49						
4239 60,2 4309 58,7 4337 59,3 4355 58,1 4369 61,1 4445 57,9 4366 63,3 4493 60,7 4384 63,4 4446 63,7 4423 62,8 4470 63,8 4456 63 4492 64 4458 64,5 4512 64,6 44515 64,6 4510 65,6 4515 64,2 4525 65,7 4558 64 4552 65,5 4604 63,7 4587 65,6 4652 64,5 4619 65,7 4701 65,5 4649 66,3 4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 4934 69,9 4904 70,6 5087 71 50	4266	53,8	4369	46,9		
4337 59,3 4355 58,1 4369 61,1 4445 57,9 4366 63,3 4493 60,7 4384 63,4 4446 63,7 4423 62,8 4470 63,8 4456 63 4492 64 4458 64,5 4512 64,6 4482 64,6 4510 65,6 4515 64,2 4525 65,7 4558 64 4552 65,5 4604 63,7 4587 65,6 4652 64,5 4619 65,7 4701 65,5 4649 66,3 4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 5057 69,6 4999 70,4 5087 71 5042 70,4 5126 71,5 508	4234		4360	53		
4369 61,1 4445 57,9 4366 63,3 4493 60,7 4384 63,4 4446 63,7 4423 62,8 4470 63,8 4456 63 4492 64 4458 64,5 4512 64,6 4482 64,6 4510 65,6 4515 64,2 4525 65,7 4558 64 4552 65,5 4604 63,7 4587 65,6 4652 64,5 4619 65,7 4701 65,5 4649 66,3 4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 4934 69,9 4904 70,6 5008 69,3 4955 70,2 5057 69,6 4999 70,4 5126 71,5 5		60,2	4309	58,7		
4366 63,3 4493 60,7 4384 63,4 4446 63,7 4423 62,8 4470 63,8 4456 63 4492 64 4458 64,5 4512 64,6 4482 64,6 4510 65,6 4515 64,2 4525 65,7 4558 64 4552 65,5 4604 63,7 4587 65,6 4652 64,5 4619 65,7 4701 65,5 4649 66,3 4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 4934 69,9 4904 70,6 5008 69,3 4955 70,2 5057 69,6 4999 70,4 5126 71,5 5082 70,6 5174 71,1 5	4337	59,3	4355	58,1		
4384 63,4 4446 63,7 4423 62,8 4470 63,8 4456 63 4492 64 4458 64,5 4512 64,6 4482 64,6 4510 65,6 4515 64,2 4525 65,7 4558 64 4552 65,5 4604 63,7 4587 65,6 4652 64,5 4619 65,7 4701 65,5 4649 66,3 4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 4934 69,9 4904 70,6 5087 71 5042 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 586	4369	61,1	4445	57,9		
4423 62,8 4470 63,8 4456 63 4492 64 4458 64,5 4512 64,6 4482 64,6 4510 65,6 4515 64,2 4525 65,7 4558 64 4552 65,5 4604 63,7 4587 65,6 4652 64,5 4619 65,7 4701 65,5 4649 66,3 4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 4934 69,9 4904 70,6 5008 69,3 4955 70,2 5057 69,6 4999 70,4 5087 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5	4366	63,3	4493	60,7		
4456 63 4492 64 4458 64,5 4512 64,6 4482 64,6 4510 65,6 4515 64,2 4525 65,7 4558 64 4552 65,5 4604 63,7 4587 65,6 4652 64,5 4619 65,7 4701 65,5 4649 66,3 4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 4934 69,9 4904 70,6 5008 69,3 4955 70,2 5057 69,6 4999 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5	4384	63,4	4446	63,7		
4458 64,5 4512 64,6 4482 64,6 4510 65,6 4515 64,2 4525 65,7 4558 64 4552 65,5 4604 63,7 4587 65,6 4652 64,5 4619 65,7 4701 65,5 4649 66,3 4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 4934 69,9 4904 70,6 5008 69,3 4955 70,2 5057 69,6 4999 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5972 73,2 <	4423	62,8	4470	63,8		
4482 64,6 4510 65,6 4515 64,2 4525 65,7 4558 64 4552 65,5 4604 63,7 4587 65,6 4652 64,5 4619 65,7 4701 65,5 4649 66,3 4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 4934 69,9 4904 70,6 5008 69,3 4955 70,2 5057 69,6 4999 70,4 5087 71 5042 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5972 73,2 <td< td=""><td>4456</td><td>63</td><td>4492</td><td>64</td></td<>	4456	63	4492	64		
4515 64,2 4525 65,7 4558 64 4552 65,5 4604 63,7 4587 65,6 4652 64,5 4619 65,7 4701 65,5 4649 66,3 4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 4934 69,9 4904 70,6 5008 69,3 4955 70,2 5057 69,6 4999 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	4458	64,5	4512	64,6		
4558 64 4552 65,5 4604 63,7 4587 65,6 4652 64,5 4619 65,7 4701 65,5 4649 66,3 4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 4934 69,9 4904 70,6 5008 69,3 4955 70,2 5057 69,6 4999 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	4482	64,6	4510	65,6		
4558 64 4552 65,5 4604 63,7 4587 65,6 4652 64,5 4619 65,7 4701 65,5 4649 66,3 4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 4934 69,9 4904 70,6 5008 69,3 4955 70,2 5057 69,6 4999 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	4515	64,2	4525	65,7		
4652 64,5 4619 65,7 4701 65,5 4649 66,3 4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 4934 69,9 4904 70,6 5008 69,3 4955 70,2 5057 69,6 4999 70,4 5087 71 5042 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	4558	64	4552			
4652 64,5 4619 65,7 4701 65,5 4649 66,3 4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 4934 69,9 4904 70,6 5008 69,3 4955 70,2 5057 69,6 4999 70,4 5087 71 5042 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	4604	63,7	4587	65,6		
4739 65,4 4685 67,1 4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 4934 69,9 4904 70,6 5008 69,3 4955 70,2 5057 69,6 4999 70,4 5087 71 5042 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	4652		4619	65,7		
4774 67,7 4727 67,7 4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 4934 69,9 4904 70,6 5008 69,3 4955 70,2 5057 69,6 4999 70,4 5087 71 5042 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	4701	65,5	4649	66,3		
4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 4934 69,9 4904 70,6 5008 69,3 4955 70,2 5057 69,6 4999 70,4 5087 71 5042 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5942 73,5 5915 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	4739	65,4	4685	67,1		
4808 68,7 4776 68,4 4851 69,3 4832 68,8 4893 69,8 4869 69,6 4934 69,9 4904 70,6 5008 69,3 4955 70,2 5057 69,6 4999 70,4 5087 71 5042 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5942 73,5 5915 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	4774	67,7	4727	67,7		
4893 69,8 4869 69,6 4934 69,9 4904 70,6 5008 69,3 4955 70,2 5057 69,6 4999 70,4 5087 71 5042 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5942 73,5 5915 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	4808		4776			
4934 69,9 4904 70,6 5008 69,3 4955 70,2 5057 69,6 4999 70,4 5087 71 5042 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5942 73,5 5915 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	4851	69,3	4832	68,8		
5008 69,3 4955 70,2 5057 69,6 4999 70,4 5087 71 5042 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5942 73,5 5915 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	4893	69,8	4869	69,6		
5008 69,3 4955 70,2 5057 69,6 4999 70,4 5087 71 5042 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5942 73,5 5915 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	4934	69,9	4904	70,6		
5057 69,6 4999 70,4 5087 71 5042 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5942 73,5 5915 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	5008		4955			
5087 71 5042 70,4 5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5942 73,5 5915 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	5057		4999			
5126 71,5 5082 70,6 5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5942 73,5 5915 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	5087	71	5042			
5174 71,1 5122 71,6 5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5942 73,5 5915 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	5126	71,5	5082			
5852 73,3 5832 74,5 5883 73,4 5862 75,1 5909 73,4 5883 75,4 5942 73,5 5915 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	5174		5122			
5883 73,4 5862 75,1 5909 73,4 5883 75,4 5942 73,5 5915 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75	5852		5832			
5909 73,4 5883 75,4 5942 73,5 5915 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75						
5942 73,5 5915 75,4 5972 73,2 5955 75,3 5999 73,2 5992 75						
5972 73,2 5955 75,3 5999 73,2 5992 75						
5999 73,2 5992 75						

Tabel 3 merupakan tabel perbandingan antara daya dam putaran sebelum dipasang HCS dan setelah dipasang HCS. Kemudian dibuat grafik perbandingan hubungan daya terhadap putaran, sehingga terlihat perbedaan sebelum dipasang HCS dan setelah dipasang HCS.

Gambar 11. Grafik Perbandingan Uji Dynotest Sebelum Dipasang HCS dan Setelah Dipasang HCS terhadap Daya dan Putaran.

Gambar 11 menunjukkan grafik perbandingan uji dynotest sebelum dipasang HCS dan setelah dipasang HCS terhadap daya dan putaran. Uji dynotest sebelum dipasang HCS menunjukkan bahwa daya maksimumnya adalah 73,5HP pada putaran 5942rpm dan daya minimumnya adalah 44,2HP pada putaran 4124rpm. Sedangkan uji dynotest setelah dipasang HCS menunjukkan bahwa daya maksimumnya adalah 75,5HP pada putaran 6011rpm dan daya minimumnya adalah 40,9HP pada putaran 3911rpm. Hasil uji dynotest menunjukkan pengaruh daya terhadap putaran setelah dipasang HCS lebih tinggi dayanya dibandingkan sebelum dipasang HCS.

Uji Emisi Gas Buang

Analisis uji emisi gas buang untuk mengetahui gas buang hasil pembakaran pertamax plus sebelum dan sesudah dipasang pipa HCS. Uji emisi gas buang menggunakan alat technotest type 488 milik PT. Tunas mobilindo perkasa. Hasil uji emisi gas buang sebelum dan setelah dipasang pipa HCS dapat dilihat pada Tabel 4.

Tabel 4. Hasil Uji Emisi Gas Buang Sebelum dan Setelah Dipasang Pipa HCS.

No	Emisi	Sebelum dipasang pipa HCS	Setelah dipasang pipa HCS
1	CO (%)	0,00	0,00
2	CO_2 (%)	12,8	12,6
3	HC (ppm)	57	9
4	$O_2(\%)$	0,73	0,79
5	NO_{x} (ppm)	0,00	0,00

Data pada Tabel 4 menunjukkan unsur-unsur emisi gas buang yang akan mempengaruhi kinerja bensin khususnya mesin bensin adalah CO, CO₂, HC, O₂ dan NO_x. Hasil pengujian menunjukkan kandungan CO sebelum dipasang pipa HCS sebesar 0% dan setelah dipasang pipa HCS kandungan CO tetap sama sebesar 0%. Nilai CO₂ sebelum dipasang pipa HCS sebesar 12,8% dan setelah dipasang pipa katalis HCS terjadi penurunan kandungan CO₂ sebesar 12,6%. Hal ini terjadi karena fungsi pipa katalis untuk menurunkan emisi gas buang khususnya kandungan CO₂. Nilai HC sebelum menggunakan pipa katalis sebesar 57ppm dan setelah dipasang pipa katalis HCS terjadi penurunan kandungan HC sebesar 9ppm. Hal ini terjadi karena fungsi pipa HCS untuk menurunkan emisi gas buang khususnya kandungan HC. Nilai O₂ sebelum dipasang pipa HCS sebesar 0,73% dan setelah dipasang pipa HCS terjadi kenaikkan sebesar 0,79%. Nilai NO_x sebelum menggunakan pipa katalis sebesar 0ppm dan setelah dipasang pipa katalis kandungan NO_x tetap sama sebesar 0ppm. Efek pemasangan pipa katalis HCS dapat menurunkan emisi gas buang ditandai dengan berkurangnya kandungan CO₂ dan HC.

BAB V KESIMPULAN DAN SARAN

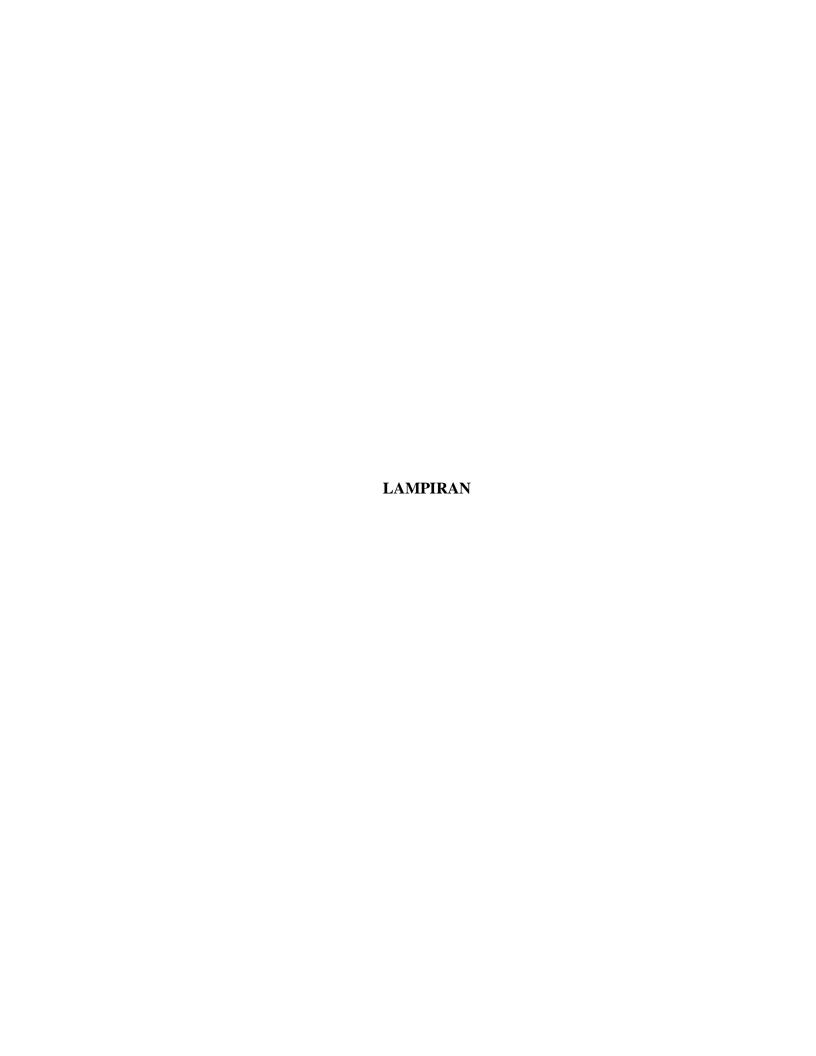
A. Kesimpulan

- 1. Sintesis NiFe₂O₄ dengan menggunakan metode kopresipitasi menghasilkan serbuk coklat.
- 2. Hasil karakterisasi XRD menunjukkan NiFe₂O₄ bersifat kristalin dengan nilai 2θ di sudut 30,29°; 35,67°; 43,36°; 62,99°; 71,48° dan 74,55°.
- Hasil karakterisasi dengan metode BET menggunakan SAA menujukkan bahwa NiFe₂O₄ memiliki pola isotherm tipe IV memiliki tipe adsorben mesopori dengan ukuran pori katalis NiFe₂O₄ yang diperoleh sebesar 17.81469 nm.
- 4. Hasil uji dynotest menunjukkan pengaruh torsi terhadap putaran setelah dipasang HCS sebesar 103,6 Nm lebih tinggi torsinya di bandingkan sebelum menggunakan HCS sebesar 103,3 Nm.
- 5. Hasil uji dynotest menunjukkan pengaruh daya terhadap putaran setelah dipasang HCS sebesar 75,5 HP lebih tinggi dayanya dibandingkan sebelum dipasang HCS sebesar 73,5 HP.
- 6. Hasil uji emisi gas buang menunjukkan penurunan CO₂ dan HC setelah menggunakan pipa katalis HCS.

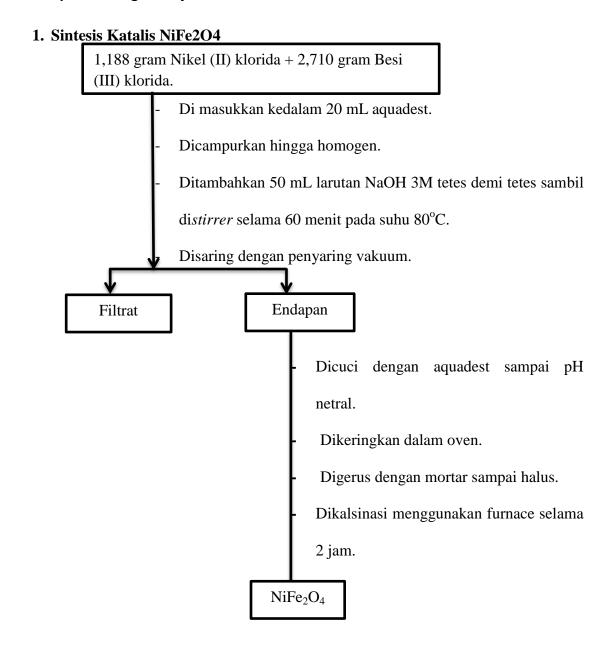
B. Saran

Untuk menyempurnakan hasil penelitian mengenai sintesis dan uji sifat katalitik Nikel Ferit (NiFe₂O₄) untuk memecah uap pertamax plus pada Hidrocarbon Crack System (HCS), maka disarankan:

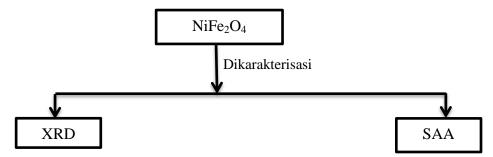
- 1. Merubah kompisisi Ni dan Fe yang digunakan untuk meningkatkan proses yang terjadi.
- 2. Menggunakan variasi suhu pemanasan untuk mengetahui pengaruh suhu reaksi terhadap sifat katalitik dalam memecah uap pertamax plus pada HCS.
- 3. Merubah bahan bakar yang digunakan untuk meningkatkan proses yang terjadi

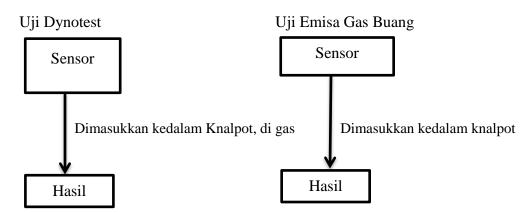

DAFTAR PUSTAKA

- Ansari, A., Kumar, Vishal, Akhtar. 2017. Synthesis of Nickel Ferrite Nanoparticles Via Chemical Co-precipitation Method. *Advanced Materials Proceedings*, 2(1), 24-32.
- Chennampilly and Thengumthanam, D. R. 2011. A Study on Catalysis by Ferrospinels for Preventing Atmospheric Polution from Carbon Monoxide. *Open Journal of Physical Chemistry*, 1, 124-130.
- Chorkendroff, I., and Niemants, V. 2003. *Concept of Modern Catalysis and Kinetics*. New York: Wiley-VCH GmbH &Co.
- Dionne, G. F. 2009. Magnetic Oxide. New York: springer.
- Felani, W. 2016. Pengaruh Perlakuan Ultrasonik pada Preparasi katalis Ni/Cu/Al₂O₃ dengan Metode Kopresipitasi terhadap Kualitas Karbon Nanotube pada Reaksi Dekomposisi Katalitik Metana. [skripsi] Depok: Universitas Indonesia.
- Istadi. 2011. *Teknologi Katalis untuk Konversi Energi*. Yogyakarta: Penerbit Graha Ilmu.
- Joshi, S., Kumar, M., Chhoker, S., Sricaslava, G., Jewariya, M., Singh, V. N. 2014. Structural, Magnetic, Dielectric and Optical Properties of Nickel Ferrite Nanoparticles Synthesized by Co-precipitation Method. *Journal of Molecular Structure*, 1076, 55-62.
- Kasapoglu, N., Baykal, A., Toprak, M., Koseglu, Y., Ayrakdar, H. 2007. Synthesis and Characterization of NiFe₂O₄ Nano-Octahedrons by EDTA-Assisted Hydrothermal Method. *Turkish Journal of Chemistry*, 31, 659-666.
- Kristianingrum. 2017. Sintesis dan Uji Sifat Katalitik Nikel Ferit (NiFe₂O₄) untuk Memecah Uap Pertalite pada Hydrocarbon Crack System (HCS). [skripsi] Jakarta: Universitas Negeri Jakarta.
- Lu, A. H., Salabas, E. L., Schuth, F. 2007. Magnetic Nanoparticles; Synthesis Protection, Functionalization and Application. *Angewandte Chemie International Edition*, 46, 1222-1244.
- Mahdiansah, D., Arif, E., Wahyu, H. 2010. Pengaruh Putaran dan Pembukaan Katup Gas terhadap Kinerja Variabel VCRPE dengan Menggunakan Campuran


- Bahan Bakar Premium-Pertamax Plus. [skripsi] Makassar: Universitas Hasanuddin Makassar.
- Maensiri, S., Masingboon, Bonochom, C., Seraphin, S. 2007. A Simple Route to Synthesize Nickel Ferrite (NiFe₂O₄) Nanoparticles Using Egg White. *Scripta Materiali*, 56, 797-800.
- Nasikin, M., Susanto, B. H. 2010. *Katalis Heterogen, Edisi Pertama*. Jakarta: Universitas Indonesia.
- Nishikicho, K. 2013. XRD-6000: X-ray Diffractometer. Japan: Shimadzu.
- Rianto, S. 2007. Analisis Alat Surface Area. Jakarta: Universitas Indonesia.
- Rosita, D. T., Yuni, R., Ruslina, F., Ameliya., Takeshi, K., Satoshi, I., Edi, S. 2014. Sintesis Nanopartikel Manganese Ferrite (MnFe₂O₄) dengan Metode Kopresipitasi dan Karakterisasi Sifat Kemagnetannya. *Jurnal Fisika Indonesia*, 52(18), 1410-2994.
- Rahardjo, T. 2009. Pemanfaatan Energi Gas Buang Motor Diesel Stasioner untuk Pemanasan Air. *Jurnal Teknik Mesin*, 1(1), 24-29.
- Rubijanto, J. P., dan Amin. 2013. Desain Pembuatan Penghemat Bahan Bakar dengan Metode Hydrogen Crack System(HCS) pada Mobil dengan Memanfaatkan Limbah Pipa Tembaga Kondensor Air Conditioner (A/C) sebagai Katalis. Semarang: Universitas Muhammadiyah.
- Seleznev, S., Petrov, A., Chupakhin, N., Kononenko, V., Chupova, A., V. Ryabina. 2009. Physicochemical Studies of Systems and Processes Cobalt Containing Catalytic Systems Alloyed with Rare and Rare-earth Metals as Catalysts for Synthesis of Hydrocarbons from CO and H₂. Russian Journal of Applied Chemistry, 82(5), 820-825.
- Srivastava, M., Chaubey, S., Ojha, A. K. 2009. Investigation on Size Dependent Structural and Magnetic Behavior of Nickel Ferrite Nanoparticles Prepared by Sol-Gel and Hydrothermal Methods. *Materials Chemistry and Physics*, 118, 174-180.
- Sukarmin. 2004. Materi dan Perubahan. Jakarta: Departemen Pendidikan Nasional.
- Torres, T., Roca, A. G., Morales, M. P., Ibarra, A., Marquina, C., Ibara, M. R., Goya, G. F. 2014. Magnetic Properties and Energy Absoption of CoFe₂O₄

Nanoparticles for Magnetic Hyperthermia. *Journal of Physics-Conference Series*, 200, 072101.


Wardono, H. 2004. *Modul Pembelajaran Motor Bakar 4-langkah*. Jurusan Teknik Mesin. Bandar Lampung: Universitas Lampung.


Lampiran 1. Bagan Kerja

2. Karakterisasi Katalis NiFe₂O₄

3. Uji sifat katalitik $NiFe_2O_4$

Lampiran 2. Foto Penelitian

Endapan hasil pencucian sampai pH netral dengan Aquadest.

Hasil pengeringan dengan oven.

hasil pengkalsinasi dengan furnace.

Lampiran 3. Hasil Uji Dynotest

Uji dynotest sebelum dipasang HCS

Customer	Komaruddin Umar		
B1695ZFN	2014	Honda	Mobilio E-CVT
Graph	B1695ZFN.0014	Run Date / Time	23-03-17 / 16:06
Ramp Rate	100	Mode	normal

Dynamometer Corre	ection Infor	mation	1385		
Atmospheric Correction	NONE	Reference Conditions		n	/a
Weather Station	OFF	Weather Correction	30.8 C	66.2% RH	1008.32 millibar
Inlet Air Temp.	[31.5] C	Correction Factor	1.000		
Transmission	FWD	Drivetrain Inertia	176 lb		
Tacho Type	OBDII				
Fuel Type	Petrol				

Tacho	Speed	Power	TqW	TE	HS AFR	HS AFR2	Vac/Boost	Comments
rpm	km/h	HP	Nm	lb	:1	:1	kPa/kPa	
3 4124	38	44.2	76.4	703	14.9	10.1	-0	
4303	40	47.3	78.3	713	14.9	10.1	-0	
4266	42	53.8	89.8	773	14.9	10.1	-0	
4234	44	59.9	100.8	822	14.9	10.1	-0	
4239	46	60.2	101.1	790	14.7	10.1	-0	
4337	48	59.3	97.4	746	14.3	10.1	-0	
4369	50	61.1	99.5	737	13.7	10.1	-0	
4366	52	63.3	103.3	735	13.2	10.1	-0	
4384	54	63.4	103.0	709	12.9	10.1	-0	
4423	56	62.8	101.1	677	12.7	10.1	-0	
4456	58	63.0	100.6	655	12.7	10.1	-0	
4458	60	64.5	103.0	649	12.6	10.1	-0	
1. 4482	62	64.6	102.6	629	12.6	10.1	-0	
4515	64	64.2	101.2	605	12.6	10.1	-0	
4558	66	64.0	100.0	585	12.6	10.1	-0	
4604	68	63.7	98.5	565	12.6	10.1	-0	
4652	70	64.5	98.7	556	12.6	10.1	-0	
4701	72	65.5	99.2	549	12.6	10.1	-0	
4739	74	66.4	99.7	541	12.6	10.1	-0	
4774	76	67.7	100.9	537	12.6	10.1	-0	
4808	78	68.7	101.8	532	12.6	10.1	-0	
4851	80	69.3	101.7	523	12.5	10.1	-0	
4893	82	69.8	101.5	513	12.5	10.1	-0	
4934	84	69.9	100.9	502	12.5	10.1	-0	
5008	86	69.3	98.5	486	12.5	10.1	-0	
5057	88	69.6	98.0	477	12.4	10.1	-0	
5087	90	71.0	99.4	476	12.4	10.1	-0	
5126	92	71.5	99.3	469	12.4	10.1	-0	
5174	94	71.1	97.8	456	12.4	10.1	-0	
5228	96	71.2	97.0	448	12.4	10.1	-0	
5292	98	71.3	96.0	439	12.4	10.1	-0	

Techo	Speed km/h	Power	TqW Nm	TE Ib	HS AFR	HS AFR2	Vac/Boost kPa/kPa	Comments
5346	100	71.7	95.5	433	12.4	10.1	-0	Who have be commented in the second
5389	102	71.0	93.8	420	12.4	10.1	-0	and the same of th
5420	104	71.5	94.0	415	12.4	10.1	-0	
5454	106	72.5	94.7	413	12.4	10.1	-0	
5494	108	72.7	94.2	406	12.4	10.1	-0	
5548	110	72.7	93.3	399	12.4	10.1	-0	
5598	112	72.7	92.5	392	12.4	10.1	-0	and the second state of th
5644	114	72.5	91.4	384	12.3	10.1	-0	A CONTRACTOR OF THE PARTY OF TH
5679	116	72.4	90.7	377	12.4	10.1	-0	
5729	118	72.4	90.0	370	12.3	10.1	-0	and the same of th
5778	120	72.1	88.9	363	12.3	10.1	-0	Control of
5817	122	72.9	89.3	361	12.3	10.1	-0	CONTRACTOR OF MINISTER CONTRACTOR OF THE CONTRAC
5852	124	73.3	89.2	357	12.3	10.1	-0	provides about a large control of the entire
5883	126	73.4	88.8	351	12.2	10.1	-0	to the second control of the second control
5909	128	73.4	88.5	346	12.3	10.1	-0	A CONTROL OF THE SECOND STATE OF THE SECOND ST
5942	130	73.5	88.1	341	12.2	10.1	-0	and the same of th
5972	132	73.2	87.3	335	12.2	10.1	-0	
5999	134	73.2	86.8	330	12.2	10.1	-0	The second secon
6018	136	72.9	86.2	323	12.2	10.1	-0	and the street and the particular are the same property of the same prop

Hasil Uji Dynotest setelah di pasang Pipa Katalis HCS

Customer	Komaruddin Umar	95oct-Catalyst Hydro	Carbon Crack System
B1695ZFN	2014	Honda	Mobilio E-CVT
Graph	B1695ZFN.0018	Run Date / Time	23-03-17 / 16:10
Ramp Rate	100	Mode	normal

Dynamometer Correction Atmospheric Correction	NONE	n/a				
		Reference Conditions				
Weather Station	OFF	Weather Correction	30.8 C	66.2% RH	1008.32 millibar	
Inlet Air Temp.	[32.3] C	Correction Factor	1.000			
Transmission	FWD	Drivetrain Inertia	176 lb			
Tacho Type	OBDII					
Fuel Type	Petrol					

Tacho	Speed km/h	Power	TqW Nm	TE	HS AFR	HS AFR2	Vac/Boost kPa/kPa	Comments
3911	36	40.9	74.4	685	14.9	10.1	-0	
4197	38	44.0	74.6	699	14.9	10.1	-0	
4369	40	46.9	76.5	708	14.9	10.1	-0	
4360	42	53.0	86.5	761	14.9	10.1	-0	
4309	44	58.7	97.0	805	14.9	10.1	-0	
4355	46	58.1	95.0	762	14.9	10.1	-0	
4445	48	57.9	92.8	728	14.8	10.1	-0	
4493	50	60.7	96.2	733	14.4	10.1	-0	
4446	52	63.7	102.0	739	13.5	10.1		
4470	54	63.8	101.6	713	12.8	10.1	-0	
4492	56	64.0	101.4	690	12.5	10.1	-0	
4512	58	64.6	102.0	672	12.5	10.1	-0	
4510	60	65.6	103.6	660	12.4	10.1	-0	
4525	62	65.7	103.4	640	12.4	10.1	-0	
4552	64	65.5	102.5	618	12.3	10.1	-0	
4587	66	65.6	101.8	600	12.3	10.1	-0	
4619	68	65.7	101.8	583	12.3		-0	
4649	70	66.3	101.5	572		10.1	-0	
4685	72	67.1	101.9	562	12.3	10.1	-0	
4727	74	67.7	101.9		12.3	10.1	-0	
4776	76	68.4		552	12.3	10.1	-0	
4832	78	68.8	102.0	543	12.3	10.1	-0	
4869	80	69.6	101.3	532	12.3	10.1	-0	
4904	82	70.6	101.8 102.6	525	12.3	10.1	-0	
4955	84	70.6		520	12.3	10.1	-0	
4999	86	70.2	101.0	505	12.3	10.1	-0	
5042	88	70.4	99.4	494	12.3	10.1	-0	
5082	90	70.4	98.9	483	12.3	10.1	-0	
5122	92	71.6	99.5	473	12.3	10.1	-0	
5178	94	71.0	97.8	469	12.3	10.1	-0	
5259	96	70.4	95.4	457	12.3	10.1	-0	
3200	- 55	70.4	95.4	443	12.2	10.1	-0	

Tacho	Speed	Power	TqW	TE	HS AFR	HS AFR2	Vac/Boost	Comments
rpm	km/h	HP	Nm	Ib	1 :1	:1	kPa/kPa	And the second s
5278	98	71.8	96.8	442	12.2	10.1	-0	
5317	100	72.0	96.4	434	12.2	10.1	-0	
5406	102	70.3	92.6	416	12.2	10.1	-0	
5442	104	71.2	93.1	413	12.2	10.1	-0	
5477	106	72.7	94.6	414	12.3	10.1	-0	
5512	108	73.2	94.6	409	12.3	10.1	-0	
5560	110	73.1	93.6	401	12.3	10.1	-0	
5601	112	73.9	93.9	398	12.3	10.1	-0	
5637	114	73.8	93.2	391	12.3	10.1	-0	
5684	116	73.8	92.4	384	12.3	10.1	-0	
5731	118	73.8	91.6	377	12.2	10.1	-0	
5781	120	73.4	90.4	369	12.2	10.1	-0	
5832	122	74.5	90.9	368	12.2	10.1	-0	
5862	124	75.1	91.2	365	12.2	10.1	-0	AND DESCRIPTION OF THE PERSON
5883	126	75.4	91.2	361	12.2	10.1	-0	
5915	128	75.4	90.7	355	12.2	10.1	-0	
5955	130	75.3	90.1	350	12.2	10.1	-0	
5992	132	75.0	89.1	343	12.3	10.1	-0	
6005	134	75.3	89.3	339	12.3	10.1	-0	CONTRACTOR OF THE PARTY OF THE
6011	136		89.4	335	12.3	10.1	-0	

DAFTAR RIWAYAT HIDUP

ZENTIKA MAODI dilahirkan pada tanggal 17 Januari 1995 di kota Bogor, Jawa Barat. Penulis merupakan anak kedua dari dua bersaudara dari pasangan Bapak Munawir dan Ibu Fadila Amelia. Pendidikan formal yang pernah ditempuh penulis adalah, SD Negeri Pela Mampang 11 Pagi Jakarta (2001-2007), SMP Negeri 141 Jakarta (2007-2010) dan SMA Negeri 55

Jakarta (2010-2013). Penulis melanjutkan pendidikan program studi S1 Jurusan Kimia di Universitas Negeri Jakarta.

Penulis pernah melakukan kunjungan ke beberapa industri, seperti PT. Krakatau Steel, Badan Tenaga Nuklir Nasional (BATAN), PT. Asahimas Flat Glass Tbk, PT. Bio Farma, PT. Nippon Indosari Corpindo (Sari Roti) dan PT. Semen Indonesia. Penulis juga pernah melakukan Kuliah Kerja Nyata (KKN) di Desa Cirende, Campaka, Purwakarta. Selain itu penulis pernah menjadi Asisten Dosen Praktikum Kimia Umum dan Praktikum Kinetika Kimia selama penulis menyelesaikan studi di Universitas Negeri Jakarta.