Pengaruh Strategi Pembelajaran *Team Teaching* dan Motivasi Belajar Siswa Terhadap Hasil Belajar Menganalisis Rangkaian Listrik

FURI ENDANG PALUPI 5115102608

Skripsi ini Ditulis untuk Memenuhi Sebagian Persyaratan dalam Memperoleh Gelar Sarjana Pendidikan

PROGRAM STUDI PENDIDIKAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS NEGERI JAKARTA 2017

ABSTRAK

FURI ENDANG PALUPI, PENGARUH STRATEGI PEMBELAJARAN TEAM TEACHING DAN MOTIVASI BELAJAR SISWA TERHADAP HASIL BELAJAR MENGANALISIS RANGKAIAN LISTRIK. Skripsi. Jakarta: Fakultas Teknik Universitas Negeri Jakarta 2017. Dosen Pembimbing Dr. Soeprijanto, M.Pd dan Drs. Faried Wadjdi, M.Pd, MM

Penelitian ini bertujuan untuk mengetahui pengaruh strategi pembelajaran team teaching dan motivasi belajar siswa terhadap hasil belajar menganalisis rangkaian listrik. Penelitian ini dilakukan di SMKN 1 Tambelang pada bulan Februari 2017. Sampel dari penelitian ini adalah siswa yang terdiri dari 2 kelas yaitu kelas eksperimen dari siswa yang diajar dengan team teaching berjumlah 30 siswa dan kelas kontrol dari siswa yang diajar non-team teaching terdiri dari 30 siswa sehingga total berjumlah 60 siswa. Dari 60 siswa tersebut diberikan kuisioner tentang motivasi belajar siswa, hasilnya akan dikelompokkan menjadi 2 bagian yaitu siswa yang memiliki motivasi tinggi dan siswa yang memiliki motivasi rendah.

Pengujian normalitas data menggunakan uji lilefors diperoleh data tiap kelompok dan baris terdistribusi normal. Hasil homogenitas menggunakan uji bartlett yang hasilnya data tersebut homogen. Uji hipotesis dengan uji F Anava 2X2 dengan taraf signifikan 0,05. Dari hasil pengujian diperoleh nilai F_{hitung} antar perlakuan = 49,824 dan F tabel = 4,196. Dapat disimpulkan bahwa F_{hitung} > F tabel, maka diperoleh kesimpulan bahwa secara keseluruhan terdapat perbedaan nyata antara strategi pembelajaran team teaching dan non – team teaching terhadap hasil belajar menganalisis rangkaian listrik. Hipotesis kedua dilakukan uji lanjut menggunakan uji dunnet diperoleh thitung =11,797 dan t tabel = 1,70. Dapat disimpulkan bahwa thitung > t tabel, maka diperoleh kesimpulan yaitu hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran team teaching dan memiliki motivasi tinggi lebih tinggi daripada siswa yang mengikuti strategi pembelajaran non - team teaching dan memiliki motivasi tinggi. Hasil hipotesis ketiga diperoleh thitung =1,81 dan t tabel= 1,70. Dapat disimpulkan bahwa thitung > t tabel, maka diperoleh kesimpulan yaitu hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran team teaching dan memiliki motivasi rendah lebih rendah daripada siswa yang mengikuti strategi pembelajaran non - team teaching dan memiliki motivasi rendah.

Kata Kunci: Team Teaching, Motivasi Belajar, Menganalisis Rangkaian Listrik

ABSTRACT

FURI ENDANG PALUPI, EFFECT OF LEARNING TEAM TEACHING STRATEGY AND STUDENT LEARNING MOTIVATION TO LEARNING RESULTS ANALYZING ELECTRICAL CIRCUITS. Essay. Jakarta: Faculty of Engineering, Jakarta State University 2017. Supervisor Soeprijanto, M.Pd and Drs. Faried Wadjdi, M.Pd, MM

This study aims to determine the effect of learning team teaching strategy and student learning motivation on the results of learning to analyze electrical circuits. This research was conducted at SMKN 1 Tambelang in February 2017. The sample of this research is students consisting of 2 classes of experimental class of students taught with team teaching amounted to 30 students and control class of students who were taught non-team teaching consisted of 30 Students so the total amounted to 66 students. Of the 66 students were given a questionnaire about student learning motivation, the results will be grouped into 2 ie students who have high motivation and students who have low motivation.

Normality data test using lilefors test obtained by each group data and normal distributed line. The result of homogeneity using bartlett test which result of the data is homogeneous. Hypothesis test with F test of Anava 2X2 with significant level 0,05. From the test results obtained F $_{count}$ values between treatments = 49.824 and F $_{table}$ = 4,196. It can be concluded that $F_{count} > F_{table}$, it can be concluded that overall there is a real difference between team teaching and non-team teaching learning strategy toward learning result of analyzing electrical circuit. The second hypothesis is tested further using dunnet test obtained $t_{count} = 11.797$ and $t_{table} = 1.70$. It can be concluded that t_{count} > t_{table}, it is concluded that the result of learning to analyze electrical circuits for students who follow teaching team teaching strategy and have higher motivation higher than students who follow non-team teaching strategies and have high motivation. Results of the third hypothesis obtained t count = 1.81 and t table = 1.70. It can be concluded that t_{count} > t_{table}, it is concluded that the result of learning to analyze electric circuits for students who follow teaching team teaching strategy and have lower motivation lower than students who follow non-team teaching strategy and have low motivation.

Keywords: Team Teaching, Learning Motivation, Analyzing Electric Circuit

HALAMAN PENGESAHAN

PENGARUH STRATEGI PEMBELAJARAN TEAM TEACHING DAN MOTIVASI BELAJAR SISWA TERHADAP HASIL BELAJAR MENGANALISIS RANGKAIAN LISTRIK (STUDI KASUS PADA SMKN 1 TAMBELANG) FURI ENDANG PALUPI / 5115102608

PANITIA UJIAN SKRIPSI

NAMA DOSEN	TANDA TANGAN	TANGGAL
Prof. Dr. Suyitno, M.pd (Ketua Penguji)	- Mrc	15-08-2017
Massus Subekti, MT (Sekretaris)		15-08-2017
Daryanto, MT (Dosen Ahli)	Vy/	18-08-20 A
Dr. Soeprijanto, M.Pd. (Dosen Pembimbing I)		16-08-2017
Drs. Faried Wadjdi, M.Po (Dosen Pembimbing II)	d A	16-08-2017
Tanggal Lulus :		

HALAMAN PERNYATAAN

Dengan ini saya menyatakan bahwa:

1. Karya tulis skripsi saya ini adalah asli dan belum pernah diajukan untuk mendapatkan gelar akademik sarjana, baik di Universitas negeri Jakarta

maupun di perguruan tinggi lain.

2. Skripsi ini adalah murni gagasan, rumusan dan penelitian saya sendiri dengan

arahan dosen pembimbing.

3. Dalam karya tulis ini tidak terdapat karya atau pendapat yang telah ditulis

atau dipublikasikan orang lain, kecuali secara tertulis dengan jelas

dicantumkan sebagai acuan dalam naskah dengan disebutkan nama

pengarang dan dicantumkan dalam daftar pustaka.

4. Pernyataan ini saya buat dengan sesungguhnya dan apabila dikemudian hari

terdapat penyimpangan dan ketidakbenaran dalam pernyataan ini, maka saya

bersedia menerima sanksi akademik berupa pencabutan gelar yang telah

diperoleh karena skripsi ini, serta sanksi lainnya sesuai dengan norma yang

berlaku di Universitas Negeri Jakarta.

Jakarta, 18 -08-2017

Furi Endang Palupi

5115102608

KATA PENGANTAR

Alhamdulillah, puji syukur marilah kita panjatkan kehadirat Allah SWT yang telah memberikan rahmat, karunia, dan hidayahnya, sehingga peneliti dapat menyelesaikan skripsi dengan judul "Pengaruh strategi pembelajaran *team teaching* dan motivasi belajar siswa terhadap hasil belajar menganalisis rangkaian listrik" yang merupakan persyaratan untuk meraih gelar Sarjana Pendidikan pada Jurusan Teknik Elektro, Fakultas Teknik, Universitas Negeri Jakarta.

Skripsi ini tidaklah dapat terwujud dengan baik tanpa adanya bimbingan, dorongan, saran-saran, dan batuan dari berbagai pihak. Pada kesempatan ini saya ingin menyampaikan ucapan terima kasih yang sebesar-besarnya kepada:

- 1. Bapak Massus Subekti, M.T., selaku ketua program studi pendidikan teknik elektro, Fakultas Teknik, Universitas Negeri Jakarta.
- 2. Bapak Dr. Soeprijanto, M.Pd., selaku dosen pembimbing I.
- 3. Bapak Drs. Faried Wadjdi, M.Pd, MM., selaku dosen pembimbing II.
- 4. Kedua orang tua saya, bapak Sumarno (Alm) dan ibu Fetsri, serta adik saya Achmad Fachrudin.
- 5. Seluruh teman-teman di program studi Pendidikan Teknik Elektro Reguler 2010.
- 6. Pihak-pihak yang telah memberikan sumbangsih tanpa bisa saya sebutkan satu persatu, namun tak sedikitpun mengurangi rasa hormat saya.

Peneliti menyadari bahwa skripsi ini masih jauh dari kesempurnaan, untuk itu sangat terbuka terhadap kritik dan saran yang membangun, sehingga dapat menjadi bahan koreksi pada penyusunan selanjutnya, semoga skripsi ini dapat memberikan manfaat bagi dunia pendidikan dan bagi siapapun yang membacanya.

Jakarta, 21 Juni 2017

Furi Endang Palupi

DAFTAR ISI

	Halaman
ABSTRAK	i
HALAMAN PENGESAHAN	iii
HALAMAN PERNYATAAN	iv
KATA PENGANTAR	v
DAFTAR ISI	vi
DAFTAR TABEL	x
DAFTAR GAMBAR	xii
DAFTAR LAMPIRAN	xiv
BAB I PENDAHULUAN	1
1.1 Latar Belakang Masalah	1
1.2 Identifikasi Masalah	5
1.3 Pembatasan Masalah	5
1.4 Perumusan Masalah	6
1.5 Tujuan Penelitian	6
1.6 Kegunaan Penelitian	7
BAB II DESKRIPSI KONSEPTUAL, KERANGKA TEORITIK	DAN
HIPOTESIS PENELITIAN	8
2.1 Deskripsi Konseptual	8
2.1.1 Hakikat Belajar	8
2.1.2 Hakikat Hasil Belajar	10
2.1.3 Hakikat Hasil Belajar Menganalisis Rangkaian Listrik	12
2.1.4 Materi Ajar Menganalisis Rangkaian Listrik	13

2.1.4.1 Arus Listrik	13
2.1.4.2 Muatan Listrik	14
2.1.4.3 Tegangan Listrik	14
2.1.4.4 Macam - Macam Arus Listrik	14
2.1.4.5 Rapat Arus	14
2.1.4.6 Komponen Rangkaian Listrik	15
2.1.5 Hakikat Motivasi Belajar	17
2.1.5.1 Aspek - Aspek Motivasi Belajar	19
2.1.5.2 Sumber - Sumber Motivasi Belajar	20
2.1.6 Strategi Pembelajaran	21
2.1.7 Strategi Pembelajaran Team Teaching	23
2.1.7.1 Model - Model Team Teaching	26
2.1.7.2 Tahapan - Tahapan Team Teaching	28
2.1.7.3 Kelebihan Team Teaching	30
2.1.7.4 Kelemahan Team Teaching	32
2.1.8 Strategi Pembelajaran Non Team Teaching	34
2.2 Kerangka Teoritik	36
2.3 Hipotesis Penelitian	40
BAB III METODOLOGI PENELITIAN	42
3.1 Tempat dan Waktu Penelitian	42
3.2 Metode Penelitian	42
3.3 Populasi, Sampel dan Teknik Pengambilan Sampel	43
3.3.1 Populasi dan Sampel	43
3.3.2 Teknik Pengambilan Sampel	44

3.4 Variabel Penelitian	45
3.5 Teknik Pengumpulan Data	45
3.6 Instrumen Penelitian	46
3.6.1 Kisi - Kisi Instrumen Motivasi Belajar	46
3.6.2 Kisi - Kisi Instrumen Hasil Belajar Menganalisis Rangkaian Listrik	47
3.7 Teknik Pengolahan Data	49
3.7.1 Uji Validitas	49
3.7.2 Uji Reliabilitas	52
3.7.3 Taraf Kesukaran Soal	53
3.7.4 Daya Pembeda Soal	55
3.8 Teknik Analisis Data	56
3.8.1 Uji Prasyarat Analisis	56
3.8.1.1 Uji Normalitas	56
3.8.1.2 Uji Homogenitas	57
3.8.2 Uji Hipotesis Penelitian	57
BAB IV HASIL PENELITIAN DAN PEMBAHASAN	59
4.1 Deskripsi Data Penelitian	59
4.2 Pengujian Persyaratan Analisis	68
4.2.1 Uji Normalitas	68
4.2.2 Uji Homogenitas	69
4.3 Pengujian Hipotesis	70
4.4 Pembahasan Hasil Penelitian	74
BAB V KESIMPULAN, SARAN DAN IMPLIKASI	80
5.1 Kesimpulan	80

5.2 Saran	80
DAFTAR PUSTAKA	82
Biodata Penulis	85
Lampiran - Lampiran	86

DAFTAR TABEL

Hal	laman
Tabel 2.1 KD Menganalisis Rangkaian Listrik SMKN 1 Tambelang	12
Tabel 2.2 Langkah-Langkah Pembelajaran Non – Team Teaching	35
Tabel 3.1 Rancangan Penelitian	42
Tabel 3.2 Distribusi Sampel Pada Tiap Kelas Menurut Perlakuan	45
Tabel 3.3 Tabel pembelajaran Team Teaching dan Non- Team Teaching	45
Tabel 3.4 Kisi-Kisi Instrumen Motivasi Belajar Siswa	46
Tabel 3.5 Skala Penilaian Instrumen Motivasi Belajar siswa	47
Tabel 3.6 Kisi-Kisi Instrumen Hasil Belajar Menganalisis Rangkaian Listrik	48
Tabel 3.7 Rangkuman Uji Validitas Kuesioner Motivasi Belajar Siswa	50
Tabel 3.8. Rangkuman Uji Validitas Tes Hasil Belajar	51
Tabel 3.9. Interpretasi Nilai Reliabilitas	53
Tabel 3.10. Hasil Uji Reliabilitas Instrumen Penelitian	53
Tabel 3.11. Klasifikasi Taraf Kesukaran Soal	54
Tabel 3.12. Hasil Uji Taraf Kesukaran Soal	54
Tabel 3.13. Klasifikasi Daya Pembeda Soal	55
Tabel 3.14. Hasil Uji Daya Pembeda Soal	56
Tabel 4.1 Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Meng	gikuti
Strategi Pembelajaran Team Teaching Secara Keseluruhan	60
Tabel 4.2 Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Meng	gikuti
Strategi Pembelajran Non - Team Teaching Secara Keseluruhan	61
Tabel 4.3 Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Men	niliki
Motivasi Belajar Tinggi	62

Tabel 4.4 Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Memiliki
Motivasi Belajar Rendah63
Tabel 4.5 Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Mengikuti
Strategi Pembelajaran Team Teaching dan Memiliki Motivasi Belajar
Tinggi64
Tabel 4.6 Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Mengikuti
Strategi Pembelajan Non - Team Teaching dan Memiliki Motivasi Belajar
Tinggi65
Tabel 4.7 Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Mengikuti
Strategi Pembelajan Team Teaching dan Memiliki Motivasi Belajar
Rendah66
Tabel 4.8 Hasil Belajar Menganalisis Rangkaian Listrik Pada Kelompok Siswa yang
Diajar dengan Strategi Pembelajan Non - Team Teaching dan Memiliki
Motivasi Belajar Rendah67
Tabel 4.9 Kesimpulan Hasil Uji Normalitas Keseluruhan Data
Tabel 4.10 Keismpulan Hasil Perhitungan Uji Bartlett $\alpha = 0.05$
Tabel 4.11 Rangkuman Hasil Perhitungan Anava 2x271
Tabel 4.12 Kesimpulan Hasil Perhitungan Antara A1 dan A2
Tabel 4.13 Kesimpulan Hasil Perhitungan Antara A1B1 dan A2B1
Tabel 4.14 Kesimpulan Hasil Perhitungan Antara A1B2 dan A2B2

DAFTAR GAMBAR

	Halaman
Gambar 2.1 Titik Percabangan Arus	15
Gambar 2.2 Rangkaian Listrik Tertutup	16
Gambar 2.3 Arah Aliran Arus Dari Aliran Elektron	17
Gambar 3.1. Tahapan Pengambilan Sampel	45
Gambar 4.1 Histogram Hasil Belajar Menganalisis Rangkaia	an Listrik Bagi Siswa
yang Mengikuti Strategi Pembelajaran Tea	m Teaching Secara
Keseluruhan	60
Gambar 4.2 Histogram Hasil Belajar Menganalisis Rangkai	an Listrik bagi siswa
yang mengikuti Strategi Belajar Non - Te	am Teaching Secara
Keseluruhan	61
Gambar 4.3 Histogram Hasil Belajar Menganalisis Rangkaian	Listrik Bagi Siswa
yang Memiliki Motivasi Belajar Tinggi	62
Gambar 4.4 Histogram Hasil Belajar Menganalisis Rangkaian	Listrik Bagi Siswa
yang Memiliki Motivasi Belajar Rendah	63
Gambar 4.5 Histogram Hasil Belajar Menganalisis Rangkaia	an Listrik Bagi Siswa
yang Mengikuti Strategi Belajar Team Teaching o	lan Memiliki Motivasi
Belajar Tinggi	64
Gambar 4.6 Histogram Hasil Belajar Menganalisis Rangkaia	an Listrik Bagi Siswa
yang Mengikuti Strategi Pembelajaran Non -	Team Teaching dan
Memiliki Motivasi Belaiar Tinggi	65

Gambar 4.7	Histogram Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa
	yang Mengikuti Strategi Pembelajaran Team Teaching dan Memiliki
	Motivasi Belajar Rendah
Gambar 4.8	Histogram Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa
	yang Mengikuti Strategi Pembelajaran Non – Team Teaching dan
	Memiliki Motivasi Belajar Rendah67

DAFTAR LAMPIRAN

BAB I

PENDAHULUAN

1.1 Latar Belakang

Guru mempunyai peran yang sangat strategis dalam meningkatkan kualitas sumber daya manusia dan upaya mewujudkan cita-cita bangsa Indonesia dalam mewujudkan kesejahteraan umum dan mencerdaskan kehidupan bangsa.

Berkaitan dengan usaha menyiapkan sumber daya manusia yang berkualitas, pemerintah telah mengatur tentang tujuan dan fungsi pendidikan nasional. Pemerintah menjelaskan bahwa pendidikan dilakukan agar mendapatkan tujuan yang diharapkan bersama yaitu, "Pendidikan nasional berfungsi mengembangkan kemampuan dan membentuk watak serta peradaban bangsa yang bermartabat dalam rangka mencerdaskan kehidupan bangsa, bertujuan untuk berkembangnya potensi siswa agar menjadi manusia yang beriman dan bertakwa kepada Tuhan Yang Maha Esa, berakhlak mulia, sehat, berilmu, cakap, kreatif, mandiri, dan menjadi warga negara yang demokratis serta bertanggung jawab" (UU, 2003). Jelaslah pendidikan merupakan kegiatan yang dilakukan dengan sengaja agar siswa memiliki sikap dan kepribadian yang baik, sehingga penerapan pendidikan harus diselenggarakan sesuai dengan Sistem Pendidikan Nasional.

Namun pada kenyataannya untuk membentuk suatu karakter bangsa yang bermartabat, diperlukan sistem pendidikan yang di dalamnya tercipta sistem belajar mengajar yang baik bagi peserta didik. Proses belajar mengajar yang baik akan menunjang terbentuknya kualitas sumber daya manusia yang baik pula. Proses belajar ini dapat terjadi di setiap jenjang pendidikan, salah satu diantaranya di Sekolah Menengah Kejuruan (SMK).

Sekolah Menengah Kejuruan (SMK) merupakan lembaga pendidikan formal tingkat menengah yang bertujuan untuk memberikan bekal kompetensi keahlian kepada siswa agar dapat bekerja dalam bidang spesifik. Diberbagai sekolah SMK terdapat beberapa jurusan yang berbeda sesuai bidangnya masing - masing. Satu dari berbagai jurusan yang ada adalah Teknik Otomasi Industri.

Jurusan Teknik Otomasi Industri mempelajari berbagai kelompok mata pelajaran, diantaranya kelompok mata pelajaran normatif, adaptif dan produktif. Kelompok mata pelajaran normatif dan adaptif merupakan kelompok pelajaran non kejuruan sebagai penunjang kemampuan kelompok pelajaran produktif yang memiliki tujuan untuk membentuk siswa dalam kehidupan masyarakat. Sedangkan kelompok pelajaran produktif merupakan kelompok mata pelajaran kejuruan yang bertujuan untuk membekali siswa secara khusus sesuai dengan jurusan yang dipilih agar memiliki kompetensi kerja yang baik. Salah satu kompetensi yang harus dimiliki oleh seorang siswa adalah menganalisis rangkaian listrik.

Mata pelajaran menganalisis rangkaian listrik merupakan materi hitungan dan praktek. Pada umumnya siswa menganggap bahwa materi hitungan itu sulit, sehingga motivasi dan keaktifan belajar menjadi berkurang. Sedangkan pelaksanaan belajar secara praktek, siswa dibimbing untuk dapat terampil dan memahapi konsep dasar listrik.

Berdasarkan informasi, banyak siswa yang belum memahami konsep dasar untuk menganalisis rangkaian listrik, dilihat dari rendahnya hasil belajar siswa yang masih dibawah KKM. Hal tersebut dapat disebabkan karena daya serap siswa terhadap bahan yang diberikan ada yang cepat, ada yang sedang, dan ada yang lambat. Faktor intelegensinya yang mempengaruhi daya serap siswa terhadap bahan

ajar yang diberikan, oleh karena itu diperlukan strategi pembelajaran yang tepat untuk melatih kemampuan tersebut.

Guru dituntut daya kreatifitasnya dalam memilih strategi pembelajaran yang tepat agar segala tuntutan yang ditujukan terpenuhi dengan optimal. Disamping itu kompetensi yang dimiliki seorang guru hanya terbatas sedangkan materi yang harus disampaikan kepada siswa cukup banyak, serta tidak ada yang bisa memberi masukan kepada guru apabila terdapat kekurangan pada saat proses pembelajaran.

Strategi *Team Teaching* merupakan strategi pembelajaran yang kegiatan proses pembelajarannya dilakukan oleh lebih dari satu orang guru dengan pembagian peran dan tanggung jawabnya masing-masing. Tim pengajar atau guru yang menyajikan bahan pelajaran dengan metode mengajar beregu ini, menyajikan bahan pengajaran yang berbeda dengan tujuan yang sama. Para guru tersebut bersama-sama mempersiapkan, melaksanakan, dan mengevaluasi hasil belajar peserta didik. Pelaksanaan belajarnya dapat dilakukan secara bergilir dengan metode ceramah atau bersama-sama dengan metode diskusi. Strategi pembelajaran *team teaching* diharapkan dapat menciptakan inovasi terbaru dalam mengembangkan strategi pembelajaran dan merupakan solusi atas permasalahan yang dialami guru saat mengajar yang memiliki cakupan materi yang luas, menjadikan suasana belajar yang menyenangkan, kondusif dan efektif sehingga para siswa tidak bosan dan mendapatkan sumber yang berbeda.

Penelitian yang telah ada yang mendukung salah satunya adalah pengaruh penerapan strategi pemebelajaran *team teaching* terhadap hasil belajar siswa. Adapun peningkatan hasil belajar sebelum dan sesudah mendapatkan strategi pembelajaran *team teaching* yaitu sebesar 24,3%. Penggunaan strategi pembelajaran *team*

teaching memberikan pengaruh positif terhadap hasil belajar teori siswa (Sutopo, 2011: 7).

Pemilihan strategi pembelajaran yang tepat pada proses pembelajaran diharapkan siswa memiliki semangat dalam diri siswa untuk termotivasi dalam mengikuti proses pembelajaran. Motivasi belajar siswa juga harus menjadi perhatian, karena motivasi belajar pada akhirnya dapat menentukan hasil belajar seseorang. Motivasi belajar merupakan suatu proses internal yang ada dalam diri seseorang yang memberikan gairah atau semangat dalam belajar, mengandung usaha untuk mencapai tujuan belajar, dimana terdapat pemahaman dan pengembangan belajar. Beberapa aspek yang membedakan motivasi belajar seseorang itu tinggi dan rendah, diantaranya: tanggung jawab, tekun terhadap tugas, memiliki sejumlah usaha, memiliki sejumlah usaha, memperhatikan umpan balik, waktu penyelesaian tugas, dan menetapkan tujuan yang realistis.

Dengan demikian, strategi pembelajaran *Team Teaching* diapakai untuk menjadi solusi dalam membangun kondisi kegiatan pembelajaran yang kondusif, dan menyenangkan, sedangkan motivasi belajar sebagai penyemangat dari dalam diri siswa untuk menjadi dorongan internal pribadi dalam melakukan aktivitas belajar secara giat agar memperoleh hasil belajar yang optimal.

Berdasarkan uraian diatas dalam hal ini peneliti merasa perlu melakukan penelitian mengenai pengaruh strategi pembelajaran *team teaching* dan motivasi belajar siswa terhadap hasil belajar mata pelajaran menganalisis rangkaian listrik.

1.2 Identifikasi Masalah

Berdasarkan latar belakang masalah yang telah diuraikan di atas, maka banyak yang dapat diidentifikasi antara lain:

- Faktor faktor apa saja yang dapat meningkatkan hasil belajar menganalisis rangkaian listrik?
- 2. Apakah ada pengaruh antara strategi pembelajaran *team teaching* dan motivasi belajar siswa?
- 3. Apakah ada pengaruh strategi pembelajaran *team teaching* dengan hasil belajar mata pelajaran menganalisis rangkaian listrik?
- 4. Apakah ada pengaruh antara motivasi belajar siswa dengan hasil belajar mata pelajaran menganalisis rangkaian listrik?
- 5. Apakah ada pengaruh strategi pembelajaran *team teaching* dan motivasi belajar siswa terhadap hasil belajar mata pelajaran menganalisis rangkaian listrik?

1.3 Pembatasan Masalah

Berdasarkan identifikasi masalah hasil belajar siswa dipengaruhi oleh beberapa faktor, namun dalam penelitian ini diperlukan pembatasan masalah. Masalah yang akan diteliti dibatasi pada hasil belajar menganalisis rangkaian listrik yang di pengaruhi oleh strategi pembelajaran yang dibagi menjadi dua jenis yaitu *team teaching* dan *non – team teaching* serta berdasarkan motivasi belajar siswa yang digolongkan menjadi motivasi belajar tinggi dan motivasi belajar rendah.

1.4 Perumusan Masalah

Berdasarkan identifikasi masalah di atas maka di dalam penelitian ini dirumuskan masaalah sebagai berikut:

- 1. Apakah terdapat perbedaan hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti proses pembelajaran dengan strategi pembelajaran team teaching dan siswa yang mengikuti pembelajaran dengan strategi pembelajaran non-team teaching?
- 2. Apakah terdapat perbedaan hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi belajar tinggi mempunyai hasil belajar yang lebih tinggi dibanding dengan siswa yang mengikuti strategi pembelajaran *non- team teaching* dan memiliki motivasi belajar tinggi?
- 3. Apakah terdapat perbedaan hasil belajar bagi siswa yang mengikuti strategi pembelajaran *team taching* dan memiliki motivasi belajar rendah mempunyai hasil belajar yang lebih rendah dibanding siswa yang mengikuti strategi pembelajaran *non-team teaching* dan memiliki motivasi belajar rendah?

1.5 Tujuan Penelitian

Dari uraian latar belakang dan rumusan masalah di atas, maka tujuan dari penelitian adalah untuk mengetahui ada pengaruh strategi pembelajaran *team* teaching dan motivasi belajar siswa terhadap hasil belajar mata pelajaran menganalisis rangkaian listrik kelas X di SMKN 1 Tambelang

1.6 Kegunaan Penelitian

Hasil penelitian ini diharapkan akan memberikan manfaat bagi :

1. Bagi Universitas Negeri Jakarta

Dalam rangka pengembangan ilmu pengetahuan untuk penelitian selanjutnya hasil penelitian ini diharapkan sebagai calon guru, agar dapat membantu kegiatan belajar mengajar nantinya dan dapat dijadikan rujukan untuk penelitian selanjutnya.

2. Bagi SMK Negeri 1 Tambelang

Sebagai masukan menjadi bahan kajian dalam melakukan kontrol terhadap proses belajar mengajar, strategi pembelajaran yang tepat bagi siswa dengan demikian dapat meningkatkan hasil belajar siswa.

3. Bagi Guru

Memberikan masukan bagi guru di dalam proses mengajar agar guru dapat lebih memahami bagaimana menggunakan strategi pembelajaran yang tepat untuk mengajar matapelajaran menganalisis rangkaian listrik sehingga memudahkan guru dalam menangani siswanya.

4. Bagi Siswa

Membantu siswa dalam menyerap matapelajaran menganalisis rangkaian listrik dan meningkatkan motivasi belajar sehingga hasil belajar siswa dapat meningkat.

5. Bagi Penulis

Penelitian ini diharapkan dapat menambah wawasan ilmu pengetahuan dengan terjun langsung ke lapangan dan memberikan bekal pengalaman praktis dalam penelitian serta menerapkan ilmu yang diperoleh di bangku kuliah.

BAB II

DESKRIPSI KONSEPTUAL, KERANGKA TEORITIK, DAN HIPOTESIS PENELITIAN

2.1 Deskripsi Koneptual

2.1.1 Hakikat Belajar

Belajar adalah kegiatan yang dilakukan untuk menguasai pengetahuan, kemampuan, kebiasaan, keterampilan, dan sikap melalui hubungan timbal balik antara orang yang belajar dengan lingkungannya. Belajar adalah suatu proses aktif, artinya orang yang belajar itu ikut serta dalam proses ini dengan aktif (Hutabarat, 1995: 11). Sejalan dengan itu, belajar seseorang harus aktif baik secara mental maupun jasmani dan melibatkan diri dengan segala kemauan dan peranannya (Roestiyah, 1982: 44). Pengertian belajar menurut pandangan modern bahwa belajar adalah suatu aktifitas mental dan psikis yang berlangsung dalam interaksi aktif dengan lingkungannya yang menghasilkan perubahan-perubahan tingkah laku (Winkel, 1982: 36).

Belajar dapat dikatakan sebagai suatu proses interaksi antara diri manusia dengan lingkungannya, yang mungkin berwujud pribadi, fakta, konsep, ataupun pribadi. Dalam hal ini terkandung suatu maksud bahwa proses interaksi itu adalah proses internalisasi dari sesuatu ke dalam proses diri yang belajar dan dilakukan secara aktif dengan segenap panca indera yang ikut berperan (Sudirman, 1994: 24).

Memang belajar merupakan sesuatu yang sangat kompleks sehingga tidak dapat didefinisikan dengan pasti. Umumnya orang mengartikan belajar merupakan menuntut ilmu atau mencari ilmu. Dalam proses belajar, siswa akan mendapatkan ilmu pengetahuan baru tentang pelajaran yang diikutinya. Pengetahuan baru itu merupakan hasil belajar kognitif atau pemahaman. Oleh karena itu terlihat perubahan yang terjadi pada proses belajar itu adalah kepandaian, kecerdasan atau intelektualitas.

Belajar merupakan suatu proses atau kegiatan dimana kegiatan itu timbul atau berubah menurut prosedur-prosedur latihan (apakah itu di dalam laboratorium atau di dalam lingkungan alam) seperti yang dibedakan dari perubahan-perubahan oleh faktor-faktor yang tidak dianggap latihan. Belajar adalah kegiatan berproses dan merupakan unsur yang sangat fundamental dalam setiap penyelenggaraan jenis dan jenjang pendidikan. Ini berarti berhasil atau tidaknya pencapaian tujuan pendidikan itu amat bergantung pada proses belajar siswa baik ketika berada di sekolah maupun berada di rumah atau keluarganya.

Hakikat belajar merupakan perubahan perilaku siswa ke arah positif dan menetap sebagai hasil interaksi dengan lingkungan yang melibatkan proses kognitif. Dalam proses kegiatan belajar mengajar di sekolah, siswa dituntut untuk serius dalam pelajaran karena dalam potensinya siswa akan dapat menyesuaikan diri dan mendapatkan pengertian-pengertian baru serta membawa perubahan baru (Suryabrata, 1989: 246).

Sedangkan pengertian belajar menurut Morgan dalam buku *Introduction to Psychology* (1978) mengemukakan bahwa belajar adalah setiap perubahan yang relatif menetap dalam tingkah laku yang terjadi sebagai suatu hasil dari latihan atau pengalaman (Purwanto, 1992: 84).

Berdasarkan uraian di atas, maka dapat disimpulkan belajar adalah proses aktif manusia yang melibatkan mental, psikis dan jasmani yang menggunakan panca indera dalam berinteraksi dengan lingkungannya yang menghasilkan pengertian-pengertian baru serta membawa perubahan baru terhadap tingkah laku sebagai suatu hasil dari pembelajaran.

2.1.2 Hakikat Hasil Belajar

Hasil belajar adalah kemampuan-kemampuan yang dimiliki siswa setelah ia menerima pengalaman belajarnya (Sudjana, 2001: 22). Berhasil atau tidaknya suatu kegiatan belajar mengajar dapat dilihat dari hasil evaluasi peserta didik di sekolah. Pendidik dan orangtua tentunya mengharapkan peserta didik mendapatkan hasil yang baik. Suharsimi mengatakan bahwa hasil belajar merupakan tingkah laku akhir setelah mengalami proses yang dapat diamati dan diukur (Arikunto, 1984: 103).

Hasil belajar pada hakikatnya merupakan perubahan tingkah laku. Tingkah laku sebagai hasil belajar mencakup bidang kognitif, afektif, dan psikomotrik. Secara garis besar klasifikasi Bloom membagi hasil belajar menjadi tiga ranah: Domain Kognitif (Kognitif domain), Domain Afektif (Affective domain), Domain Psikomotor (Psychomotor domain) (Arikunto, 1984: 20).

Ranah kognitif adalah kemampuan peserta didik yang menggambarkan kemampuan intelektual yang merupakan hasil proses berfikir. Hasil belajar pada ranah kognitif mencakup 6 tingkatan yaitu pengetahuan, pemahaman, aplikasi, analisis, sintesis, dan evaluasi.

Ranah afektif adalah kemampuan atau perilaku peserta didik yang muncul sebagai pertanda perasaan, emosi, sikap, dan nilai-nilai yang akan memunculkan kecenderungan untuk membuat pilihan atau keputusan untuk bereaksi di dalam lingkungan tertentu. Hasil belajar ranah afektif meliputi 5 aspek, yaitu: penerimaan, menanggapi, mengorganisasi, menilai, dan karakterisasi nilai.

Ranah psikomotor adalah perilaku peserta didik yang dimunculkan oleh hasil kerja fungsi tubuh manusia dan berorientasi kepada keterampilan motorik, serta memerlukan koordinasi yang baik antara syaraf dan otot badan. Hasil belajar ranah psikomotor mencakup 6 aspek yaitu: gerak refleks, keterampilan gerak dasar, kemampuan perceptual, keharmonisan, ketepatan gerak keterampilan kompleks dan gerakan ekspresif-interpretative (Arikunto, 1984: 21).

Banyak faktor yang mempengaruhi hasil belajar, Slameto berpendapat tentang faktor-faktor yang mempengaruhi hasil belajar, yaitu "faktor *exstern* (yang berasal dari luar diri siswa) dan *intern* (dari dalam diri siswa). Faktor exstern yaitu faktor yang berasal dari luar diri individu seperti lingkungan keluarga, sekolah dan masyarakat, sedangkan faktor intern yaitu tiga tahap bagian yaitu faktor kelelahan (kelelahan jasmani dan kelelahan rohani), faktor jasmaniah (kesehatan, cacat tubuh), dan faktor psikologis (intelegensi, perhatian, minat, bakat, motivasi, kematangan, keterampilan dan kesiapan belajar) (Slameto, 2003: 54).

Untuk mengetahui hasil belajar yang telah dicapai siswa selama proses belajar belajar berlangsung, maka diadakan evaluasi atau penilaian hasil belajar. Penilaian hasil belajar adalah proses pemberian nilai terhadap hasil-hasil belajar yang dicapai siswa dengan kriteria tertentu (Sudjana, 1993: 3).

Untuk mengetahui indikator hasil belajar dapat dilakukan dengan evaluasi yang beragam, diantaranya: *pretest*, *posttest*, evaluasi prasyarat, evaluasi diagnostik, evaluasi formatif, evaluasi sumatif, dan lain sebagainya.

Evaluasi belajar adalah penilaian terhadap keberhasilan program belajar siswa, yang bertujuan antara lain untuk mengetahui tingkat kemajuan yang telah

dicapai siswa dan berfungsi antara lain untuk menentukan posisi siswa dalam kelompoknya (Syah, 1997:179).

Berdasarkan uraian di atas, dapat disimpulkan bahwa hasil belajar adalah kemampuan yang dimiliki siswa setelah pengalaman belajar dalam bentuk perubahan tingkah laku yang dapat diamati dan diukur yang mencakup bidang kognitif, psikomotorik, dan afektif serta memiliki beberapa faktor yang dapat mempengaruhinya, yaitu lingkungan keluarga, sekolah dan masyarakat, faktor kelelahan, faktor jasmaniah dan faktor psikologis.

2.1.3 Hakikat Hasil Belajar Menganalisis Rangkaian Listrik

Hasil belajar merupakan penguasaan dalam bidang kognitif, afektif, atau psikomotorik yang dimiliki siswa setelah mengalami sebuah proses belajar. Hasil belajar didapatkan dari evaluasi belajar yang merupakan penilaian terhadap program belajar siswa.

Tabel 2.1 Kompetensi Dasar Menganalisis Rangkaian Listrik

KOMPETENSI DASAR 1. Mendeskripsikan rangkaian listrik 2. Menganalisis rangkaian listrik arus searah dan arus bolak balik 3. Menganalisis rangkaian kemagetan

Evaluasi belajar dibuat berdasarkan indikator-indikator sesuai dengan matapelajaran yang ingin dievaluasi. Mata pelajaran menganalisis rangkaian listrik merupakan mata pelajaran produktif di jurusan teknik otomasi industri. Mata pelajaran rangkaian listrik meliputi, mendeskripsikan prinsip kerja dan

perhitungan suatu rangkaian listrik supaya tidak mengalami kesulitan dalam mengaplikasikannya saat praktik.

Pada proses pembelajaran matapelajaran rangkaian listrik diharapkan siswa mampu menganalisis rangkaian listrik baik arus searah maupun arus bolak-balik. Indikator yang digunakan untuk menilai siswa mampu menganalisis rangkaian listrik adalah kompetensi dasar matapelajaran ini. Setiap matapelajaran mempunyai kompetensi dasar yang telah ditetapkan oleh Kementerian Pendidikan Nasional Indonesia dalam silabus matapelajaran.

Dari uraian di atas, dapat disimpulkan hasil belajar menganalisis rangkaian listrik adalah tingkat pemahaman dan pengetahuan siswa tentang mendeskripsikan prinsip kerja dan perhitungan suatu rangkaian listrik yang dapat diketahui dari hasil evaluasi akhir proses pembelajaran tentang materi-materi yang disusun berdasarkan kompetensi dasar yang telah ditentukan oleh Kementerian Pendidikan Nasional Indonesia.

2.1.4 Materi Ajar Menganalisis Rangkaian Listrik

2.1.4.1 Arus Listrik

Arus listrik merupakan gerakan elektron - elektron yang mengalir ke suatu arah gerakan elektron tersebut. Arus listrik ini diberi notasi I dalam satuan ampere (A), diambil dari nama Andre Marie Ampere (1775-1836) menyarankan bahwa : "Satuan ampere adalah jumlah muatan listrik dari 6,24 x 10^{18} elektron yang mengalir melalui suatu titik tertentu selama satu detik". Sedangkan 6,24 x 10^{18} elektron adalah sama dengan 1 coloumb. Sehingga dapat dirumuskan : $I = \frac{Q}{t}$, dimana I adalah arus listrik (A), Qadalah muatan listrik (C), dan t adalah lamanya waktu (detik).

2.1.4.2 Muatan Listrik

Muatan listrik dengan notasi Q dalam satuan Coulomb, yang diambil dari nama Charles Aagusti de Coulomb (1736 - 1806) menyatakan bahwa : "satu Coulomb adalah jumlah muatan listrik yang melalui suatu titik sebesar satu ampere selama satu detik", dirumuskan : Q= I.t

2.1.4.3 Tegangan Listrik

Tegangan listrik diberi notasi V atau E yang diambil dari nama Alexandre Volta (1748- 1827) merupakan perbedaan potensial antara dua titik yang mempunyai perbedaan jumlah muatan listrik, menyatakan bahwa "satu volt adalah perubahan energi sebesar satu joule yang dialami muatan listrik sebesar satu coulomb", yang dirumuskan $V = \frac{w}{Q}$, dimana V adalah tegangan listrik dalam satuan volt, W adalah energi listrik dalam satuan joule dan Q adalah muatan listrik dalam satuan Coulomb.

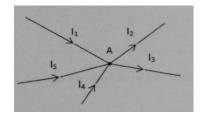
2.1.4.4 Macam - Macam Arus Listrik

Ada 2 macam aru listrik, yaitu arus searah (dc: *direct current*) dan arus bolak - balik (ac: *alternating current*). Dikatakan aru searah apabila elektro berpindah dalam arah yang tetap tidak berubah - ubah dan diberi tanda: - , sedangkan apabila pada saat elektron berpindah terjadi perubahan yang bolak - balik saat tertentu ke atas/ ke kiri, kemudian ke bawah/ ke kanan kembali ke atas/ke kiri lagi dan seterusnya dinamakan arus bolak balik, dan diberi simbol: ~

2.1.4.5 Rapat Arus

Rapat arus adalah besarnya arus yang mengalir pada setiap mm² luas penampang penghantar listrik yang diukur dengan satuan ampere per mm² (A/

mm²), yang dapat dirumuskan : $S = \frac{I}{q}$, dimana S : rapat arus, I: kuat arus (A) dan q : luas penampang penghantar (mm^2) .


2.1.4.6 Komponen Rangkaian Listrik

Dalam rangkaian listrik dikenal ada 2 macam komponen, yaitu :komponen sumber energi dan komponen pemakai energi. Komponen sumber energi atau daya listrik sering disebut juga dengan istilah *komponen aktif* dari rangkaian listrik. Contohnya : Baterai, aki (*accumulator*), generator, dan lain-lain. Sedangkan komponen pemakai energi atau daya listrik sering disebut juga dengan istilah *komponen pasif* dari rangkaian listrik. Contoh dari komponen pasif ini seperti: tahanan (*resistansi*), induktor (*induktansi*), dan kapasitor atau kondensator (*kapasitansi*).

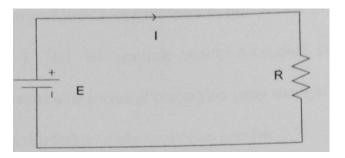
Untuk menyelesaikan perhitungan rangkaian listrik atau jala-jala, seorang ahli ilmu alam dari Jerman bernama *Gustav Kirchoff* telah menemukan dua cara yang kemudian cara ini menjadi hukum yang dikenal dengan "*Hukum Kirchoff*". Hukum kirchoff ada dua jenis yaitu:

1) Hukum Kirchoff I

Hukum Kirchoff I untuk rangkaian atau jala-jala listrik berbunyi: "Jumlah aljabar dari arus listrik pada suatu titik percabangan selalu sama dengan nol" Dalam gambar 2.1 menerangkan hukum Kirchoff I sebagai berikut:

Gambar 2.1 Titik Percabangan Arus

Dari gambar di atas arah arus I_2 dan I_3 berlawanan dengan arah arus I_1 , I_4 , dan I_5 . Jadi pada titik percabangan A berlaku :

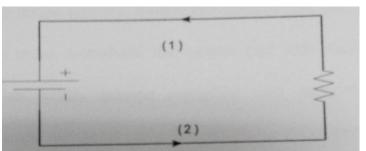

$$I_1 + I_4 + I_5 - I_2 - I_3 = 0$$
 atau $I_1 + I_4 + I_5 = I_2 + I_3$

Sehingga persamaan untuk Hukum Kirchoff dapat ditulis dengan bentuk umum : $\sum I = 0$

2) Hukum kirchoff II

Hukum Kirchoff II ini berhubungan dengan rangkaian listrik tertutup yang menyatakan : "Di dalam rangkaian tertutup, jumlah aljabar antara gaya gerak listrik (ggl) dengan kerugian-kerugian tegangan selalu sama dengan nol" Hukum ini secara umum dapat ditulis dengan rumus : $\sum E = \sum I \times R$

Dalam gambar 2.2 dengan tidak memperhatikan kerugian teganan di dalam baterai (tahanan baterai dianggap kecil) maka : E-I.R=0 atau E=I.R. ini sesuai dengan Hukum Ohm.


Gambar 2.2 Rangkaian listrik tertutup

3)Kemagnetan

Kemagnetan adalah sifat yang dimiliki oleh logam tertentu untuk menarik besi atau benda yang mengandung besi. Suatu benda dapat mengandung magnet apabila kemagnetannya terpusat di tempat tertentu. Magnet yang kuat selalu dapat menarik beban yang lebih berat daripada magnet yang dibuat dari logam campuran.

Magnet yang ada terdiri dari beberapa bentuk seperti magnet jarum, magnet batang, magnet tapal kuda, magnet sentral dan lain-lain tergantung fungsinya, tetapi semuanya mempunyai kemagnetan yang terpusat di suatu tempat yang disebut kutub. Kutub magnet terdiri dari *kutub utara* (U) dan *kutub selatan* (S).

Yang dimaksud dengan *elektromagnetik* adalah magnet yang timbul pada suatu penghantar lurus atau kumparan pada waktu dialiri arus listrik. Berdasarkan teori elektron mengatakan bahwa elektron di dalam magnet kawat penghantar bergerak dari kutub negatif (-) ke kutub positif (+), tetapi pengertian arus listrik menurut perjanjian (kesepakatan atau konversi) yaitu arus listrik mengalir dari kutub positif (+) menuju ke kutub negatif (-). Hal ini penting untunk diketahui karena setiap perkataan arus berarti arus menurut perjanjian yang mengalir dari positif ke negatif, seperti dijelaskan pada rangkaian gambar 2.3

Gambar 2.3 Arah aliran arus dari aliran elektron : (1) aliran arus menurut teori elektron, (2) aliran arus menurut perjanjian.

2.1.5 Hakikat Motivasi Belajar

Motivasi dan belajar merupakan dua hal yang saling mempengaruhi. Individu melakukan aktivitas belajar karena didorong oleh motivasi. Motivasi berasal dari bahasa latin "movere" yang berarti "menggerakkan" (Siregar, dkk, 2007: 44). Motivasi menurut Gates dan kawan – kawan adalah suatu kondisi

fisiologis dan psiologis yang terdapat dalam diri seseorang yang mengatur tindakan dengan cara tertentu (Djalii, 2008: 101). Sementara menurut Suryabrata, motivasi adalah keadaan dalam diri seseorang yang mendorong individu tersebut untuk melakukan aktivitas- aktivitas tertentu guna mencapai tujuan yang diinginkan (Siregar, dkk, 2007: 44).

Motivasi belajar adalah keseluruhan daya penggerak psikis di dalam diri siswa yang menimbulkan kegiatan belajar, menjamin kelangsungan kegiatan belajar dan memberikan arah pada kegiatan belajar dan memberikan arah pada kegiatan belajar itu demi mencapai suatu tujuan (Wingkel, 2009: 169). Wlodkowski dan Jaynes (2004) menyatakan bahwa motivasi belajar merupakan suatu proses internal yang ada dalam diri seseorang yang memberikan gairah atau semangat dalam belajar, mengandung usaha untuk mencapai tujuan belajar, dimana terdapat pemahaman dan pengembangan belajar. Selanjutnya Wlodkowski menyatakan bahwa motivasi belajar adalah sistem internal yang memberikan panduan atau tuntunan untuk menjaga fokus dalam belajar, tapi harus dimiliki dari dalam diri mereka sendiri dan menghadapi semua hal sepanjang waktu mereka bertahan dalam belajar diacu dalam Hodijah, dkk (2012: 171).

Dari beberapa pengertian di atas, maka dapat disimpulkan bahwa motivasi belajar adalah keseluruhan daya penggerak yang dapat mendorong diri individu untuk melakukan kegiatan belajar dan memberikan gairah dalam belajar untuk mencapai tujuan belajar.

2.1.5.1 Aspek - Aspek Motvasi Belajar

Worrel dan Stilwel mengemukakan beberapa aspek yang membedakan motivasi belajar tinggi dan rendah, yaitu:

- 1. Tanggung Jawab, anak didik yang memiliki motivasi belajar tinggi merasa bertanggung jawab yang dikerjakannya dan tidak akan meninggalkan tugas itu sebelum berhasil menyelesaikannya. Sedangkan mereka yang motivasi belajarnya rendah, kurang bertanggung jawab terhadap tugas yang dikerjakannya, akan menyalahkan hal hal di luar dirinya, seperti tugas yang terlalu banyak, terlalu sukar, sebagai penyebab ketidakberhasilannya.
- 2. Tekun terhadap tugas, berkonsentrasi untuk menyelesaikan tugas dan tidak mudah menyerah. Mereka dengan motivasi belajar tinggi dapat terus menerus belajar dalam waktu yang relatif lama dan tingkat konsentrasi yang baik. Sebaliknya mereka yang motivasi belajarnya rendah, umumnya memiliki konsentrasi yang rendah sehingga mudah terpengaruh oleh lingkungan sekitarnya dan akan mengalami keulitan dalam menyelesaikan tugas tepat pada waktunya.
- 3. Memilki sejumlah usaha, bekerja keras dan menghabiskan waktu untuk kegiatan belajar. Mereka dengan motivasi belajar tinggi, memiliki sejumlah usaha untuk kegiatan belajar, misalnya mereka pergi ke perpustakaan untuk menambah pengetahuan. Mereka yang memiliki motivasi belajar rendah, akan lebih banyak menghabiskan waktu untuk kegiatan lain, seperti bermain dan menonton televisi.
- 4. Memperhatikan umpan balik. Mereka dengan motivasi belajar tinggi, menyukai umpan balik atas pekerjaan yang telah dilakukan, sedangkan yang

motivasi belajar rendah, tidak menyukai umpan balik karena akan memperhatikan kesalahan - kesalahan yang dilakukannya. Dengan demikian mereka yang motivasi belajarnya rendah, cenderung mengulangi kesalahan yang sama dalam tugas mendatang.

- 5. Waktu penyelesaian tugas, mereka yang motivasi belajarnya tinggi, akan berusaha menyelesaikan setiap tugas dalam waktu secepat dan seefisien mungkin. Sedangkan mereka dengan motivasi belajar rendah, kurang tertantang dalam menyelesaikan tugas secepat mungkin sehingga cenderung memakan waktu lama, menunda nunda dan tidak efisien.
- 6. Menetapkan tujuan yang realistis, seseorang dikatakan memiliki motivasi belajar tinggi apabila ia mampu menetapkan tujuan yang realistis sesuai dengan kemampuan yang dimiliknya. Ia juga mampu berkonsentrasi terhadap setiap kemajuan yang telah dicapai. Sedangkan mereka dengan motivasi belajar rendah akan melakukan hal sebaliknya (Hodijjah, dkk, 2012: 171).

2.1.5.2 Sumber - Sumber Motivasi Belajar

Motivasi yang ada pada seseorang siswa dapat bersumber dari dalam diri sendiri (motivasi intrinsik) dan dapat juga bersumber dari luar diri seseorang (motivasi ekstrinsik). Berikut adalah penjelasan sumber motivasi dalam belajar pada seorang anak:

1. Motivasi Intrinsik

Merupakan daya dorongan dari individu untuk melakukan sesuatu demi mencapai tujuan yang diinginkan. Motivasi intrinsik dalam kegiatan pembelajaran merupakan daya dorong individu untuk terus belajar berdasarkan kebutuhan dan dorongan yang secara mutlak berhubungan dengan aktivitas belajar. Motivasi intrinsik ini adalah modal utama bagi anak didik apabila ingin sukses dan berhasil dalam belajar di kelas, sekolah, rumah, maupun sosial masyarakat. Jadi dapat dikatakan bahwa anak didik terdorong untuk bertingkah laku ke arah tujuan tertentu tanpa ada faktor di luar.

2. Motivasi Ekstrinsik

Merupakan daya dorongan dari luar diri seseorang anak didik, berhubungan dengan kegiatan belajarnya sendiri. Motivasi ekstrinsik bukan merupakan perasaan atau keinginan sebenarnya yang ada di dalam diri siswa untuk belajar, karena tujuan utama individu melakukan kegiatan adalah untuk mencapai tujuan yang terletak di luar aktivitas itu sendiri, atau tujuan yang tidak terlihat dalam aktivitas belajar.

2.1.6 Strategi Pembelajaran

Dalam dunia pendidikan, strategi diartikan sebagi *a plan, method, or series* of activities designed to achieves a particular educatinal goal Jadi dengan demikian strategi pembelajaran dapat diartikan sebagai perencanaan yang berisi tentang rangkaian kegiatan yang di desain untuk mencapai tujuan pendidikan tertentu (Sanjaya, 2007: 124).

Ada dua hal yang kita cermati dari pengertian diatas. Pertama strategi pembelajaran merupakan rencana tindakan (rangkaian kegiatan) termasuk penggunaan metode dan pemanfaatan berbagai sumber daya/kekuatan dalam pembelajaran. Ini berarti penyusunan strategi baru sampai pada proses penyusunan rencana kerja belum sampai pada tindakan. Kedua, strategi disusun untuk mencapai tujuan tertentu. Dengan demikian, penyusunan langkah - langkah

pembelajaran, pemanfaatan berbagai fasilitas dan sumber belajar semuanya dalam upaya pencapaian tujuan yang jelas dan dapat diukur keberhasilannya, sebab tujuan adalah rohnya dalam implementasi suatu strategi.

Sementara itu menurut Kemp mengatakan strategi pembelajaran adalah suatu kegiatan pembelajaran yang harus dikerjakan guru dan siswa agar tujuan pembelajaran dapat dicapai secara efektif dan efisien diacu dalam Sanjaya (2007: 124).

Menurut Uno seperti yang dikutip dalam Bambang Warista strategi pembelajaran meruapakan cara - cara yang akan dipilih dan diguanakan oleh seorang guru untuk menyampaikan materi pembelajaran sehingga akan memudahkan peserta didik menerima dan memahami materi pembelajaran, yang pada akhirnya tujuan pembelajaran dapat dikuasainya di akhir kegiatan belajar (Warista, 2008: 268).

Menurut Romiszowski strategi pembelajaran sebagai suatu pendekatan menyeluruh dibedakan menjadi dua strategi dasar, yaitu ekspositori (penjelasan) didasarkan pada teori pemrosesan informasi dan discovery didasarkan pada teori pemrosesan pemngalaman belajar. Dengan demikian, strategi pembelajaran dapat diartikan sebagai suatu pendekatan dalam mengorganisasikan komponen - komponen pembelajaran yang dibutuhkan untuk mencapai kompetensi atau tujuan pembelajaran (Warista, 2008: 269).

Dari beberapa pengertian diatas, dapat ditarik kesimpulan strategi pembelajarn adalah suatu perencanaan yang menyeluruh dan sistematis yang berhubungan dengan teknik, bahan, pengorganisasian siswa, tahapan - tahapan prosedur untuk elakukan kegiatan pembelajaran sehingga dapat mencapai tujuan sebagaimana yang ditetapkan.

2.1.7 Strategi Pembelajaran Team Teaching

Menurut Yeni Artiningsih, *Team teaching* merupakan strategi pembelajaran yang dilakukan lebih dari satu orang guru, dengan pembagian peran dan tanggung jawab masing – masing (Asmani, 2010: 49). Definisi ini sesuai dengan yang dijelaskan Martiningsih bahwa *Team teaching* adalah metode mengajar dengan guru lebih dari satu orang guru dan tiap - tiap guru mempunyai tugas masing – masing (Asmani, 2010: 49).

Ahmadi dan Prasetya menyatakan bahwa *Team teaching* (pengajaran beregu) adalah pengajaran yang dilaksanakan secara bersama oleh beberapa orang (Asmani 2010: 49). Tim pengajar atau guru yang menyajikan bahan pelajaran dengan metode mengajar beregu ini menyajikan bahan pengajaran yang sama dalam waktu dan tujuan yang sama pula.

Team teaching adalah pembelajaran satu mata pelajaran kepada sekelompok murid dalam satu kelas, oleh dua orang guru atau lebih, bersama, bekerjasama, berkolaborasi antara guru - murid dalam waktu pertemuan yang sama (Asmani, 2010: 50).

Pengertian team teaching sebagaimana diungkapkan oleh Karin Goetz adalah "Team teaching can be defined as a group of two or more teachers working together to plan, conduct and evaluate the learning activities for the same group of learner". Team teaching dapat didefinisikan sebgai sekelompok guru (dua atau lebih) yang bekerja sama merencanakan, melaksanakan dan mengevaluasi kegiatan pemebelajaran untuk suatu rombongan belajar yang sama (Zohari, 2010).

There appear to be two broad categories of team teaching:

1) Category A: two or more instructors are teaching the same students at the same time within the same classroom. (dua atau lebih instruktur yang mengajar siswa yang sma, waktu yang sama dan pada kelas yang sama)

2) Category B: the instructors wor together but do not necessaly teach the same groups of student nor necessarily teach at the same time. (instruktur bekerjasana tetapi tidak perlu mengajar dalam satu grup siswa atau tidak perlu mengajar pada waktu yang sama) (Zohari, 2010).

Sesuai dengan kategori di atas penelitian di sini mengacu pada kategori A karena *Team teaching* di SMK Negeri 1 Tambelang merupakan kolaborasi mengajar dimana dua guru saling bekerjasama dalam mengajar kelas yang sama dan dalam waktu yang sama.

Menurut Judson T. Shaplin, "Team teaching is a type of instructional organization. Involving teaching personnel and the students assigned to them, in wich two or more teachers are given reponsibility. Working together, for all significant part of the instruction of the same group of student" (Shaplin, dkk, 1964: 15). Dengan demikian pengertian Team teaching ialah suatu bentuk pengajaran yang melibatkan beberapa pengajar dimana para guru tersebut sebagai anggota tim bekerja sama dan bertanggung jawab untuk siswa - siswa yang sama.

Istilah *team teaching* mempunyai banyak padanan kata, contohnya istilah *Co-Teaching*, *Coorperative Teaching* dan *Team teaching* (Educational Research, 2006: 117).

Menurut Villa, Jacqueline dan Ann "Co-Teaching is two or more people sharing reponsibility for teaching some or all of the students assigned to classroom. It involves the distribution of responsibility among people for planning, instruction, and evaluation for a classroom students" (Villa, dkk, 2008: 4). (Co-Teaching adalah dua atau lebih orang yang bekerjasama berbagai tanggung jawab beberapa atau seluruh siswa pada kelas. Termasuk juga pembagian tanggungjawab orang dalam merencanakan, menginstruksikan dan mengevaluasi siswa dalam kelas).

Team teaching is when two or more people do what the traditional teacher has always done plan, teach, asses, and assume responsibility for all of the students in the classroom. Team teachers share the leadership and the responsibilities (Villa, dkk, 2008:9). (team teaching adalah ketika dua orang atau lebih orang melakukan apa yang disebut guru tradisional yang selalu melaksanakan perencanaan, pengajaran, dan mengambil tanggungjawab dari semua siswa di kelas. Tim guru berbagi kepemimpinan dan tanggungjawab).

Dalam *Team teaching*, sekelompok guru bekerja bersama - sama, merencanakan, melakukan proses pembelajaran dan mengevaluasi hasil pembelajaran kepada sekelompok siswa (satu kelas). Pelaksanaan *team teaching*

secara lebih terperinci dapat diuraikan sebagai berikut, yaitu para anggota tim bersama - sama merencanakan satuan pelajaran lalu membagi tugas. Kemudian saat belajar mengajar berlangsung salah satu anggota tim menyampaikan pelajaran sedangkan yang lain memperhatikan dan menambahkan informasi jika ada kekurangan. Pergantian tugas mengajar dapat dilakukan pada pertemuan yang sama atau pada setiap pertemuan. Selanjutnya setelah selesai mengajar, mereka melakukan diskusi untuk evaluasi pengajaran dan saling berbagi informasi mengenai para siswa yang menjadi tanggungjawab mereka bersam. Dalam diskusi ini para guru anggota tim menilai apakah metode mengajar yang digunakan tepat, apakah siswa termotivasi untuk memperhatikan pelajaran, siswa - siswa manakah yang memperhatikan pelajaran, apa sebabnya mereka kurang memperhatikan pelajaran, dan sebagainya.

Sehubungan dengan pelaksanaan team teaching, Judson T. Shaplin menjelaskan bahwa "Implicit, if not explicit, in this working relationship the assumption that the team teachers will share instructional task and goal, plan together, assign appropriate tasks to individual team members, see each other teach, have access to each other's classroom, join together in the evaluation of instruction, share information about the students for whom they are jointly responsible and hold discussion, based upon common observation, of teaching and the effects of teaching (Shaplin, dkk, 1964: 9).

Dalam prakteknya *team teaching* mempunyai format yang berbeda- beda tetapi pada umumnya *team teaching* merupakan alat dalam mengorganisasikan guru dalam kelompok untuk mengacu percepatan dalam pembelajaran.

Hal ini senada dengan apa yang diungkapkan oleh sekelompok penulis yang tergabung dalam State University of Amerika yang mengatakan bahwa tim dapat terdiri atas satu mata pelajaran saja, interdisiplin artinya terdiri atas lebih dari satu mata pelajaran atau tim yang terdiri dari guru yang berasal dari sekolah yang berbeda yang sama pandangannya terhadap siswa dalam hal tertentu. Sebuah tim

yang baik harusnya dapat menggabungkan guru bagru dengan guru yang sudah berpengalaman. Dalam *team teaching* sebaiknya guru - guru memunculkan inovasi pembelajaran dan memodifikasi jumlah siswa dalam satu kelas, lokasi belajar dan alokasi waktu yang telah ditentukan sejauh tidak menyalahi aturan. Kepribadian guru, suara, nilai - nilai yang dibawakan oleh guru, dan pendekatan - pendekatan yang berbeda - beda yang menarik perhatian dan mengindari kebosanan akan menambah efektifitas dan efisiensi pembelajaran.

Berdasarkan uraian yang telah dijelaskan *team teaching* dapat diartikan sebagai pembelajaran yang dilakukan oleh dua atau lebih guru yang menyajikan bahan pelajaran dalam waktu dan tujuan yang sama pula. Para guru tersebut bersama - sama mempersiapkan, melaksanakan, dan mengevaluasi hasil belajar siswa.

2.1.7.1 Model - Model Team Teaching

Team teaching tradisional adalah sebuah model dimana dua orang guru mengajar dalam satu kelas dan mereka berbagi tanggungjawab yang sama dalam mengajar pada siswa - siswanya dan secara efektif terlibat dalam proses pembelajaran selama jam pelajaran berlangsung. Salah satu guru melaksanakan pembelajaran sedangkan guru yang satunya lagi menulis atau membuat catetan di papan tulis. Model - model team teaching yaitu:

- 1. *Supported Instruction*, adalah bentuk *team teaching* dimana saah seorang guru menyampaikan materi ajar dan satu guru lainnya melakukan tindak lanjut dari materi yang telah disampaikan rekan satu timnya tadi.
- 2. *Paralel Instruction*, adalah sebuah *team teaching* yang pelaksanaannya siswa dibagi menjadi dua kelompok dan masing masing guru dalam

- kelas tersebut bertanggungjawab untuk mengajar masing masing kelompok.
- 3. Differentiated Split Class, adalah team teaching yang pelaksanaannya dengan cara membagi siswa kedalam kelompok berdasarkan tingkat ketercapainnya. Salah satu guru mengadakan pengajaran remedial kepada siswa yang tingkat pencapaian kompetensinya yang berkurang (tidak mencapai KKM) sedangkan guru yang lain mengadakan pengayaan kepada mereka yang telah mencapai kompetensinya.
- 4. *The Monitoring Teacher*, adalah model lain dari *team teaching*. Model ini dilaksanakan dengan cara salah satu guru dipastikan melakukan peran sebagai pengajar yang memberikan pembelajaran di kelas, sedangkan yang lainnya berkeliling di kelas memonitoring perilaku dan kemajuan kelas (Asmani, 2010: 57).

Dilihat dari segi variasi yang diguanakan, *Team teaching* dibagi mencaji dua aitu, semi Team taching dan *Team teaching* penuh. Hal tersebut sebagaimana dijelaskan oleh Soewalni S, Berikut penjelasan dan variasi pelaksanaan kedua jenis strategi *Team teaching* tersebut.

1. Semi *Team teaching*

Ada tiga variasi dalam pelaksanaan smi *team teaching*. Pertama, sejumlah guru mengajar mata pelajaran yang sama di kelas yang berbeda. Perencanaan materi dan metode yang digunakan juga telah disepakati bersama. Kedua, satu mata pelajaran disajikan oleh sejumlah guru secara bergantian dengan pembagian tugas. Sedangkan materi dan evaluasi

dilakukan oleh guru masing - masing. Ketiga, satu mata pelajaran disajuikan oleh sejumlah guru dengan mendesain secara berkelompok.

2. Team teaching penuh

adapun variasi *team teaching* penuh menurut Soewalni S adalah sebagai berikut:

- a) Pelaksanaannya dilakukan secara bersama. Seorang guru sebagai peyaji atau menyampaikan informasi dan seorang lagi membimbing diskusi kelompok atau membimbing latihan individual.
- b) Anggota tim secara bergantian menyajikan topic atau materi. Diskusi atau tanya jawab dilakukan secara bersama dan saling melengkapi jawaban anggota tim.
- c) Seorang guru (senior) menyajikan langkah langkah dalam latihan, observasi, praktik, dan informasi seperlunya. Kelas dibagi dalam kelompok. Setiap kelompok dipandu oleh seorang guru. Diakhir pembelajaran, masing - masing kelompok menyajikan laporan serta ditanggapi dan disimpulkan bersama (Asmani, 2010: 51).

2.1.7.2 Tahapan - Tahapan Team Teaching

Setidaknya ada tiga tahap dalam pembelajaran *team teaching*, yaitu tahapan awal, tahapan inti, dan tahap evaluasi. Berikut penjelasan dari ketiga tahap tersebut,

1. Tahap awal

Pada awal, ada beberapa hal yang perlu diperhatikan oleh guru yang tergabung dalam *team teaching*. Perencanaan pembelajaran (RPP) harus disusun secara besama - sama oleh setiap guru yang tergabung dalam *team teaching*. Hal

tersebut agar para - para guru dapat memahami semua isi yang terkandung dalam komponen RPP. Mereka bisa memahami standar kompetensi, kompetensi dasar, dan indicator pembelajaran, sehingga sistem evaluasi yang akan digunakan dalam menilai pencapaian siswa dalam belajar.

Selain RPP yang harus disusun bersama oleh tim, metode yang akan digunakan dalam proses pembelajaran *team teaching* pun harus direncanakan secara bersama - sama. Perencanaan metode secara bersama - sama ini dilakukan agar setiap guru mengetahui alur dan proses pembelajaran dan tidak kehilangan arah pembelajaran. Guru sebagai partner *team teaching*, bukan hanya harus mengetahui tema dari materi yang akan disampaikan kepada siswa tetapi juga harus sama - sama memahami isi dari materi pelajaran tersebut. Hal ini agar keduanya bisa saling melengkapi kekurangan dalam diri masing - masing. Terutama, mafaatnya dapat dirasakan dalam penyampaian materi dan menjawab pertanyaan - pertanyan siswa.

Dalam *team teaching*, pembagian dan tanggungjawab masing - masing guru harus dibicarakan secara jelas ketika merencanakan proses pembelajaran berlangsung, mereka tahu peran dan tugasnya masing - masing.

2. Tahap inti

Satu guru sebagai pemateri dalam dua jam mata pelajaran penuh, sedangkan guru yang lainnya sebagai pengawas dan pembantu tim. Bisa juga dengan dua guru bergantian sebagai pemateri dalam dua pelajaran. Dalam hal ini tugas sebagai pemateri dibagi dua dalam dua jam pelajaran yang ada.

3. Tahap evaluasi

Pada tahap evaluasi ada dua subjek yang haru dievaluasi, yaitu guru dan siswa. Evaluasi guru setelah proses pembelajaran dilakukan oleh partner tim setelah jam pelajaran berkhir. Evaluasi dilakukan oleh masing - masing partner dengan cara memberikan kritikan - kritikan dan saran yang membangun untuk proses pembelajaran selanjutnya. Dalam hal ini setiap guru yang diberi saran harus menerima dengan baik saran - saran tersebut. Itulah kelebihan *team teaching*. Setiap guru tidak merasa paling benar dan paling pintar. Evaluasi ini dilakukan diluar ruang kelas (Asmani, 2010: 53).

Evaluasi terhadap siswa mencakup pembuatan soal evaluasi dan merencanakan metode evaluasi. Semua ini dilakukan secara bersama - sama oleh guru dalam *team teaching*. Atas kesepakatan bersama, guru harus membuat soal - soal evaluasi yang harus diberikan kepada siswa. Semua guru yang tergabung dalam *team teaching* harus terlibat aktif dalam menentukan bentuk soal evaluasi, baik lisan maupun tulisan, baik pilihan ganda, uraian atau kombinasi antara keduanya. Perencanaan metode evaluasi siswa mencakup pembagian peran dan tanggung jawab setiap guru dalam pelaksanaan evaluasi, serta pembagian pos - pos pengawasan (Asmani, 2010: 56).

2.1.7.3 Kelebihan *Team Teaching*

Dalam *team teaching*, sekelompok guru mengadakan kerjasama, merencanakan, melaksanakan dan mengevaluasi kegiatan pembelajaran kepada sekelompok siswa dalam satu kelas. Dengan demikian, kelemahan dalam hal tertentu pada diri seorang guru dapat ditutup oleh orang lain. *Team teaching* merupakan strategi pembelajaran yang berfungsi untuk mengorganisasikan guru,

meskipun dalam prakteknya terdapat format dan model yang berbeda - beda. Dalam *team teaching*, guru yang mempunyai kompetensi dan keahlian yang berbeda - beda. Dalam *team teaching*, guru - guru yang mempunyai kompetensi dan keahlian yang berdeda - beda, mereka tegabung dalam satu team work untuk merencnakan dan melaksanakan pembelajaran pada jam dan rombongan belajara yang sama. Sehingga strategi ini dapat memacu percepatan dan peningkatan mutu sebuah pembelajaran.

Kepribadian para guru, suara dan nilai - nilai yang dibawakan oleh mereka dalam sebuah kegiatan belajar dan mengajar dalam strategi pembelajaran *team teaching* dapat menghindari rasa bosan pada anak didik. Terlebih pendekatan dan penggunaan media belajar yang bervariasi akan menjadikan suasana belajar yang lebih menyenangkan. Sehingga harapannya pembelajaran menjadi lebih efektif dan efisien. Dalam pelaksanaan *team teaching*, guru yang tergabung harus kompak dan tidak memetingkan diri sendiri. Mereka harus sering bekerjasama dan mendiskusikan pembelajaran, mulai dari hal penyusunan silabus, pengembangan RPP, pemilihan materi ajar, penentuan atau pembeuatan media pembelajaran yang efektif, penentuan metode pembelajaran yang cocok untuk materi yang disepakati serta menyususn penilaian proses pembelajaran maupun hasil belajar.

Sistem regu dilaksanakan untuk membantu siswa agar lebih lancar terjadinya interaksi belajar mengajar secara kuantitatif maupun kualitatif, juga meringankan guru sehingga bisa bertanggungjawab bersama terhadap pelajaran yang diberikannya, dapat saling membantu antar guru, meningkatkan kerjasama, saling mengisi dan saling memikirkan bersama pengembangan mata pelajaran.

Teknik penyajian ini banyak menguntungkan karena jalan interaksi belajar akan lebih lancar (Roestiyah N K, 2001: 54).

Dengan model kerjasama yang saling menguntungkan antar guru yang tergabung dalam *team teaching* tersebut, yang seluruh anggota timnya berkonsentrasi untuk membuat siswa belajar secara efektif, inovatif, kreatif, menantang, dan menyenangkan, maka pekerjaan guru akan semakin ringan. Sebab pekerjaan yang dilakukan oleh satu tim akan lebih baik dibandingkan dengan pekerjaan yang diselesaikan secara individu.

Menurut Karin Goetz: working as part of a team has a multitude of advantages, it give the participacing team teacher a supportive environment, allows for develpment of new teaching approaches, aids in overcoming academic isolation, increasesnthe likehood of sounder solutions regarding the dicipline of problematic students and augments the opportunity for intellectual growth. (bekerja sebagai bagian dari tim memiliki banyak keuntungan memberikan guru beregu yang berpartisipasi pada lingkungan yang mendukung, memungkinkan untuk pengembangan pendekatan pengajaran baru, membantu dalam isolasi akademik, meningkatkan kemungkinan solusi yang lebih sehat tentang disiplin siswa bermasalah dan menambah kesempatan untuk pertumbuhan intelektual) (Zohari, 2010).

2.1.7.4 Kelemahan Team Teaching

Dalam Roestiyah (2001: 80), sistem regu tidak akan pernah lepas dari kekurangannya, ialah bila seorang guru sedang tidak mendapat giliran mengajar tidak memanfaatkan waktu untuk belajar lebih lanjut atau membuat perencanaan yang lebih baik bahkan menggunakan waktu senggangnya untuk hal - hal yang tidak berguna. Yang merugikan pua bila masing - masing anggota *team teaching* tidak kompak, tidak bisa bekerjasama dengan baik sehingga tidak bisa terintegrasi, tidak ada pemimpin yang mengorganisasikannya atau bahkan tim itu berjalan hanya dengan alasan penghematan administrasi saja. Hal tersebut sangat tidak bisa dipertanggungjawabkan.

Dalam pelaksanaan *team teaching*, para guru dituntut mempunyai waktu ekstra dalam memadukan pikiran, pendapat dan ide - ide yang cemerlang. Hal ini dimaksudkan agar menghadapi kelas, mereka dalam satu kesatuan yang kompak dan solid. Hal ini memerlukan pembiasaan dan kedisiplinan yang tinggi. Sebab apabila salah satu anggota tim tidak mau berbagi pengalaman, maka akan russaklah *team teaching* yang dibentuk tersebut.

Jadi, tidak selamanya *team teaching* itu berujung sukses atau berhasil. Hal tersebut dikarenakan strategi ini memiliki beberapa kelemahan yang diantaranya muncul karena faktor anggota tim sendiri. Berikut kelemahan strategi pembelajaran *team teaching*.

- a. Sebagian guru resistant terhadap mata pelajaran apa saja, yaitu pengajaran single teacher teaching. Sehingga strategi *team teaching* dirasakan oleh mereka sebagai suatu hal yang mendukung.
- b. Sebagian guru tidak suka terhadap perilaku atau hal lain pada anggota timnya.
 Sehingga hal ini akan menghambat kerjasama diantara anggota tim.
- c. Sebagian lainnya merasa bahwa mereka bekerja lebih banyak dan lebih keras, namun gajinya sama dengan anggota tim lainnya yang kinerjanya lebih buruk.
- d. Ada guru yang tidak mau berbagi ilmu dengan sesama anggota tim karena mereka merasa bahwa mendapatkan ilmu itu sangat susah. Sehingga mereka lebih memilih untuk menikmati sendiri pengetahuan yang mereka miliki.

Dari kelemahan - kelemahan tersebut masih dapat diatasi bila anggota tim dan juga pihak - pihak dari luar tim yaitu pemimpin sekolah dan pengambil keputusan menyadari bahwa *team teaching* akan lebih baik daripada individual *teaching*.

2.1.8 Strategi Pembelajaran Non - Team (Konvensional)

Menurut Roestiyah (2001: 136), pembelajaran konvensional adalah cara mengajar yang paling tradisional yang telah lama dijalankan dalam sejarah pendidikan ialah cara mengajar dengan ceramah. Sedangkan menurut Djamarah (1995 : 97) metode pembelajaran konvensional adalah metode pembelajaran tradisional atau disebut juga dengan metode ceramah, karena sejak dulu metode ini telah dipergunakan sebagai alat komunikasi lisan antara guru dengan anak didik dalam proses belajar dan pembelajaran.

Pembelajaran konvensional guru lebih memfokuskan diri pada upaya penuangan pengetahuan kepada siswa tanpa memperhatikan pengetahuan awal (prior knowledge) siswa (Sadia, 2004: 40). Menurut Ujang Sukandi (2003:8) mendeskripsikan bahwa pendekatan konvensional ditandai dengan guru mengajar lebih banyak mengajarkan tentang konsep-konsep bukan kompetensi, tujuannya adalah siswa mengetahui sesuatu bukan mampu untuk melakukan sesuatu, dan pada saat proses pembelajaran siswa lebih banyak mendengarkan. Di sini terlihat bahwa pendekatan konvensional yang dimaksud adalah proses pembelajaran yang lebih banyak didominasi gurunya sebagai "pen-transfer" ilmu, sementara siswa lebih pasif sebagai "penerima" ilmu (Gora, dkk, 2010: 7).

Menurut Philip R Wallace pembelajaran konvensional memiliki ciri -ciri sebagai berikut:

- Otoritas seorang guru lebih diutamakan dan berperan sebagai contoh bagi murid - muridnya.
- 2. Perhatian kepada masing masing individu atau minat sangat kecil.

- Pembelajaran di sekolah lebih banyak dilihat sebagai persiapan akan masa depan bukan sebagai pengkatan kompetensi siswa disaat ini.
- 4. Penekanan yang mendasar adalah bagaimana pengetahuan dapat diserap oleh siswa dan penguasaan pengetahuan tersebutlah yang menjadi tolak ukur keberhasilan tujuan, sementara pengembangan potensi siswa diabaikan (Gora, dkk, 2010: 7).

Pembelajaran langsung memiliki pola urutan kegiatan yang sistematis untuk mengetahui kegiatan-kegiatan yang harus dilakukan oleh guru atau peserta didik, agar pembelajaran langsung tersebut terlaksana dengan baik. Menurut Kardi & Nur (Trianto 2011:31) langkah-langkah pembelajaran konvensional atau *non team teaching* dapat dilihat pada Tabel 2.2:

Tabel 2.2 Langkah-Langkah Pembelajaran Non Team Teaching

No	Fase	Peran Guru
1	Menyampaikan Tujuan Pembelajaran dan mempersiapkan siswa	Menjelaskan Tujuan, Materi Prasyarat, memotivasi siswa, dan mempersiapkan siswa
2	Mendemonstrasikan Pengetahuan dan Keterampilan	Mendemonstrasikan keterampilan atau menyajikan informasi tahap demi tahap
3	Membimbing Pelatihan	Guru memberi latihan terbimbing
4	Mengecek pemahaman dan memberikan umpan balik	Mengecek kemampuan siswa dan memberikan umpan balik
5	Memberikan latihan dan penerapan konsep	Mempersiapkan latihan untuk siswa dengan menerapkan konsep yang dipelajari pada kehidupan sehari-hari.

Institute of Computer Technology menyebut dengan istilah pengajaran tradisional. Dijelaskan pengajaran tradisional yang berpusat pada guru adalah

perilaku pengajaran yang paling umum yang diterapkan di sekolah - sekolah di seluruh dunia. Pengajaran ini dipandang efektif. Terutama untuk :

- 1. Berbagai informasi yang tidak mudah ditemukan di tempat lain.
- 2. Menyampaikan informasi dengan cepat
- 3. Membangkitkan minat akan informasi
- 4. Mengajari siswa cara belajar terbaiknya dengan mendengarkan

Namun demikian pendekatan pembelajaran tersebut mempunyai beberapa kelemahan sebagai berikut:

- 1. Tidak semua siswa memiliki cara belajar terbaik dengan mendengarkan
- Sering terjadi kesulitan untuk menjaga siswa tetap tertarik dengan apa yang dipelajari
- 3. Pendekatan tersebut cenderung tidak memerlukan pemikiran yang kritis
- 4. Pendekatan tersebut mengasumsikan bahwa cara belajar siswa itu sama dan tidak bersifat pribadi (Gora, dkk, 2010: 8).

Berdasarkan uraian di atas, dapat disimpulkan bahwa strategi pembelajaran konvensional adalah pembelajaran secara tradional dimana pembelajaran berpusat kepada guru dan siswa cenderung mendengarkan dan membaca pelajaran

2.2 Kerangka Teoritik

1. Perbedaan hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi belajar *team teaching* dengan siswa yang mengikuti strategi belajar *non-team teaching*

Berhasil tidaknya suatu proses pembelajaran, dapat diketahui melalui pengukuran terhadap hasil belajar. Hasil belajar siswa secara operasional dinyatakan dalam bentuk skor/angka yang menunjukan sejauh mana pemahaman siswa terhadap bahan pembelajaran. Semakin besar angka yang diperoleh siswa,

menunjukan semakin tinggi kompetensi terhadap bahan pembelajaran, dan sebaliknya semakin kecil angka yang diperoleh siswa menunjukan semakin rendah kompetensi terhadap bahan pembelajaran. Dengan demikian, hasil belajar siswa merupakan dasar yang digunakan untuk menentukan ukuran-ukuran atau tingkat keberhasilan dalam memahami pembelajaran Menganalisis Rangkaian Listrik. Keberhasilan dalam mencapai hasil belajar yang maksimal dapat dipengaruhi oleh strategi pembelajaran yang diterapkan.

Dalam penelitian ini strategi pembelajaran dilakukan dengan dua cara yaitu strategi pembelajaran *team teaching* dan strategi pembelajaran *non team teaching* dalam hal ini konvensional, kedua duanya memiliki kelebihan dan kelemahan dan juga mempunyai tujuan yang sama yaitu untuk meningkatkan hasil belajar.

Strategi pembelajaran *team teaching* pada hakikatnya dilaksanakan dengan dua orang guru, dimana dua guru bekerja sama dan turut berinteraksi, membantu dan membimbing siswa dalam memecahkan kesulitan belajar siswa. Disisi lain pembelajaran team teaching dapat menghilangkan rasa jenuh siswa dalam pembelajaran menganalisis rangkaian listrik karena pembelajaran yang dipandu oleh dua orang guru yang akan memberikan materi dan membimbing siswa secara bergantian. Berbeda halnya dengan pembelajaran *non team teaching* dalam hal ini konvensional, pembelajaran cenderung membosankan dan siswa bersikap pasif karena pembelajaran cenderung berpusat pada guru.

Berdasarkan perbedaan strategi pembelajaran dapat diduga hasil belajar menganalisis rangkaian listrik melalui strategi pembelajaran *team teaching* berbeda daripada menggunakan strategi pembelajaran *non-team teaching*.

2. Perbedaan hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi belajar tinggi dengan siswa yang memiliki mengikuti strategi pembelajaran *non- team teaching* dan motivasi belajar tinggi

Pada kelompok siswa yang memiliki motivasi belajar tinggi dengan strategi pembelajaran *team teaching* siswa ditekankan untuk belajar secara aktif dalam kelas teori maupun praktek karena pembelajaran dilakukan lebih dari satu guru sehingga kondisi kelas lebih inteaktif antara guru dan siswa. Disisi lain ditunjang dengan motivasi belajar yang tinggi, dalam hal ini melalui motivasi belajar yang menekankan pada pencapaian kompetensi secara nyata akan menjadai pendorong atau penguat bagi peningkatan hasil belajar.

Motivasi belajar merupakan faktor yang mempengaruhi tingkat keberhasilan siswa dalam proses belajar mengajar. Hal ini nampak bahwa sesorang siswa kurang berhasil bahkan gagal dalam pelajaran, bukan disebabkan oleh tingkat intelegensinya yang rendah, akan tetapi adanya motivasi yang kurang terhadap dirinya untuk belajar dan merasa tidak mampu melaksanakan tugas - tugas latihan. Bahkan menganggap mata pelajaran menganalisis rangkaian listrik sangat sulit dan tidak terlalu penting di sekolah. Sedangkan siswa yang memiliki motivasi belajar tinggi selalu berusaha untuk mencapai hasil belajar yang optimal dengan belajar dan megerjakan latihan - latihan soal di sekolah maupun di rumah dengan baik, serta memandang mata pelajaran menganalisis rangkaian listrik sebagai mata pelajaran yang sangat digemari dan perlu untuk dipelajari. Hal ini berarti bahwa motivasi belajar tinggi memiliki peranan dalam menentukan hasil belajar menganalisis rangkaian listrik. Oleh karena itu siswa yang memiliki motivasi belajar tinggi berpeluang untuk memperoleh hasil belajar tinggi, dibanding dengan siswa yang memilik motivasi belajar rendah.

Sebaliknya siswa yang memiliki motivasi tinggi, namun strategi pembelajaran yang digunakan kurang tepat, maka materi yang disampaikan akan menjadi kurang menarik perhatian siswa pada proses belajar. Karena proses pembelajaran dilakukan secara konvensional yang berpusat pada satu guru. Seorang guru tidak dapat memperhatikan satu persatu siswanya didalam kelas. Sebab itu pada saat pembelajaran siswa merasa kurang diperhatikan dan merasa acuh dalam proses pembelajaran yang mengakibatkan hasil belajar yang kurang optimal.

Berdasarkan uraian di atas, maka diduga bahwa siswa yang memiliki motivasi belajar tinggi dan diajar dengan strategi pembelajaran *team teaching* akan lebih tinggi hasil belajar menganalisis rangkaian listriknya jika dibandingkan dengan siswa yang diajar dengan menggunakan strategi belajar *non-team teaching*.

3. Perbedaan hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran team teaching dan memiliki motivasi belajar rendah dengan siswa yang memiliki mengikuti strategi pembelaran non-team teaching dan memiliki motivasi belajar rendah

Motivasi belajar rendah mencenderungkan perilaku seseorang tidak mempunyai keinginan yang kuat untuk bertanggung jawab pada dirinya dalam menyelesaikan masalah dan tugas - tugas yang dibebankan padanya, tidak mempunyai kecenderungan untuk berprestasi, mudah mundur dalam menghadapi tantangan, cenderung bergantung pada orang lain dalam menyelesaikan tugas, tidak berusaha mengatasi rintangan, cepat berputus asa dalam menyelesaikan tugas - tugas.

Siswa yang memiliki motivasi belajar rendah lebih cocok diajar dengan menggunakan strategi pembelajaran non - team teaching atau konvensional. Hal ini dikarenakan strategi pembelajaran non - team teaching memiliki beberapa

karakteristik yang memungkinkan siswa cenderung pasif, cenderung malas bertanya karena partisipasi siswa rendah serta kurang kreatif, dan siswa lebih tertarik mendengarkan daripada memberi pendapat.

Dengan strategi pembelajaran *team teaching* bagi siswa yang memiliki motivasi belajar rendah, hasil belajarnya akan rendah. Hal ini terjadi karena penggunaan strategi pembelajaran *team teaching* membutuhkan kemampuan motivasi belajar siswa untuk berpikir dalam menyelesaikan tugas dan aktif saat pembelajaran.

Dengan demikian dapat diduga bahwa siswa yang memiliki motivasi belajar rendah dan mengikuti strategi pembelajaran *team teaching* lebih rendah dibandingkan dengan siswa yang memiliki motivasi belajar rendah dan mengikuti strategi pembelajaran *non-team teaching* terhadap hasil belajar menganalisis rangkaian listrik.

2.3 Hipotesis Penelitian

Berdasarkan kajian teori dan kerangka berpikir mengenai strategi pembelajaran dan motivasi belajar siswa terhadap hasil belajar menganalisis rangkaian listrik, maka hipotesis penelitian dinyatakan sebagai berikut:

- 1. Hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelaran *team teaching* lebih tinggi dibandingkan dengan siswa yang mengikuti strategi pembelajaran *non-team teaching*
- 2. Terdapat perbedaan bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi belajar tinggi mempunyai hasil belajar yang

- lebih tinggi dibandingkan dengan siswa yang mengikuti strategi pembelajaran *non-team teaching* dan memiliki motivasi belajar tinggi.
- 3. Terdapat perbedaan bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi belajar rendah mempunyai hasil belajar yang lebih rendah dibandingkan dengan siswa yang mengikuti strategi pembelajaran *non-team teaching* dan memiliki motivasi belajar rendah.

BAB III

METODOLOGI PENELITIAN

3.1 Tempat dan Waktu Penelitian

1. Tempat Penelitian

Penelitian dilaksanakan di SMK Negeri 1 Tambelang yang beralamat di Jl.Raya Tambelang No.2 Desa sukarapih Kec.Tambelang

2. Waktu Penelitian

Waktu penelitian pada bulan Februari 2017

3.2 Metode Penelitian

Penelitian ini menggunakan metode eksperimen dengan rancangan 2 x 2. Variabel terikat dalam penelitian ini adalah hasil belajar menganalisis rangkaian listrik. Sebagai variabel bebas pertama adalah strategi pembelajaran, yang dibedakan menjadi dua kelompok, yaitu strategi pembelajaran *team teaching* sebagai kelompok eksperimen dan strategi pembelajaran *non-team* sebagai kelompok kontrol. Sebagai variabel bebas kedua adalah motivasi belajar, yang dibedakan menjadi dua kelompok yaitu motivasi belajar tinggi dan motivasi belajar rendah. Secara visual rancangan penelitian yang akan dilakukan adalah seperti pada tabel di bawah ini:

Tabel 3.1. Rancangan Penelitian

Variabo	el X 1	Strategi Pembelajaran (A)				
Variabel X 2		Team Teaching(A ₁)	Non - Team (A ₂)			
Motivasi	Tinggi (B ₁)	A_1B_1	A_2B_1			
Belajar (B)	Rendah (B ₂)	A_1B_2	A_2B_2			

Keterangan:

A₁ = Kelompok siswa yang mengikuti pembelajaran dengan strategi pembelajaran *team teaching*

 A_2 = Kelompok siswa yang mengikuti pembelajaran dengan strategi pembelajaran non - team teaching

B₁ = Kelompok siswa yang memiliki motivasi belajar tinggi

B₂ = Kelompok siswa yang memiliki motivasi belajar tinggi

 A_1B_1 = Kelompok siswa yang mengikuti pembelajaran dengan strategi pembelajaran *team teaching* dan memiliki motivasi belajar tinggi

 A_2B_1 = Kelompok siswa yang mengikuti pembelajaran dengan strategi pembelajaran non - team teaching memiliki motivasi belajar tinggi

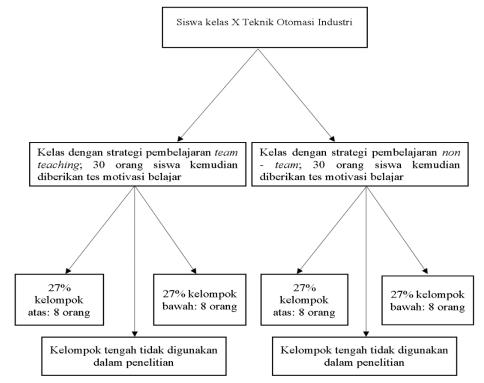
 A_1B_2 = Kelompok siswa yang mengikuti pembelajaran dengan strategi pembelajaran *team teaching* dan memiliki motivasi belajar rendah

 A_2B_2 = Kelompok siswa yang mengikuti pembelajaran dengan strategi pembelajaran non – team teaching dan memiliki motivasi belajar rendah

3.3 Populasi, Sampel dan Teknik Pengambilan Sampel

3.3.1 Populasi dan Sampel

Menurut Sugiyono (2013:80), populasi adalah wilayah generalisasi yang terdiri atas objek atau subjek yang mempunyai kualitas dan karakteristik tertentu yang ditetapkan oleh peneliti untuk dipelajari dan kemudian ditarik kesimpulannya.


Populasi penelitian ini adalah seluruh siswa kelas X SMK Negeri 1 Tambelang program keahlian Teknik Otomasi Industri. Sampel penelitian ditentukan dengan Teknik *sample random sampling* kelas. Dengan mengambil kelas X yang berjumlah 12 kelas, yang kemudian di random hingga di dapat dua kelas yaitu satu kelas eksperimen dan satu kelas kontrol dengan jumlah siswa masing- masing kelas sebanyak 30 orang.

3.3.2 Teknik Pengambilan Sampel

Semua siswa dari kedua kelompok belajar dibagikan instumen tes motivasi belajar untuk menentukan siswa mana yang memiliki motivasi belajar kelompok tinggi dan siswa yang memiliki motivasi belajar kelompok rendah.

Umumnya, para ahli tes membagi kelompok ini menjadi 27% atau 33% kelompok atas dan 27 atau 33% kelompok bawah. Untuk berbagai macam keperluan, pembagian kelompok dapat 50% kelompok atas dan 50% kelompok bawah atau berkisar antara 25% sampai dengan 35% kelompok atas dan kelompok bawah (Surapranata, 2004 : 24). Oleh karena itu, penarikan sampel dilakukan dengan mengambil 27% siswa yang memiliki motivasi belajar kelompok tinggi dan 27% siswa yang memiliki motivasi belajar kelompok rendah (Verducci, 1980: 176).

Urutan tahapan pengambilan sampel penelitian dapat dilihat dalam gambar berikut (Surapranata, 2004: 24):

Gambar 3.1. Tahapan Pengambilan Sampel

Tabel 3.2 Distribusi sampel pada tiap kelas menurut perlakuan

16

Variabel X 1 Strategi Pembelajaran (A) Jumlah Non - Team Team Variabel X 2 Teaching (A_1) (A_2) Tinggi Motivasi 8 8 16 (B_1) Belajar Rendah 8 (B) 8 16 (B_2)

3.4 Variabel Penelitian

Jumlah

2. Variabel dalam penelitian kali ini adalah :

a. Variabel bebas : Strategi Pembelajaran (X₁) dan Motivasi Belajar (X₂)

16

32

b. Variabel terikat : Hasil Belajar (Y)

3.5 Teknik Pengumpulan Data

Metode pengumpulan data dalam penelitian ini menggunakan hasil belajar menganalisis rangkaian listrik dan angket motivasi belajar berupa soal pilihan ganda yang dilakukan pada kelas kontrol dan kelas eksperimen. Tes dikerjakan secara individu.

Adapun perlakuan kepada kelas eksperimen yaitu kelas team teaching dan kelas kontol yaitu kelas *non- team teaching* terdapat pada tabel pembelajaran sebagai berikut :

Tabel 3.3 Tabel pembelajaran Team Teaching dan Non-Team Teaching

No	Team Teaching	Non- Team Teaching
1	Kegiatan awal atau pendahuluan	Kegiatan awal atau pendahuluan
	 Memberi salam 	 Memberi salam
	2. Berdoa	2. Berdoa
	3. Absen	3. Absen
	4. Apersepsi	4. Apersepsi
	Memotivasi siswa	Memotivasi siswa
2	Kegiatan inti	Kegiatan inti
		1. Guru menyajikan dengan
		cara memberi ceramah atau

	1. Guru pertama menyajikan	menyuruh siswa membaca
	materi yang telah	bahan yang telah
	dipersiapkan oleh tim.	dipersiapkan diambil dari
	2. Guru kedua berada diantara	buku teks tertentu atau
	siswa dan mengamati serta	ditulis guru
	memandu siswa yang	2. Siswa mencatat atau
	mengalami kesulitan	merangkum penjelasan dari
		guru atau buku/teks yang
		dipersiapkan guru
3	Kegiatan penutup	Kegiatan penutup
	1. Penarikan kesimpulan atas	1. Penarikan kesimpulan atas
	materi yang baru saja	materi yang baru saja
	dibelajarkan	dibelajarkan
	2. Evaluasi	2. Evaluasi
	3. penugasan	3. Penugasan

3.6 Instrumen Penelitian

Penelitian ini menggunakan dua jenis instrumen yaitu; kuisioner, dan tes. Instrumen kuiseioner digunakan untuk mengukur motivasi belajar siswa terhadap mata pelajaran menganalisis rangkaian listrik. Instrumen tes digunakan untuk mengukur hasil belajar menganalisis rangkian listrik.

3.6.1 Kisi - Kisi Instrumen Motivasi Belajar

Indikator-indikator yang digunakan dalam angket untuk mengukur variabel motivasi belajar siswa dalam pembelajaran dijabarkan dalam tabel 3.4. berikut:

Tabel 3.4 Kisi-Kisi Coba Instrumen Motivasi Belajar Siswa

	Aspek /		No. Item		
No.	Dimensi	Indikator	Positif	Negatif	Jumlah
			(+)	(-)	
1	Motivasi	a. Keinginan Berprestasi	1, 16	2, 20	4
	Instrinsik	b. Dorongan Dalam Belajar	3, 14	8, 15	4
		c. Rasa Tanggung Jawab	17, 25	6, 18	4
		d. Cita - cita untuk meraih	21, 26	7	3
		masa depan			

2	Motivasi	a. Lingkungan belajar	9, 10, 11	19,24	5		
	Ekstrinsik	b. Kesiapan dalam	12, 27	22, 28	4		
		menghadapi resiko dan					
		kritik					
		c. Penghargaan dalam	13	29	2		
		belajar					
		d. Umpan balik yang	4, 23	5, 30	4		
		diterima dalam belajar					
	Total						

Kuisioner motivasi belajar dijabarkan dalam 30 butir pernyataan dengan model skala likert. Responden dapat memilih satu jawaban yang sesuai dan setiap item jawaban bernilai 1 sampai 5 sesuai dengan jawaban seperti tampak dalam tabel 3.5

Tabel 3.5 Skala Penilaian Instrumen Motivasi Belajar Siswa

Alternatif Jawaban	Pernyataan				
Alternatii Jawaban	Positif	Negatif			
Sangat Setuju (SS)	5	1			
Setuju (S)	4	2			
Ragu-ragu (RR)	3	3			
Tidak Setuju (TS)	2	4			
Sangat Tidak Setuju (STS)	1	5			

3.6.2 Kisi - Kisi Instrumen Hasil Belajar Menganalisis Rangkaian Listrik

Instrumen untuk mengukur variabel hasil belajar pada penelitian ini adalah teknik tes. Tes yang dilakukan berupa butir soal pilihan ganda dengan kategori point 1 untuk jawaban yang benar dan point 0 untuk jawaban yang salah. Siswa akan diberikan sejumlah tes dalam jumlah dan waktu tertentu untuk mengukur hasil

belajar siswa pada mata pelajaran menganalisis rangkaian listrik. Adapun indikator instrumen hasil belajar akan digambarkan pada tabel 3.6. berikut ini :

Tabel 3.6 Kisi-Kisi Instrumen Hasil Belajar Menganalisis Rangkaian Listrik

LISUTIK			Asp	ek Yaı	ng Dir	ilai		Jumlah
Kompetensi	Indikator Soal		(K	ognitif	Bloo	m)		Soal
Dasar		C1	C2	C3	C4	C5	C6	
24								
Menjelaskan		1, 2,		6,				
konsep	Membedakan konsep	3, 4,		17,				8
rangkaian	rangkaian listrik	5,		25				
listrik		3,		23				
	Menganalisis							
	rangkaian tahanan pada			7,	18,			
	berbagai rangkaian	8,	16	10,	23			6
Menganalisis				10,	23			
rangkaian	listrik (AC/DC)							
listrik arus				11,	9,			
searah dan	Menganalisis			12,	13,			
	rangkaian resistansi,			14,	,			
arus bolak	induktansi, capasitansi	21		15,	26			14
balik	pada rangkaian arus			19,	28,			
	bolak balik			20,	29,			
	bolak balik			,	30			
				22				
Menganalisis	Mengidentifikasi		24,					
rangkaian	rangkaian kemagnetan		27,					2
kemagnetan	dalam menyelesaikan		41					

	permasalahan rangkaian listrik							
	3.							
4.	Jumlah	7	3	12	8	0	0	30

3.7 Teknik Pengolahan Data

Teknik pengolahan data yang digunakan untuk mengetahui apakah instrumen yang digunakan telah memenuhi syarat serta layak digunakan sebagai alat pengumpulan data atau tidak. Instrumen yang akan digunakan dalam penelitian yaitu diuji dengan menggunakan pendapat para ahli (judment expert).

Instrumen penelitian yang akan digunakan sebagai pengumpul data diujicobakan terlebih dahulu. Uji coba instrumen ini dilakukan untuk mengukur dan mengetahui apakah intrumen yang digunakan telah memenuhi syarat serta layak digunakan sebagai alat pengumpul data atau tidak. Teknik pengolahan datanya adalah sebagai berikut:

3.7.1 Uji Validitas

5. Validitas adalah suatu ukuran yang menunjukan tingkat kevalidan atau keshahihan suatu instrumen. Sugiyono mengatakan "valid berarti instrumen tersebut dapat digunakan untuk mengukur apa yang seharusnya diukur" (Sugiyono 2013: 173). Jadi sebuah instrumen dikatakan valid bila mampu mengukur apa yang diinginkan dan dapat mengungakapkan data penelitian dengan tepat. Untuk mengukur ketepatan data tersebut digunakan teknik uji validitas yang dihitung dengan rumus *Korelasi Product Moment* dari Pearson. Adapun rumusnya adalah sebagai berikut:

$$r_{xy} = \frac{N. \ \Sigma \ XY - (\Sigma X). (\Sigma Y)}{\sqrt{\{N. \Sigma \ X^2 - (\Sigma X)^2\} \{N. \Sigma Y^2 - (\Sigma Y^2)\}}}$$

Keterangan:

r_{xy} : Koefisien korelasi butir

 ΣX : Jumlah skor tiap item yang diperoleh responden uji coba

 ΣY : Jumlah skor total item yang diperoleh responden uji coba

N : Jumlah responden uji coba

Selanjutnya harga r_{xy} dikonsultasikan dengan r_{tabel} dengan taraf signifikansi 5% dan derajat kebebasan (dk = n-2), dimana n adalah jumlah responden yang dilibatkan dalam uji validitas. Kemudian dibuat kesimpulan dengan kriteria :

- 1. Jika r_{xy} hitung $> r_{tabel}$, maka instrumen valid.
- 2. Jika r_{xy} hitung $\leq r_{tabel}$, maka instrumen tidak valid.

Setelah dilakukan uji coba instrumen penelitian Motivasi Belajar Siswa maka didapatkan hasil uji validitas yang dirangkum dalam tabel 3.7. dibawah ini :

Tabel 3.7 Rangkuman Uji Validitas Kuesioner Motivasi Belajar Siswa

No.	No. Butir	Phitung	r tabel	Kesimpulan
1	Pernyataan 1	0,59	0,361	VALID
2	Pernyataan 2	0,53	0,361	VALID
3	Pernyataan 3	0,42	0,361	VALID
4	Pernyataan 4	0,46	0,361	VALID
5	Pernyataan 5	0,18	0,361	DROP
6	Pernyataan 6	0,47	0,361	VALID
7	Pernyataan 7	0,36	0,361	VALID
8	Pernyataan 8	0,38	0,361	VALID
9	Pernyataan 9	0,63	0,361	VALID
10	Pernyataan 10	0,27	0,361	DROP
11	Pernyataan 11	0,41	0,361	VALID
12	Pernyataan 12	0,18	0,361	DROP

13	Pernyataan 13	0,53	0,361	VALID
14	Pernyataan 14	0,48	0,361	VALID
15	Pernyataan 15	0,64	0,361	VALID
16	Pernyataan 16	0,56	0,361	VALID
17	Pernyataan 17	0,81	0,361	VALID
18	Pernyataan 18	0,39	0,361	VALID
19	Pernyataan 19	0,54	0,361	VALID
20	Pernyataan 20	0,18	0,361	DROP
21	Pernyataan 21	0,52	0,361	VALID
22	Pernyataan 22	0,64	0,361	VALID
23	Pernyataan 23	0,14	0,361	DROP
24	Pernyataan 24	0,54	0,361	VALID
25	Pernyataan 25	0,53	0,361	VALID
26	Pernyataan 26	0,41	0,361	VALID
27	Pernyataan 27	0,67	0,361	VALID
28	Pernyataan 28	0,53	0,361	VALID
29	Pernyataan 29	0,52	0,361	VALID
30	Pernyataan 30	0,10	0,361	DROP

Sementara untuk hasil uji validitas instrumen variabel hasil belajar menganalisis rangkaian listrik dapat dilihat pada tabel hasil uji validitas seperti yang dirangkum oleh tabel 3.8 dibawah ini :

Tabel 3.8. Rangkuman Uji Validitas Tes Hasil Belajar Menganalisis Rangkaian Listrik

No.	No. Soal	Phitung	r tabel	Kesimpulan
1	Soal 1	-0,17	0,361	DROP
2	Soal 2	0,36	0,361	DROP
3	Soal 3	0,44	0,361	VALID
4	Soal 4	0,39	0,361	VALID
5	Soal 5	0,38	0,361	VALID
6	Soal 6	0,37	0,361	VALID
7	Soal 7	0,46	0,361	VALID
8	Soal 8	0,12	0,361	DROP
9	Soal 9	0,60	0,361	VALID
10	Soal 10	0,52	0,361	VALID
11	Soal 11	0,36	0,361	VALID
12	Soal 12	0,44	0,361	VALID

13	Soal 13	0,36	0,361	VALID
14	Soal 14	0,41	0,361	VALID
15	Soal 15	0,53	0,361	VALID
16	Soal 16	0,46	0,361	VALID
17	Soal 17	0,60	0,361	VALID
18	Soal 18	-0,06	0,361	DROP
19	Soal 19	0,54	0,361	VALID
20	Soal 20	0,37	0,361	VALID
21	Soal 21	0,46	0,361	VALID
22	Soal 22	0,42	0,361	VALID
23	Soal 23	0,41	0,361	VALID
24	Soal 24	0,53	0,361	VALID
25	Soal 25	0,59	0,361	VALID
26	Soal 26	0,44	0,361	VALID
27	Soal 27	0,41	0,361	VALID
28	Soal 28	0,29	0,361	DROP
29	Soal 29	0,44	0,361	VALID
30	Soal 30	-0,08	0,361	DROP

3.7.2 Uji Reliabilitas

Jika instrumen penelitian telah dikatakan valid maka pengujian selanjutnya adalah pengujian realibilitas instrumen. Menurut Arikunto "Reliabilitas menunjuk pada tingkat keterandalan sesuatu. Reliabel artinya dapat dipercaya, jadi dapat diandalkan" (Arikunto, 2006: 178). Suatu instrumen dikatakan reliabel jika pengukurannya konsisten. Jadi uji reliabilitas instrumen dilakukan dengan tujuan untuk mengetahui konsistensi dari instrumen sebagai alat ukur, sehingga hasil pengukurannya dapat dipercaya.

Formula yang dipergunakan untuk menguji reliabilitas instrumen dalam penelitian ini adalah rumus Koefisien Alpha dari Cronbach, yaitu sebagai berikut:

$$r_i = \frac{k}{(k-1)} \left(1 - \frac{\Sigma S_i^2}{\Sigma S_t^2} \right)$$

Keterangan:

r_i : Koefisien reliabilitas instrumen

K : Banyaknya item dalam instrumen

 ΣS_i^2 Jumlah varians skor tiap-tiap item

 S_t^2 : Varians total

Hasil dari nilai r_i dikonsultasikan dengan tabel intrepretasi tingkat reliabilitas seperti yang dimuat pada tabel 3.9. dibawah ini :

Tabel 3.9. Interpretasi Nilai Reliabilitas

Nilai Koefisien Reliabilitas	Tingkat reliabilitas
$0.00 < r \le 0.20$	reliabilitas sangat rendah
$0,20 < r \le 0,40$	reliabilitas rendah
$0,40 < r \le 0,60$	reliabilitas sedang
$0,60 < r \le 0,80$	reliabilitas tinggi
$0.80 < r \le 1.00$	reliabilitas sangat tinggi

Dari hasil uji reliabilitas pada instrumen penelitian Motivasi Belajar Siswa dan instrumen penelitian hasil belajar Menganalisis Rangkaian Listrik didapatkan hasil yang dapat dilihat pada tabel 3.10 dibawah ini :

6. abel 3.10. Hasil Uji Reliabilitas Instrumen Penelitian

No.	Variabel	r hitung	Tingkat Reliabilitas
1.	Motivasi Belajar Siswa (X ₂)	0,885	Reliabilitas sangat tinggi
2.	Hasil belajar Menganalisis Rangkaian Listrik (Y)	0,844	Reliabilitas sangat tinggi

3.7.3 Taraf Kesukaran Soal

7. Taraf kesukaran suatu butir soal merupakan gambaran mengenai sukar atau tidaknya suatu butir soal untuk mengetahui butir soal tersebut baik atau tidak. Untuk menghitung tingkat kesukaran soal, dapat digunakan rumus:

$$P = \frac{B}{JS}$$

Keterangan:

P = Indeks kesukaran tes.

B = Banyaknya siswa yang menjawab soal benar.

JS = Jumlah seluruh siswa peserta tes

Kemudian hasilnya dikonsultasikan kepada tabel klasifikasi kesukaran soal pada tabel 3.11. dibawah ini :

Tabel 3.11. Klasifikasi Taraf Kesukaran Soal

P (indeks kesukaran soal)	Taraf Kesukaran Soal
$0.00 < P \le 0.30$	Soal Sukar
$0.30 < P \le 0.70$	Soal Sedang
$0.70 < P \le 1.00$	Soal Mudah

Dari hasil uji coba instrumen soal Menganalisis Rangkaian Listrik didapatkan hasil perhitungan taraf kesukaran soal yang dapat dilihat pada tabel 3.12. dibawah ini :

Tabel 3.12. Hasil Uji Taraf Kesukaran Soal

No.	Taraf Kesukaran Soal	Jumlah Soal	Nomor Soal
1	Sukar	2	20,26
			2,3,4,5,6,7,8,10,11,12,13,14,1
2	Sedang	15	5,16,17,18,19,22,23,24,25,27,
			28,29,30
3	Mudah	3	1,9,21

3.7.4 Daya Pembeda Soal

Daya pembeda soal adalah kemampuan suatu soal untuk membedakan antara siswa yang pandai (berkemampuan tinggi) dan siswa yang kurang (berkemampuan rendah). Sama halnya dengan tingkat kesukaran, untuk menghitung daya pembeda soal digunakan rumus:

$$D = \frac{B_A}{J_A} - \frac{B_B}{J_B} = P_A - P_B$$

Keterangan:

D = Daya pembeda soal

B_A= Banyaknya peserta kelompok atas yang menjawab soal dengan benar.

B_B= Banyaknya peserta kelompok bawah yang menjawab soal dengan salah.

 J_A = Banyaknya peserta kelompok atas.

J_B = Banyaknya peserta kelompok bawah.

Kemudian nilai perhitungannya dikonsultasikan dengan tabel 3.13. yang memuat klasifikasi daya pembeda dibawah ini :

Tabel 3.13. Klasifikasi Daya Pembeda Soal

No.	Indeks daya beda	Klasifikasi
1	0,00-0,20	Jelek
2	0,21-0,40	Cukup
3	0,41-0,70	Baik
4.	0,71-1,00	Baik Sekali
5.	Minus	Jelek Sekali

Setelah dilakukan perhitungan pada instrumen tes hasil belajar Menganalisis Rangkaian Listrik daya pembeda tiap butir soal dapat dilihat pada tabel 3.14. dibawah ini :

Tabel 3.14. Hasil Uji Daya Pembeda Soal

No.	Daya Pembeda Soal	Jumlah Soal	Nomor Soal
1.	Jelek	3	5, 20, 26
2.	Cukup	14	3, 4, 6, 7, 8, 12,13, 14, 16, 22,
			24, 27, 28, 29
3.	Baik	10	2, 9, 10, 11, 15, 17, 19, 21, 23,
			25
4.	Baik Sekali	0	-
5.	Jelek Sekali	3	1,18,30

3.8 Teknik Analisis Data

Tahapan yang dilakukan setelah memperoleh tes hasil belajar adalah pengolahan data dan analisis untuk menguji hipotesis penelitian yang tujuannya adalah untuk menyederhanakan data kedalam bentuk yang mudah dipahami dan ditafsirkan, sehingga hubungan-hubungan yang ada dalam masalah penelitian dapa dipelajari dan diuji. Tahapan yang harus dilakukan adalah:

3.8.1 Uji Prasyarat Analisis

3.8.1.1 Uji Normalitas

Uji normalitas digunakan untuk mengetahui apakah setiap kelas mempunyai distribusi data yang normal atau tidak. Jika analisis data menunjukan data yang normal maka data tersebut memenuhi syarat dalam perhitungan data parametik. Untuk menguji normalitas data, penelitian ini menggunakan uji liliefors .

Adapun persamaannya adalah sebagai berikut:

$$L_h = |F_{ZI} - S_{ZI}|$$

Keterangan:

L_h: Liliefors hitung

 $F_{zi}\:$: Probabilitas komulatif normal

Szi: Probabilitas komulatif empiris

Untuk mengetahui distribusi frekuensi masing-masing variabel normal atau tidak dilakukan dengan cara membandingkan antara L_h terbesar dengan tabel liliefors dengan taraf signifikansi 5%.

- 8. Dengan hipotesis:
- 9. H₀: Data berdistribusi normal
- 10. H₁: data berdistribusi tidak normal
- 11. Kriteria pengujiannya adalah:
- 1. Jika $L_h \leq L_{tabel}$, maka terima H_0 dan data berdistribusi normal
- 2. Jika $L_h > L_{tabel}$, maka tolak H_0 dan data berdistribusi tidak normal

3.8.1.2 Uji Homogenitas

Uji homogenitas digunakan untuk mengetahui apakah beberapa varian kelompok mempunyai data yang sama atau tidak. Jika kriteria homogenitas terpenuhi atau nilai yang ditunjukan lebih dari 0,05 maka dapat dikatakan bahwa kedua kelompok data adalah sama. Uji homogenitas yang penulis gunakan adalah Uji *Bartlett*. Menguji hipotesis homogenitas data dengan cara membandingkan nilai X^2_{hitung} dengan X^2_{tabel} . Kriteria pengujiannya adalah:

12. Tolak H₀ jika
$$X^2_{hitung} > X_{(1-a)(k-1)}$$
 atau $X^2_{hitung} > X^2_{tabel}$

13. Terima
$$H_0$$
 jika $X^2_{hitung} < X_{(1-a)(k-1)}$ atau $X^2_{hitung} < X^2_{tabel}$

3.8.2 Uji Hipotesis Penelitian

Teknik analisis data yang digunakan penulis dalam pengolahan data yaitu menggunakan Analisis Variansi (ANOVA). ANOVA ini dugunakan untuk menguji hipotesis yang berkenaan dengan perbedaan dua mean atau lebih

1. Menghitung kuadrat keseluruhan, jumlah kuadrat antar kelompok dan jumlah

kuadrat didalam kelompok :
$$JK_{tot} = \sum X_{tot}^2 - \frac{(\sum X_{tot})^2}{N}$$

- Pecahkan jumlah kuadrat antarkelompok menjadi tiga macam jumlah kuadrat, yakni (Arikunto, 2006: 217):
 - a. Jumlah kuadrat antar A (Jka)

14. JKantar A =
$$\sum \frac{\left(\sum X_A\right)^2}{n_A} - \frac{\left(\sum X_{tot}\right)^2}{N}$$

15. = $\frac{\left(\sum X_{A1}\right)^2}{n_{A1}} + \frac{\left(\sum X_{A2}\right)^2}{n_{A2}} - \frac{\left(\sum X_{tot}\right)^2}{N}$

b. Jumlah kuadrat antarbaris (Jkb)

16. JK antarB =
$$\sum \frac{(\sum X_B)^2}{n_B} - \frac{(\sum X_{tot})^2}{N}$$

17. = $\frac{(\sum X_B)^2}{n_{B1}} + \frac{(\sum X_{B2})^2}{n_{B2}} - \frac{(\sum X_{tot})^2}{N} =$

c. Jumlah kuadrat interaksi kolom dan baris (Jki)

18. JK_{inter AB} =
$$\sum \frac{(\sum X_{AB})^2}{n_{AB}} - \frac{(\sum X_{TOT})^2}{N} - JK_A - JK_B$$

d. Jumlah kuadrat dalam

19. JK dal =
$$\sum X_{tot}^{2} - \sum \frac{(\sum X_{AB})^{2}}{n_{AB}} =$$

- 3. Menetapkan derajat bebas yang dikaitkan dengan tiap sumber variansi
- Cari nilai kuadrat dengan memberi setiap jumlah kuadrat dengan derajat bebas masing-masing
- Hitung F rasio bagi pengaruh utama (main effect) dan pengaruh interaksi dengan membagi kuadrat mean antar kelompok dengan kuadrat mean didalam kelompok untuk masing-masing komponen tersebut

Hipotesis Statistik

Hipotesis (Main Effect):

1. Antar A:

21. Ho: $\mu A1 \le \mu A2$

22. H1: μ A1 > μ A2

23.

24.

2. Kelompok A1B1 & A2B1:

Ho: $\mu A1B1 \le \mu A2B1$

H1: μ A1B1 > μ A2B1

3. Kelompok A1B2 & A2B2:

Ho: $\mu A1B2 \ge \mu A2B2$ H1: $\mu A1B2 < \mu A2B2$

BAB IV

HASIL PENELITIAN DAN PEMBAHASAN

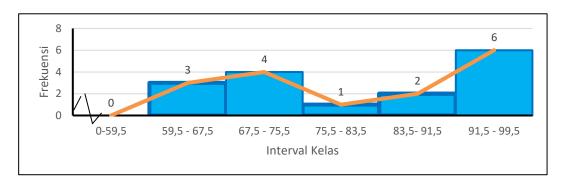
4.1. Deskripsi Data Penelitian

Dalam penelitian ini akan dibahas mengenai hasil penelitian dan pembahasan yang terdiri dari deskripsi data penelitian, pengujian persyaratan analisis data berupa uji normalitas dan uji homogenitas, pengujian hipotesis dan pembahasan hasil penelitian.

Data penelitian ini dikelompokkan ke dalam delapan kelompok data yakni: (1) Hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran team teaching, (2) Hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran non – team teaching, (3) Hasil belajar menganalisis rangkaian listrik bagi siswa yang memiliki motivasi tinggi, (4) Hasil belajar menganalisis rangkaian listrik bagi siswa yang memiliki motivasi rendah, (5) Hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti dengan strategi pembelajaran team teaching dan memiliki motivasi belajar tinggi (A1B1), (6) Hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran non – team teaching dan memiliki motivasi tinggi (A2B1), (7) Hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajan team teaching dan memiliki motivasi rendah (A1B2), (8) Hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran non – team teaching dan memiliki motivasi rendah (A2B2).

Uraian dari kedelapan kelompok data tersebut secara lengkap dibuat sebagai berikut:

Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Mengikuti Strategi Pembelajaran Team Teaching (A1)


Berdasarkan pada data yang dikumpulkan dari responden sebanyak 16 orang siswa, diketahui hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *team teaching*, diperoleh rentang antara 60-92, dengan ratarata sebesar 80, nilai max sebesar 96, nilai min 68, dan simpangan baku (SD) sebesar 13,06 sedangkan median (Me) 82 dan modus (Mo) sebesar 82. Data diatas dianalisis secara statistik. Distribusi data dimasukkan ke dalam tabel berikut ini:

Tabel 4.1 Hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *team teaching* secara keseluruhan

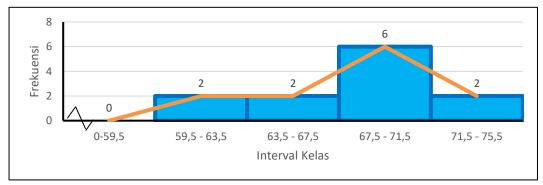
D :	C 1 .	1 11	1 1 .	menganalisis	1 .	11 . 11 1		
L Materibulas	trolanona	hogal	halater	mananaliaia	rongzoion	Lictuiz hoo	CICITIO	TIONO
1718111111181	HERHEIST	114811	DETAIL	THEHIS AHALISIS	тапукатап	HSH IK DA9	SISWA	valie
DIDUITOUDI	11011001101	IICOII	Column	III Sullations	I mil Silmini	mount ous	DIDITION	,

KELAS	INTERVAL	TANDA	FREKUENSI	FREKUENSI
KELAS	INTERVAL	KELAS	ABSOLUT	RELATIF
1	60 - 67	63,5	3	19%
2	68 - 75	71,5	4	25%
3	76 - 83	79,5	1	6%
4	84- 91	87,5	2	13%
5	92 - 99	95,5	6	38%
	JUMLAH	16	100%	

mengikuti strategi pembelajaran *team teaching* pada tabel 4.1 dapat dibuat dalam bentuk grafik histogram berikut:

Gambar 4.1 Histogram Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Mengikuti Strategi Pembelajaran *Team Teaching* Secara Keseluruhan

2. Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Mengikuti Strategi Pembelajaran Non – Team Teaching (A2)


Berdasarkan pada data yang dikumpulkan dari responden sebanyak 16 orang siswa, diketahui hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *non - team teaching*, diperoleh rentang antara 60 - 63, dengan rata - rata sebesar 69, nilai max sebesar 76, nilai min 60 dan simpangan baku (SD) sebesar 5,37 sedangkan median (Me) 68 dan modus (Mo) sebesar 68. Data diatas dianalisis secara statistik. Distribusi data dimasukkan ke dalam tabel berikut ini :

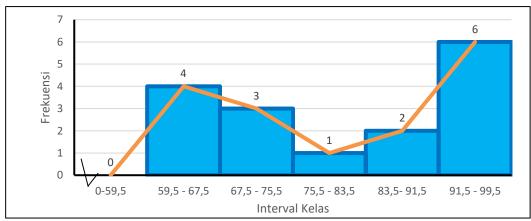
Tabel 4.2 Hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti

strategi pembelajran *non - team teaching* secara keseluruhan

KELAS	INTERVAL	TANDA	FREKUENSI	FREKUENSI
KELAS	INTERVAL	KELAS	ABSOLUT	RELATIF
1	60 - 63	61,5	2	13%
2	64 - 67	65,5	2	13%
3	68 - 71	69,5	6	38%
4	72 - 75	73,5	2	13%
5	76 – 79	77,5	4	25%
	JUMLAH		16	100%

Distribusi frekuensi hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *non - team teaching* pada tabel 4.2 dapat dibuat dalam bentuk grafik histogram berikut:

Gambar 4.2 Histogram Hasil Belajar Menganalisis Rangkaian Listrik bagi siswa yang mengikuti Strategi Belajar *Non - Team Teaching* Secara Keseluruhan


Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Memiliki Motivasi Tinggi (B1)

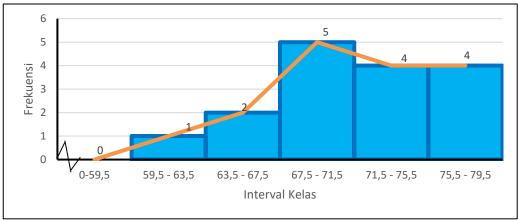
Berdasarkan pada data yang dikumpulkan dari responden sebanyak 16 orang siswa, diketahui hasil belajar menganalisis rangkaian listrik bagi siswa yang memiliki motivasi belajar tinggi, diperoleh rentang antara 60 - 67, dengan rata - rata sebesar 79, nilai max sebesar 96, nilai min 60 dan simpangan baku (SD) sebesar 14,05 sedangkan median (Me) 82 dan modus (Mo) sebesar 92. Data diatas dianalisis secara statistik. Distribusi data dimasukkan ke dalam tabel berikut ini:

Tabel 4.3 Hasil belajar menganalisis rangkaian listrik bagi siswa yang memiliki motivasi belajar tinggi

IZEL A C	INITEDIZAI	TANDA	FREKUENSI	FREKUENSI
KELAS	INTERVAL	KELAS	ABSOLUT	RELATIF
1	60 - 67	63.5	4	25%
2	68 - 75	71.5	3	19%
3	76 - 83	79.5	1	6%
4	84- 91	87.5	2	13%
5	92 - 99	95.5	6	38%
JUMLAH			16	100%

Distribusi frekuensi hasil belajar menganalisis rangkaian listrik bagi siswa yang memiliki motivasi tinggi pada tabel 4.3 dapat dibuat dalam bentuk grafik histogram berikut:

Gambar 4.3 Histogram Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Memiliki Motivasi Belajar Tinggi


4. Hasil Belajar Menganalisis Rangkian Listrik Bagi Siswa yang Memiliki Motivasi Rendah (B2)

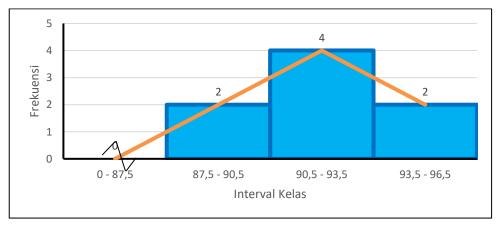
Berdasarkan pada data yang dikumpulkan dari responden sebanyak 16 orang siswa, diketahui hasil belajar menganalisis rangkaian listrik bagi siswa yang memiliki motivasi belajar rendah, diperoleh rentang antara 60 - 63, dengan rata - rata sebesar 70, nilai max 76, nilai min 60 dan simpangan baku (SD) sebesar 4,84 sedangkan median (Me) 70 dan modus (Mo) sebesar 68. Data diatas dianalisis secara statistik. Distribusi data dimasukkan ke dalam tabel berikut ini:

Tabel 4.4 Hasil belajar menganalisis rangkaian listrik bagi siswa yang memiliki motivasi belajar rendah

KELAS	INTERVAL		TANDA KELAS	FREKUENSI ABSOLUT	FREKUENSI RELATIF	
1	60	-	63	61.5	1	6%
2	64	-	67	65.5	2	13%
3	68	-	71	69.5	5	31%
4	72	-	75	73.5	4	25%
5	76 - 79		77.5	4	25%	
JUMLAH					16	100%

Distribusi frekuensi hasil belajar menganalisis rangkaian listrik bagi siswa yang memiliki motivasi rendah pada tabel 4.4 dapat dibuat dalam bentuk grafik histogram berikut:

Gambar 4.4 Histogram Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Memiliki Motivasi Belajar Rendah


5. Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Mengikuti Strategi Pembelajaran *Team Teaching* Dan Memiliki Motivasi Belajar Tinggi (A1B1)

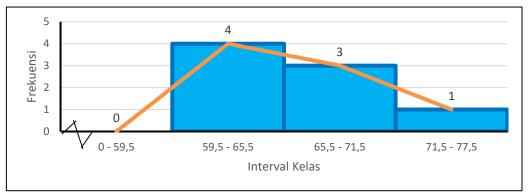
Berdasarkan pada data yang dikumpulkan dari responden sebanyak 8 orang siswa, diketahui hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi belajar tinggi, diperoleh rentang antara 88 - 90, dengan rata - rata sebesar 92, nilai max 96, nilai min 88 dan simpangan baku (SD) sebesar 3,02 sedangkan median (Me) 92 dan modus (Mo) sebesar 92. Data diatas dianalisis secara statistik. Distribusi data dimasukkan ke dalam tabel berikut ini :

Tabel 4.5 Hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi belajar tinggi

	\mathcal{E} 1 \mathcal{F} 0 \mathcal{F}				00	
KELAS INT		INTEDVAI		TANDA	FREKUENSI	FREKUENSI
KELAS	INTERVAL		KELAS	ABSOLUT	RELATIF	
1	88 - 90		89	2	25%	
2	91	-	93	92	4	50%
3	94 - 96		95	2	25%	
JUMLAH					8	100%

Distribusi frekuensi hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi belajar tinggi pada tabel 4.5 dapat dibuat dalam bentuk grafik histogram berikut:

Gambar 4.5 Histogram Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Mengikuti Strategi Belajar *Team Teaching* dan Memiliki Motivasi Belajar Tinggi


6. Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Mengikuti Strategi Pembelajaran Non – Team Teaching Dan Memiliki Motivasi Tinggi (A2B1)

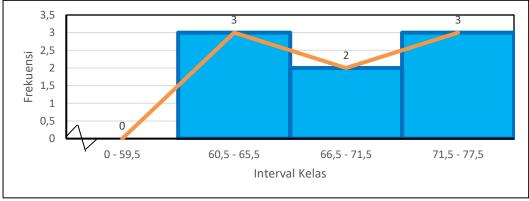
Berdasarkan pada data yang dikumpulkan dari responden sebanyak 8 orang siswa, diketahui hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *non – team teaching* dan memiliki motivasi tinggi, diperoleh rentang antara 60 - 65, dengan rata - rata sebesar 66, nilai max 76, nilaim min 60 dan simpangan baku (SD) sebesar 5,24 sedangkan median (Me) 66 dan modus (Mo) sebesar 68. Data diatas dianalisis secara statistik. Distribusi data dimasukkan ke dalam tabel berikut ini :

Tabel 4.6 Hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajan *non - team teaching* dan memiliki motivasi belajar tinggi

KELAS	INTERVAL		VAL	TANDA	FREKUENSI	FREKUENSI
				KELAS	ABSOLUT	RELATIF
1	60 - 65		65	62.5	4	50%
2	66	-	71	68.5	3	38%
3	72	-	77	74.5	1	13%
JUMLAH					8	100%

Distribusi frekuensi hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *non – team teaching* dan memiliki motivasi tinggi pada tabel 4.6 dapat dibuat dalam bentuk grafik histogram berikut:

Gambar 4.6 Histogram Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Mengikuti Strategi Pembelajaran *Non – Team Teaching* Dan Memiliki Motivasi Belajar Tinggi


7. Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Mengikuti Strategi Pembelajan *Team Teaching* Dan Memiliki Motivasi Rendah (A1B2)

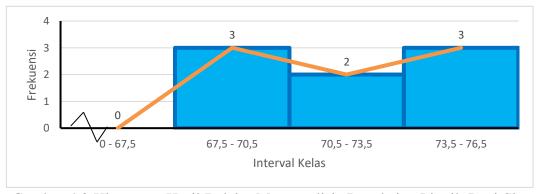
Berdasarkan pada data yang dikumpulkan dari responden sebanyak 8 orang siswa, diketahui hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajan *team teaching* dan memiliki motivasi rendah, diperoleh rentang antara 60- 65, dengan rata - rata sebesar 68, nilai max 76, nilai min 60 dan simpangan baku (SD) sebesar 5,24 sedangkan median (Me) 68 dan modus (Mo) sebesar 76. Data diatas dianalisis secara statistik. Distribusi data dimasukkan ke dalam tabel berikut ini :

Tabel 4.7 Hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajan *team teaching* dan memiliki motivasi belajar rendah

KELAS	INTERVAL		TANDA KELAS	FREKUENSI ABSOLUT	FREKUENSI RELATIF
1	60	- 65	62.5	3	38%
2	66	- 71	68.5	2	25%
3	72	- 77	74.5	3	38%
JUMLAH				8	100%

Distribusi frekuensi hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajan *team teaching* dan memiliki motivasi rendah pada tabel 4.7 dapat dibuat dalam bentuk grafik histogram berikut:

Gambar 4.7 Histogram Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Mengikuti Strategi Pembelajaran *Team Teaching* Dan Memiliki Motivasi Belajar Rendah


8. Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Mengikuti Strategi Pembelajaran Non – Team Teaching Dan Memiliki Motivasi Belajar Rendah (A2B2)

Berdasarkan pada data yang dikumpulkan dari responden sebanyak 8 orang siswa, diketahui hasil belajar menganalisis rangkaian listrik pada kelompok siswa yang diajar dengan strategi pembelajaran *non – team teaching* dan memiliki motivasi belajar rendah, diperoleh rentang antara 68-70, dengan rata - rata sebesar 72, nilai max 76, nilai min 68 dan simpangan baku (SD) sebesar 3,70 sedangkan median (Me) 72 dan modus (Mo) sebesar 76. Data diatas dianalisis secara statistik. Distribusi data dimasukkan ke dalam tabel berikut ini:

Tabel 4.8 Hasil belajar menganalisis rangkaian listrik pada kelompok siswa yang diajar dengan strategi pembelajan *non - team teaching* dan memiliki motivasi belajar rendah

_	orajar remaari							
	KELAS	INTERVAL		TANDA KELAS	FREKUENSI ABSOLUT	FREKUENSI RELATIF		
	1	68 - 70		69	3	38%		
	2	71	-	73	72	2	25%	
	3	74 - 76		75	3	38%		
	JUMLAH					8	100%	

Distribusi frekuensi hasil belajar menganalisis rangkaian listrik pada kelompok siswa yang diajar dengan strategi pembelajaran *non – team teaching* dan memiliki motivasi belajar rendah pada tabel 4.7 dapat dibuat dalam bentuk grafik histogram berikut:

Gambar 4.8 Histogram Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Mengikuti Strategi Pembelajaran *Non – Team Teaching* dan Memiliki Motivasi Belajar Rendah

4.2. Pengujian Persyaratan Analisis

Pengujian persyaratan analisis merupakan persyaratan yang harus dipenuhi sebelum dilakukan varians (Anava). Ada dua syarat harus dipenuhi sebelum melakukan analisis varians (Anava), yaitu uji normalitas dan uji homogenitas. Untuk uji normalitas data dalam penelitian ini menggunakan uji Liliefors dan untuk uji homogenitas menggunakan Uji Bartlett keduanya pada taraf signifikan $\alpha=0.05$.

4.2.1. Uji Normalitas

Uji normalitas skor hasil belajar menganalisis rangkaian listrik dilakukan dengan menggunakan uji Liliefors pada taraf signifikan $\alpha=0.05$. Cara pengujiannya dapat dilihat pada lampiran. Berikut adalah tabel kesimpulan pengujian normalitas data:

Tabel 4.9 Kesimpulan hasil uji normalitas keseluruhan data

Kelompok	N	Lo	Lt	Kesimpulan
A1	16	0.167	0.222	Normal
A2	16	0.199	0.222	Normal
B1	16	0.221	0.222	Normal
B2	16	0.160	0.222	Normal
A1B1	8	0.250	0.313	Normal
A2B1	8	0.226	0.313	Normal
A1B2	8	0.152	0.313	Normal
A2B2	8	0.235	0.313	Normal

Keterangan:

- A1 :Kelompok strategi pembelajaran *team teaching* secara keseluruhan
- A2 :Kelompok strategi pembelajaran non team teaching secara keseluruhan
- B1 :Kelompok siswa yang memiliki motivasi belajar tinggi
- B2 :Kelompok siswa yang memiliki motivasi belajar rendah
- A1B1 :Kelompok siswa dengan strategi pembelajaran *team teaching* dan memiliki motivasi belajar tinggi
- A2B1 :Kelompok siswa dengan strategi pembelajaran *non team teaching* dan memiliki motivasi belajar tinggi

A1B2 :Kelompok siswa dengan strategi pembelajaran *team teaching* dan memiliki motivasi belajar rendah

A2B2 :Kelompok siswa dengan strategi pembelajaran *non - team teaching* dan memiliki motivasi belajar rendah

Lo :Harga Liliefors observasi Lt :Harga Liliefors tabel

Berdasarkan tabel tersebut, diperoleh Lo untuk seluruh kelompok sampel lebih kecil dibanding dengan Lt. Dengan demikian dapat disimpulkan bahwa sampel berasal dari populasi berdistribusi normal. Maka hasil ini memberikan implikasi bahwa analisis statistika dapat diguanakan untuk menguji hipotesis yang akan diajukan dalam penelitian ini, sehingga syarat pertama untuk pengajuan telah terpenuhi.

4.2.2. Uji Homogenitas

Pengajuan homogenitas mengenai pada masing — masing kelompok perlakuan, dilakukan dengan Uji Bartlett pada taraf signifikasi $\alpha=0.05$. Perhitungan uji homogenitas data hasil belajar menganalisis rangkaian listrik secara lengkap dapat dilihat pada lampiran, kesimpulan hasil perhitungan uji homogenitas pada masing — masing kelompok dilihat pada tabel dibawah ini

Tabel 4.10 Keismpulan hasil perhitungan uji Bartlett $\alpha = 0.05$.

Kelompok	Varians	Varians Gabungan	X^2 hitung	X tabel	Kesimpulan
A1B1	9,14				
A1B2	27,43	19,43	2,88	7,81	Homogen
A2B1	27,43	19,43	2,00	7,01	Homogen
A1B2	13,71				

Keterangan:

A1 :Kelompok strategi pembelajaran team teaching secara keseluruhan

A2 :Kelompok strategi pembelajaran *non - team teaching* secara keseluruhan

B1 :Kelompok siswa yang memiliki motivasi belajar tinggi

B2 :Kelompok siswa yang memiliki motivasi belajar rendah

A1B1 :Kelompok siswa dengan strategi pembelajaran *team teaching* dan memiliki motivasi belajar tinggi

A1B2 :Kelompok siswa dengan strategi pembelajaran *team teaching* dan memiliki motivasi belajar rendah

A2B1 :Kelompok siswa dengan strategi pembelajaran *non - team teaching* dan memiliki motivasi belajar tinggi

A2B2 :Kelompok siswa dengan strategi pembelajaran *non - team teaching* dan memiliki motivasi belajar rendah

X² hitung :Harga Chi-kuadrat hitung

X tabel :Harga Chi-kuadrat tabel

Hasil perhitungan sebagaimana digambarkan pada tabel 4.10 di atas, harga setiap perlakuan memiliki $X_{hitung}^2 < X_{tabel}$ pada taraf signifikansi $\alpha = 0.05$. Dengan demikian dapat disimpulkan bahwa keempat data perlakuan mempunyai varians yang sama besar (homogen)

4.3. Pengujian Hipotesis

Data hasil penelitian sudah teruji normalitas dan homogenitas maka syarat untuk analisis varians (ANAVA) terpenuhi. Pengujian hipotesis menggunakan analisis varians (ANAVA) dua arah. Hal ini dilakukan berdasarkan desain penelitian 2x2 yang telah dijelaskan pada bab sebelumnya. Tujuan pengujian Anava Dua jalur adalah menyelidiki dua pengaruh utama. Pengaruh utama dibedakan atas strategi pembelajaran dan motivasi belajar siswa. Hasil perhitungan ANAVA Dua Jalur, dapat dilihat dari tabel dibawah ini:

Tabel 4.11 Rangkuman Hasil Perhitungan Anava 2x2

Sumber Varians	JK	dk	RJK	F hitung	F tab
Antar A	968.000	1	968.000	49.824	4.196
Antar B	648.000	1	648.000	33.353	4.196
Dalam	544.000	28	19.429		
Total	3960.000	31		•	

Ket:

Dk` = derajat kebebasan

RJK = Rerata Jumlah Kuadrat

JK = Jumlah Kuadrat

1. Terdapat Perbedaan Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Mengikuti Strategi Pembelajaran *Team Teaching* Dan Siswa yang Mengikuti Pembelajaran Dengan Strategi Pembelajaran *Non-Team Teaching* (A1 & A2)

Bedasarkan hasil analisis varians (ANAVA) pada taraf signifikan $\alpha=0,05$ didapat $F_{\rm hitung}$ 49.824 dan $F_{\rm t}=4.196$. Rangkumannya dapat dilihat pada lampiran. Perhitungannya dapat dilihat dilampiran, dengan demikian $F_{\rm hitung}>F_{\rm t}$ sehingga Ho ditolak. Kesimpulannya bahwa secara keseluruhan terdapat perbedaan nyata antara strategi pembelajaran team teaching dan non – team teaching terhadap hasil belajar menganalisis rangkaian listrik. Dengan kata lain bahwa hasil belajar belajar mengananlisis rangkaian listrik menggunakan strategi pembelajaran team teaching $\bar{\chi}=74,50$ lebih baik daripada hasil belajar menganalisis rangkaian listrik menggunakan strategi pembelajaran non – team teaching $\bar{\chi}=72,25$. Ini berarti hipotesis penelitian pertama yang menyatakan bahwa terdapat perbedaan antara strategi pembelajaran team teaching dan strategi pembelajaran non team teaching terhadap hasil belajar menganalisis rangkaian listrik telah teruji. Hal ini terbukti berdasarkan hasil dalam analisis varians (ANAVA) antar A hasilnya sebagai berikut:

Tabel 4.12 Kesimpulan Hasil Perhitungan Uji Dunnett antara A1 dan A2

Kelompok	$\mathbf{F}_{ ext{hitung}}$	F tab	Keterangan
A1 & A2	49.824	4.196	signifikan

Keterangan:

A₁ : Kelompok strategi pembelajaran *team teaching* secara keseluruhan
 A₂ : Kelompok strategi pembelajaran *non- team teaching* secara kesluruhan

2. Terdapat Perbedaan Bagi Siswa yang Mengikuti Strategi Pembelajaran Team Teaching Dan Memiliki Motivasi Belajar Tinggi Mempunyai Hasil Belajar yang Lebih Tinggi Dibandingkan dengan Siswa yang Mengikuti Strategi Pembelajaran Non-Team Teaching Dan Memiliki Motivasi Belajar Tinggi (A1B1 & A2B1)

Perhitungan analisis varians tahap lanjut dengan uji dunnett untuk membandingkan kelompok motivasi belajar tinggi dengan kedua trategi pembelajaran. Perhitungan mengenai perbedaan pengaruh bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi belajar tinggi mempunyai hasil belajar yang lebih tinggi dibandingkan dengan siswa yang mengikuti strategi pembelajaran *nonteam teaching* dan memiliki motivasi belajar tinggi (A1B1 : A2B1) secara lengkap dapat dilihat pada lampiran. Kesimpulan hasil perhitungan uji dunnett seperti pada tabel berikut ini :

Tabel 4.13 Kesimpulan Hasil Perhitungan Uji Dunnett antara A1B1 dan A2B1

Kelompok	t hitung	t tab	Keterangan			
A1B1 & A2B1	11.797	1.70	signifikan			

Keterangan:

A1B1 : Kelompok strategi pembelajaran *team teaching* dengan motivasi be;ajar tinggi

A2B1 : Kelompok strategi pembelajaran *non – team teaching* dengan motivasi belajar tinggi

Berdasarkan tabel 4.13 menuntukkan bahwa harga $t_{hitung}=11,80$ lebih besar daripada t tabel = 1,70 atau $t_{hitung}>$ t tab pada taraf signifikan $\alpha=0,05$ dengan demikian hipotesis nol (Ho) ditolak dan hipotesis alternative (H1)

diterima, artinya bahwa hasil belajar menganalisis rangkaian listrik yang mengikuti strategi pembelajaran $team\ teaching$ dan memiliki motivasi tinggi ($\bar{\chi}$ = 92,00) lebih tinggi daripada hasil belajar menganalisis rangkaian listrik yang mengikuti strategi pembelajaran non - $team\ teaching$ dan memiliki motivasi tinggi ($\bar{\chi}$ = 66,00). Hal ini berarti hipotesis penelitian kedua yang menyatakan bahwa terdapat perbedaan bagi siswa yang mengikuti strategi pembelajaran $team\ teaching$ dan memiliki motivasi belajar tinggi mempunyai hasil belajar yang lebih tinggi dibandingkan dengan siswa yang mengikuti strategi pembelajaran non- $team\ teaching$ dan memiliki motivasi belajar tinggi telah teruji.

3. Terdapat Perbedaan Bagi Siswa yang Mengikuti Strategi Pembelajaran *Team Teaching* Dan Memiliki Motivasi Belajar Rendah Mempunyai Hasil Belajar yang Lebih Rendah Dibandingkan dengan Siswa yang Mengikuti Strategi Pembelajaran *Non-Team Teaching* Dan Memiliki Motivasi Belajar Rendah (A1B2 & A2B2)

Perhitungan analisis varians tahap lanjut dengan uji dunnett untuk membandingkan kelompok motivasi belajar rendah dengan kedua strategi pembelajaran. Perhitungan mengenai perbedaan pengaruh bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi belajar rendah mempunyai hasil belajar yang lebih rendah dibandingkan dengan siswa yang mengikuti strategi pembelajaran *non-team teaching* dan memiliki motivasi belajar rendah (A1B2: A2B2) secara lengkap dapat dilihat pada lampiran. Kesimpulan hasil perhitungan uji dunnett seperti pada tabel berikut ini:

Tabel 4.14 Kesimpulan Hasil Perhitungan Uji Dunnett Antara A1B2 dan A2B2

Kelompok	t o	t tab	Keterangan			
A1B2 & A2B2	1.81	1.70	signifikan			

Keterangan:

A1B2: Kelompok strategi pembelajaran *team teaching* dengan motivasi belajar rendah

A2B2: Kelompok strategi pembelajaran $non-team\ teaching\ dengan\ motivasi$ belajar rendah

Berdasarkan tabel 4.14 menuntukkan bahwa harga to = 1,80 lebih besar daripada t tabel = 1,70 atau to > t tab pada taraf signifikan α = 0,05 dengan demikian hipotesis nol (Ho) ditolak dan hipotesis alternative (H1) diterima, artinya bahwa hasil belajar menganalisis rangkaian listrik yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi rendah ($\bar{\chi}$ = 68,00) lebih rendah daripada hasil belajar menganalisis rangkaian listrik yang mengikuti strategi pembelajaran *non - team teaching* dan memiliki motivasi rendah ($\bar{\chi}$ = 72,00). Hal ini berarti hipotesis penelitian ketiga yang menyatakan bahwa terdapat perbedaan bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi belajar rendah mempunyai hasil belajar yang lebih rendah dibandingkan dengan siswa yang mengikuti strategi pembelajaran *non-team teaching* dan memiliki motivasi belajar rendah telah teruji.

4.4 Pembahasan

- 1. Terdapat Perbedaan Hasil Belajar Menganalisis Rangkaian Listrik Bagi Siswa yang Mengikuti Strategi Pembelajaran *Team Teaching* Dan Siswa yang Mengikuti Pembelajaran dengan Strategi Pembelajaran *Non-Team Teaching* (A1 & A2)
- Tujuan umum penelitian ini adalah untuk memperoleh gambaran yang lebih lengkap tentang pengaruh stratgei pembelajaran dan motivasi belajar terhadap hasil belajar menganalisis rangkaian listrik. Berdasarkan hasil analisis varians dua jalan pada baris A ditemukan bahwa Fhitung lebih besar dari Ftabel (Fhitung = 49,82 > Ftabel (0,05;1;28) = 4,19). Ini menunjukkan bahwa nilai hasil belajar menganalisis

rangkaian listrik terdapat perbedaan yang signifikan antara strategi pembelajaran *team teaching* dengan strategi pembelajaran *non – team teaching*. Perbedaan ini ditunjukkan dengan nilai rata – rata nilai hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajran *team teaching* sebesar 80,00 dan rata – rata nilai hasil belajar menganalisis ragkaian listrik bagi siswa yang mengikuti strategi pembelajan *non – team teaching* sebesar 69,00. Hal ini mempunyai arti bahwa terdapat perbedaan nilai hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan nilai hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan nilai hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *non-team teaching*.

Hasil penelitian tersebut sejalan dengan penelitian yang dilakukan oleh Arief (2011: 70) yang berjudul pengaruh penerapan strategi pembelajaran *team teaching* terhadap hasil belajar siswa kelas XII SMK Muhammadiyah Prambanan pada pembelajaran teori motor otomotif 2 dengan hasil penelitian bahwa terdapat peningkatan hasil belajar siswa kelas eksperimen sebelum mendapatkan perlakuan dengan sesudah mendapatkan perlakuan menggunakan strategi pembelajaran *team teaching*. Hasil tersebut dapat dilihat dengan prosentase peningkatan 24,3 %. Selain itu Asmani (2010: 49) bahwa dengan model kerjasama yang saling menguntungkan antar guru yang tergabung dalam team teaching tersebut, yang seluruh anggota timnya berkonsentrasi untuk membuat siswa belajar secara efektif, inovatif, kreatif, menantang, dan menyenangkan, maka pekerjaan guru secara idividual semakin ringan. Selain itu, pembelajaran akan semakin tidak membosankan siswa. Sebab, pekerjaan yang diilakukan oleh satu team akan lebih baik dibandingkan dengan pekerjaan yang diselesaikan secara individu.

Pada penelitian ini menunjukan adanya perbedaan hasil belajar siswa yang dibelajarkan dengan pendekatan *team teaching* dan *non – team teaching* ini dikarenakan dalam proses pembelajaran yang terjadi dikelas *team teaching* siswa merasa lebih nyaman karena dipandu oleh dua orang guru yang siap melayani kesulitan dalam pemecahan kesulitan belajar terutama pada mata pelajaran menganalisis rangkaian listrik. Pada strategi pembelajan *non – team teaching*, siswa merasa jenuh karena dikelas ini guru cenderung otoriter yang membuat siswa kurang nyaman.

Dari hasil pembuktian tersebut di atas dapat disimpulkan bahwa pemilihan strategi pembelajaran harus disesuiakan dengan karekteristik siswa. Penggunaan strategi pembelajaran yang tepat dalam menyampaikan materi pelajaran memungkinkan siswa saling berinteraksi baik dengan guru maupun dengan siswa lainnya sehingga dapat meningkatkan hasil belajarnya.

3. Terdapat Perbedaan Bagi Siswa yang Mengikuti Strategi Pembelajaran *Team Teaching* Dan Memiliki Motivasi Belajar Tinggi Mempunyai Hasil Belajar yang Lebih Tinggi Dibandingkan dengan Siswa yang Mengikuti Strategi Pembelajaran *Non-Team Teaching* Dan Memiliki Motivasi Belajar Tinggi (A1B1 & A2B1)

Hasil uji Dunnett pada siswa yang memiliki motivasi belajar tinggi, nilai thitung = 11,80 lebih besar dar t tabel (0,05;28) = 1,70. Dengan demikian dapat disimpulkan bahwa hasil belajar hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi tinggi lebih tinggi daripada siswa yang mengikuti strategi pembelajan *non* – *team teaching* dan memiliki motivasi tinggi.

Perbedaan motivasi belajar siswa yang dimiliki siswa akan berpengaruh terhadap hasil belajar menganalisis rangkaian listrik. Motivasi belajar siswa yang

dimiliki siswa diperlukan sebagai dasar dalam mengikuti pembelajaran menganalisis rangkaian listrik. Hasil penelitian tersebut sejalan dengan penelitian yang dilakukan oleh Mut'ah (2014: 68) yang berjudul pengaruh motivasi belajar siswa terhadap hasil belajar siswa pada bidang studi sejarah keudayaan islam di MTSN 19 Jakarta dengan hasil penelitian bahwa motivasi belajar mempunyai pengaruh yang signifikan terhadap hasil belajar siswa pada bidang studi Sejarah Kebudayaan Islam. Hal ini ditunjukkan melalui koefisien kolerasi sebesar 0.4231. Hasil penelitian tersebut sejalan dengan pendapat motivasi belajar menurut Wingkel adalah keseluruhan daya penggerak psikis di dalam diri siswa yang menimbulkan kegiatan belajar, menjamin kelangsungan kegiatan belajar dan memberikan arah pada kegiatan belajar dan memberikan arah pada kegiatan belajar itu demi mencapai suatu tujuan (Wingkel, 2009: 169). Hasil belajar yang dicapai siswa merupakan bagian dari munculnya motivasi belajar yang tinggi dari dalam diri siswa. Hal ini akan menimbulkan suatau dorongan yang kuat untuk berhasil atau dapat mengembangkan kemampuan berkaitan dengan belajar matapelajaran menganalisis rangkaian listrik.

Dengan menggunakan dua jenis strategi pembelajaran, menggunakan strategi pembelajaran *team taching* kepada siswa yang memiliki motivasi belajar tinggi sangat tepat. Dengan memiliki motivasi tinggi, siswa dapat secara tepat dan cepat memahami mata pelajaran menganalisis rangkaian listrik. Strategi pembelajaran *non – team teaching* bagi siswa yang memiliki motivasi tinggi, rata – rata hasil belajarnya rendah dibanding dengan stratgei pembelajaran *team teaching*. Hal ini berarti bahwa terdapat perbedaan hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki

motivasi tinggi dengan siswa yang mengikuti strategi pembelajaran *non – team teaching* dan memiliki motivasi tinggi.

4. Terdapat Perbedaan Bagi Siswa yang Mengikuti Strategi Pembelajaran *Team Teaching* Dan Memiliki Motivasi Belajar Rendah Mempunyai Hasil Belajar yang Lebih Rendah Dibandingkan dengan Siswa yang Mengikuti Strategi Pembelajaran *Non-Team Teaching* Dan Memiliki Motivasi Belajar Rendah (A1B2 & A2B2)

Hasil uji Dunnett pada hasil belajar menganalisis rangkaian listrik dengan motivasi belajar rendah diperoleh nilai t hitung = 1,81 lebih besar dari t tabel (0,05;28) = 1,70. Dengan demikian dapat disimpulkan bahwa skor hasil belajar menganalisis rangkaian listrik dengan motivasi rendah, pada siswa yang mengikuti strategi pembelajaran *team teaching* lebih rendah daripada siswa yang mengikuti strategi pembelajaran *non – team teaching*.

Hasil penelitian tersebut sejalan dengan penelitian yang dilakukan oleh Chika (2014: 56) yang berjudul pengaruh metode think-talk-write (ttw) terhadap hasil belajar geografi berdasarkan motivasi berprestasi siswa kelas x di SMA Kolombo Sleman Yogyakarta dengan hasil penelitian bahwa Hasil pengolahan data posttest menunjukkan mean kelas eksperimen (TTW) sebesar 14,33 dan mean kelas kontrol (konvensional) sebesar 20,58. Peningkatan nilai di kelas eksperimen adalah sebesar 0,73. Peningkatan nilai di kelas kontrol sebesar 5,18.

Pembelajaran dengan menggunakan strategi pembelajaran *team teaching* bagi siswa yang memiliki motivasi belajar rendah, hasil belajarnya akan lebih rendah. Hal ini terjadi karena penggunaan strategi pembelajaran *team teaching* membutuhkan kemampuan motivasi belajar siswa untuk berpikir dan aktif dalam menyelesaikan tugas mata pelajaran.

Strategi dengan menggunakan strategi pembelajaran *non – team teaching* bagi siswa yang memiliki motivasi belajar rendah hasil belajarnya akan lebih tinggi atau tepat digunakan. Hal ini strategi pembelajaran *non team teaching*, guru membantu meningkatkan kemampuan siswa untuk memecahkan masalah dalam pembelajaran. Hal ini sejalan dengan pendapat Menurut Ujang Sukandi (2003:8) mendeskripsikan bahwa pendekatan konvensional ditandai dengan guru mengajar lebih banyak mengajarkan tentang konsep-konsep bukan kompetensi, tujuannya adalah siswa mengetahui sesuatu bukan mampu untuk melakukan sesuatu, dan pada saat proses pembelajaran siswa lebih banyak mendengarkan.

Hal ini berarti bahwa terdapat perbedaan hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi belajar rendah mempunyai hasil belajar yang lebih rendah dibandingkan dengan siswa yang mengikuti strategi pembelajaran *non-team teaching* dan memiliki motivasi belajar rendah.

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil penelitian dan pembahasan diperoleh kesimpulan bahwa:

- 1. Hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *team teaching* lebih tinggi dibandingkan dengan siswa yang mengikuti strategi pembelajaran *non team teaching*.
- 2. Hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi tinggi lebih tinggi dibandingkankan dengan siswa yang mengikuti strategi pembelajaran *non team teaching* dan memiliki motivasi tinggi .
- 3. Hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi rendah lebih rendah dibandingkankan dengan siswa yang mengikuti strategi pembelajaran *non team teaching* dan memiliki motivasi rendah.

5.2 Saran

Berdasarkan hasil penelitian ini, peneliti menyampaikan beberapa saran:

- Guru hendaknya memilih strategi pembelajaran yang tepat sesuai dengan karakteristik siswa salah satunya dari segi motivasi belajar yang dimiliki oleh siswa agar siswa dapat meningkatkan hasil belajar sesuai dengan tujuan pembelajaran yang diharapkan.
- 2. Bagi siswa yang memiliki motivasi belajar tinggi sebaiknya menggunakan strategi pembelajaran team teaching, sedangkan bagi siswa yang memiliki motivasi trendah menggunakan strategi pembelajaran *non team teaching*.

3. Dalam penelitian ini mengungkapkan perbedaan antara strategi pembelajaran *team teaching* dan *non-team teaching*, sehingga membuka kesempatan bagi peneliti lain untuk meneliti lebih luas dan mendalam terhadap strategi pembelajaran lain yang berpengaruh terhadap hasil belajar dan motivasi belajar siswa.

DAFTAR PUSTAKA

- A.M, Sudirman. 1994. *Interaksi dan Motifasi Belajar Mengajar*. Jakarta: Raja Grafindo.
- Arikunto, Suharsimi. 1984. *Dasar-dasar Evaluasi Pendidikan*. Jakarta: Bina Aksara
- Arikunto, Suharsimi. 2006. *Prosedur Penelitian: Suatu Pendekatan Praktik Edisi Revisi VI*. Jakarta: Rineka Cipta
- Asmani, Jamal Ma'mur. 2010. Pengembangan dan Pelaksanaan Lengkap Micro Teaching dan Team teaching. Jogjakarta: Diva Press.
- Djaali. 2008. Psikologi Pendidikan. Jakarta: PT Bumi Aksara
- Djamarah, S. B. 1995. Strategi Belajar Mengajar. Jakarta: Rineka Cipta.
- Gora, Winastwan, dkk. 2010. *PAKEMATIK Strategi Pembelajaran Inovatif Berbasis TIK*. Jakarta: PT Elex Media Komputindo
- Hari Sutopo, Arief. 2011. Pengaruh Penerapan Strategi Pembelajaran Team Teaching Terhadap Hasil Belajar Siswa Kelas XII Smk Muhammadiyah Prambanan Pada Pembelajaran Teori Motor Otomotif 2 .Yogyakarta : UNY
- Hodijah dan Retnaningsih. 2012. *Hubungan Antara Intensitas Komunikasi Orangtua Dengan Motivasi Belajar*. Jurnal Pendidikan Psikologi: No.2, Vol. 12.
- Hutabarat, E. P. 1995. Cara Belajar: Pedoman Praktis Untuk Belajar Secara Efisien dan Aktif. Bandar Lampung
- Margono, S. 2007. *Metode Penelitian Pendidikan komponen MKDK*. Jakarta: Rineka Cipta
- Mutmainah, Mut'ah. 2014. Pengaruh Motivasi Belajar Terhadap Hasil Belajar Siswa pada Bidang Studi Sejarah Keudayaan Islam di MTSN 19 Jakarta. Jakarta. UIN
- Novriani, Chika .2014. Pengaruh Metode Think-Talk-Write (TTW) Terhadap Hasil Belajar Geografi Berdasarkan Motivasi Berprestasi Siswa Kelas X Di SMA Kolombo Sleman Yogyakarta. Yogyakarta. UNY
- Priowirjanto, Gator. 2003. *Rangkaian Listrik*. Jakarta: Departemen Pendidikan Nasional

- Purwanto, M. Ngalim. 1992. Psikologi Pendidikan. Bandung: Remaja Rosdakarya
- Roestiyah N K. 1982. Masalah-masalah Ilmu Keguruan. Jakarta: Bina Aksara
- Roestiyah N K . 2001. Strategi Belajar Mengajar. Jakarta : Rineka Cipta
- Sadia, I W. 2004. Efektivitas model konflik kognitif dan model siklus belajar untuk memperbaiki miskonsepsi siswa dalam pembelajaran fisika. Singaraja: IKIP Negeri Singaraja
- Sanjaya, Wina. 2007. Strategi Pembelajaran. Jakarta: Prenada Media Group.
- Shaplin, Judson T dan Henry F Olds, Jr., Ed., 1964. *Team teaching*. New York; Harper and Row Publisher, Inc.
- Siregar, Eveline dan Nara, Hartini. 2007. *Buku Ajar Teori Belajar dan Pembelajaran*. Jakarta: FIP Universitas Negeri Jakarta
- Slameto. 2003. *Belajar dan Faktor-Faktor yang Mempengaruhinya*. Jakarta: Rineka Cipta
- Sudjana, Nana. 1993. Dasar-dasar Evaluasi Pendidikan. Jakarta: Bumi Aksara
- Sudjana, Nana. 2001. *Penilaian Hasil Proses Belajar Mengajar*. Bandung: PT Remaja Rosdakarya
- Sugiyono. 2013. Metode Penelitian Pendidikan. Bandung: Alfabeta
- Sukandi, Ujang. 2003. Belajar Aktif dan Terpadu. Surabaya: Duta Graha Pustaka.
- Surapranata, Sumarna. 2004. *Validitas, Reabilitas dan Interprestasi Hasil Tes.*Bandung; PT Rosida Karya
- Suryabrata, Sumadi. 1989. Psikologi Pendidikan. Jakarta: CV Rajawali
- Sutopo, Arief Hari. 2011. Pengaruh Penerapan Strategi Pembelajaran Team Teaching Terhadap Hasil Belajar siswa Kelas XII SMK Muhammadiyah Prambanan Pada Pembelajaran Teori Motor Otomotif 2(skripsi). Jojakarta: UNY
- Syah, Muhibbin. 1997. *Psikologi Pendidikan*. Bandung: Rosdakarya.
- Trianto. 2011. Model-model pembelajaran inovatif berorientasi konstruktivitis. Jakarta: Prestasi Pustaka.
- Verducci, Frank M. 1980. *Measurement Concepta in Physical Education*. St. Louis : Mosby Company.

- Villa, Richard A, dkk. 2008. A Guide to Co Teaching. New York: Corwin Press. Warista, Bambang. 2008. Teknologi Pembelajaran Landasan dan Aplikasinya. Jakarta: Rineka Cipta.
- Winkel. 1982. Psikologi Pendidikan dan Evaluasi Pengajaran. Jakarta: Gramedia
- Wingkel, W. S. 2009. Psikologi Pengajaran. Yogyakarta: PT Media Abadi.
- Kholik, M. 2011. *Metode Pembelajaran Konvensional*. [Online]. Tersedia: https://muhammadkholik.wordpress.com/2011/11/08/evaluasi-pembelajaran/. [27 April 2016]
- Zohari, Dede N, *Team teaching* (Salah Satu Solusi Strategi untuk Pembelajaran). Online. Tersedia di:http://trisnawisnuwardana.blogspot.com/2010/02team-teaching.html. tanggal 01 November 2015

BIODATA PENULIS

Furi Endang Palupi Lahir di Bekasi, 09 September 1992 dari ayah bernama Sumarna (Alm) dan ibu bernama Fetsri. Penulis merupakan putri pertama dari dua bersaudara. Penulis menyelesaikan pendidikan Sekolah Dasar di SD Negeri 1 Bekasi Jaya, pada tahun 1998 dan lulus pada tahun 2004, kemudian penulis melanjutkan Pendidikan Sekolah

Menengah Pertama di SMP Negeri 3 Bekasi, pada tahun 2004 dan lulus pada tahun 2007.

Penulis melanjutkan Pendidikannya di SMA Bani Saleh pada tahun 2007 dan lulus pada tahun 2010. Setelah tamat sekolah SMA penulis ingin melanjutkan pendidikan. Penulis mencoba mengikuti ujian masuk Universitas Negeri Jakarta melalui jalur SNMPTN pada tahun 2010 untuk Program Studi Pendidikan Teknik Elektro Jurusan Teknik Elektro Fakultas Teknik Universitas Negeri Jakarta.

Lampiran 1. Instrumen Penelitian

A. Instrumen Motivasi Belajar

KUISIONER PENELITIAN

No. Responden:
Nama:
Kelas:
Petunjuk pengisian:

- 1. Angket ini bertujuan untuk mengetahui Motivasi Belajar Siswa. Untuk itu kami mohon bantuan untuk mengisi angket ini.
- 2. Kesungguhan serta kejujuran atas jawaban yang diberikan sangat diharapkan dan tidak mempengaruhi prestasi belajar anda.
- 3. Bacalah pernyataan dengan teliti
- 4. Jawaban terdiri dari 5 (lima) alternatif
 - SS (Sangat Setuju)
 - S (Setuju)
 - R (Ragu-ragu)
 - TS (Tidak setuju)
 - STS (Sangat tidak setuju)
 - Berilah tanda silang (x) pada kolom yang tersedia untuk pernyataan yang sesuai dengan pendapat anda.

NT-	D.,,,,,,,,,,,	CC	С	D	TC	стс
No.	Pernyataan	SS	S	R	TS	STS
1	Saya belajar karena ingin menjadi juara kelas					
2	Saya kurang tertarik pada kegiatan belajar					
3	Saya belajar karena pelajarannya menyenangkan					
4	Saya merasa sangat malu jika mendapat nilai jelek, karena					
4	bagi saya itu hal yang sangat memaluka					
5	Saya tidak berkeinginan untuk mencapai nilai yang tinggi					
6	Saya belajar apabila ada ulangan					
7	Belajar tidak ada kaitannya dengan cita cita saya kelak					
8	Saya malas belajar karena tugas yang diberikan guru					
	banyak sekali					
9	Saya belajar karena lingkungan tempat tinggal saya					
	nyaman					
	Saya senang belajar di sekolah karena gurunya					
10	menerangkan dengan jelas sehingga saya mudah					
	memahami pelajaran					
	Saya belajar karena semua alat - alatnya tersedia di					
11	sekolah					
1.0	Saya senang apabila guru memberitahu kekurangan saya					
12	dalam belajar					
13	Saya belajar karena tugas akan diperiksa guru dan diberi					
13	nilai					
14	Saya segera menyelesaikan tugas yang sulit sampai selesai					

No.	Pernyataan	SS	S	R	TS	STS
15	Saya terburu - buru dalam mengerjakan tugas di sekolah					
16	Saya suka mengerjakan soal - soal latihan					
17	Saya akan menyelesaikan tugas yang diberikan guru hingga tuntas					
18	Saya merasa tidak mampu menyelesaikan setiap tugas yang diberikan oleh guru					
19	Lebih menyenangkan bermain daripada mengerjakan PR					
20	Saya tidak perduli walaupun prestasi saya tinggi					
21	Saya berusaha mencapai prestasi semaksimal mungkin sesuai dengan kemampuan					
22	Saya tak acuh (cuek) dengan saran yang diberikan guru untuk meningkatkan prestasi belajar					
23	Saya ingin membahagiakan orangtua dengan prestasi belajar					
24	Saya merasa senang bila guru berhalangan hadir					
25	Saya memenuhi kewajiban di sekolah walaupun sulit sekali					
26	Saya yakin dapat mencapai cita - cita yang saya inginkan					
27	Saya suka dikritik atau diberi saran oleh siapapun					
28	Saya tidak senang nilai ulangan saya diketahui orang lain					
29	Saya tidak yakin bisa lulus ujian dengan baik					
30	Saya kurang memperdulikan berapapun nilai yang saya dapatkan					

B. Instrumen Menganalisis Rangkaian Listrik

LEMBAR SOAL INSTRUMEN PENELITIAN

Satuan Pendidikan : Sekolah Menengah Kejuruan

Nama Sekolah : SMKN 1 Tambelang
Paket Keahlian : Teknik Otomasi Industri

Kelas : X

Mata Pelajaran : Menganalisis Rangkaian Listrik

Alokasi Waktu : 1 Jam

Jawablah soal-soal berikut dengan memberi tanda silang (X) pada lembar jawaban!

- 1. Apa yang dimaksud Tegangan listrik?
 - a. Sebagai penyalur arus AC
 - b. Sebagai penyalur arus DC
 - c. Sebagai arus listrik
 - d. Sebagai sumber energi listrik
 - e. Sebagai hambatan listrik
- 2. Rumus mencari Arus listrik adalah

a.
$$I = Q/t$$

d.
$$E = P/I$$

b.
$$I = P/E$$

e.
$$I = V/R$$

c.
$$I = F.G$$

- 3. Dalam hakikat listrik arus terbagi menjadi 2, yaitu
 - a. Arus berbanding terbalik dan arus rendah
 - b. Arus berbanding terbalik dan arus kuat
 - c. Arus searah dan bolak balik
 - d. Arus tegak lurus dan arus kuat
 - e. Arus sebanding terbalik dengan tegak lurus
- 4. Rumus dari Tegangan listrik adalah

a.
$$V = I.R$$

$$d. V = R.C$$

b.
$$V = M.A$$

e.
$$V = I/R$$

c.
$$V = R/C$$

- 5. Satuan arus listrik adalah ...
 - a. Ampere

d. Farad

b. Ohm

e. Volt

c. Joule

6.	Jika suatu penghantar dialiri listrik 200 mA selama 30 menit, maka banyaknya muatan					
	list	rik yang mengalir adalah				
	a.	6 C		d	. 360 C	
	b.	6,67 C		e.	6000 C	
	c.	3600 C				
7.	Be	rapakah nilai resistansi total da	ari r	rangkaian resisto	or yang dihubungkan seri di bawah	
	ini	?				
	a.	25 Ω	d.	50 Ω	$R_1 = 20 \ \Omega$ $R_2 = 25 \ \Omega$ $R_3 = 30 \ \Omega$	
	b.	45 Ω	e.	55 Ω		
	c.	75 Ω				
8.	Ka	rakteristik Tegangan AC adala	ıh			
	a.	Sumber tegangan berasal dari			kutub negatif	
	b.	Sumber tegangan dari Battery		F		
	c.	Sebagai sumber tegangan lan		ng dari PLN		
	d.	Sumber tegangan tetap	<i>6</i>	8		
		Besarnya arus tetap terhadap	wal	ktu		
9.		•			dengan tahanan dalam 100 Ω ,	
		-			batas ukurnya menjadi 100 mA	
	a.	2,00 Ω		d	. 0,02 Ω	
	b.	3,01 Ω		e.	0,01 Ω	
	c.	1,01 Ω				
10.	Be	rapakah nilai resistansi total da	ari 1	rangkaian resisto	or yang dihubung paralel di bawah	
	ini	?				
	a.	0,5 Ω	d.	2,0 Ω	$R_1 = 4 \Omega$	
	b.	1,0 Ω	e.	2,5 Ω	$R_2 = 6 \Omega$	
	c.	1,5 Ω		-	$R_3 = 12 \Omega$	

11. Sebuah alat mempunyai hambatan 150 Ω dilalui arus listrik 0,05 A, maka beda potensial penghantar tersebut adalah

a. 3,0 V

d. 75 V

b. 7,5 V

e. 300 V

c. 3.5 V

12. Suatu lampu mempunyai hambatan 500 Ω , dihubungkan dengan sumber tegangan 200 volt. Berapakah besarnya arus yang mengalir pada lampu tersebut ?

a. 0,1 A

d. 0,4 A

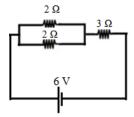
b. 0,2 A

e. 0,6 A

c. 0,3 A

13. Perhatikan gambar!

Kuat arus yang melalui rangkaian adalah


a. 1,5 A

d. 6 A

b. 2 A

e. 4 A

c. 3A

14. Sumber tegangan listrik mengalir sebesar 220 V dengan tahanan R sebesar 10 Ω . Maka Arus listriknya adalah

a. 0,22 Ampere

d. 22 Ampere

b. 2,2 Ampere

e. 2200 Ampere

c. 220 Ampere

15. Berapa harga besaran batas arus jika tegangan listrik sebesar 25 Volt dengan resistansi mulanya 3 Ω . Rangkaian tersebut diberikan R bantu yang dipasang seri sebesar 2 Ω adalah ...

a. 25 A

d. 15 A

b. 20 A

e. 5 A

c. 10 A

16. Jika ada dua resistor yaitu, R₁ dan R₂. Tentukan nilai total hambatan resistor tersebut untuk cara pemasangan seri yang benar adalah ...

a.
$$I/R_T = I/R_1 + I/R_2$$

e.
$$R_T = I/(R_1 + R_2)$$

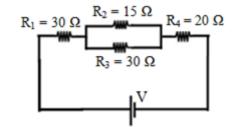
b.
$$I/R_T = (R_1 \times R_2)/(R_1+R_2)$$

c.
$$R_T = (R_1 \times R_2)/(R_1+R_2)$$

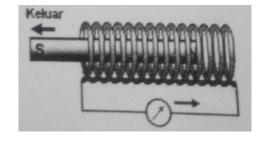
d.
$$R_T = R_1 + R_2$$

17 F	Reranakah	a muatan lietrik yang ak	an r	sindah dari se	hual	n baterai yang mengeluarkan arus
	-	A selama 5 menit ?	աու բ	man dan se	ouai	i baterar yang mengeruarkan arus
	. 200 co				d.	400 coulomb
b		oulomb			е.	600 coulomb
	. 300 co				C.	ooo coulonio
_		ibatan pengganti rangka	aian	ini adalah		R ₂ R ₃
	$2,50 \Omega$	1 00 0		5,00 Ω	R₁ ΛΛΛ-	6Ω 6Ω $R_{\rm s}$
	$2,30 \Omega$ $3,75 \Omega$		e.	$6,00\Omega$	3 Ω	R ₄ 3 Ω
	$2. 4,02 \ \Omega$		C.	0,0032		6Ω
C	. 4,02 \$2	4		\		R6 R7
19. F	Hitunglah	berapa besar nilai arus	pac	la rangkaian	di ba	nwah ini?
ä	a. 11 A		d.	0,09 A		$\overline{}$
1	b. 1,00 A	A	e.	22 A		V = 220 Volt
(c. 440 A					$ \qquad \qquad \bigcirc \qquad \qquad $
20. H	Hitunglah	berapa besar nilai tega	nga	n yang melal	ui be	eban L ?
a	. 0,1 Vo	ılt	d.	40 Volt		L = 20 Watt
b	o. 0,4 Vo	lt	e.	220 Volt	T	$-\!$
c	. 10 Vol	lt			(<u>A</u>)	I = 2A $V = ?$
21 0	1				L	─ ──
		ri kapasitor adalah			1	- X7 1.
a						Volt
b		mb			e.	farad
	. Joule					
		0 1		1 0		Jika beda potensial antara
		wat 40 V, berapakah ha	mb	atan listrik k		
a	,				d.	100 Ω
b					e.	140Ω
	2. 40 Ω					
						ı listrik yang dirangkai secara
S	-	l maka besar harga han			ian a	dalah
a				58 Ω		
b	ο. 45 Ω		e.	60 Ω		P - 20 O
C	:. 50 Ω			_	R ₁ =	30Ω $R_2 = 30 \Omega$ $R_4 = 18 \Omega$
						R ₃ = 15 Ω

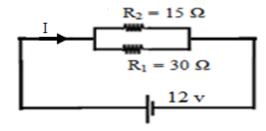
- 24. Bagaimana reaksi gaya antara dua buah muatan listrik yang tidak sejenis apabila didekatkan?
 - a. Akan saling tarik menarik
 - b. Akan saling tolak menolak
 - c. Tidak ada reaksi
 - d. Tidak ada jawaban yang benar
 - e. Jawaban A dan B benar
- 25. Jika diperlukan usaha 100 Joule untuk setiap memindahkan muatan sebesar 10 coulomb. Maka tegangan yang dibutuhkan ..

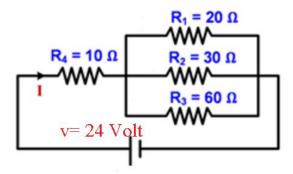

a. 10 volt

d. 4 volt


b. 8 volt

e. 2 volt


- c. 6 volt
- 26. Perhatikan gambar di bawah ini, rangkaian hambatan listrik yang dirangkai secara seri dan paralel apabila arus yang mengalir sebesar 5 Ampere maka besarnya sumber tegangan (V) adalah ...
 - a. 300 volt
 - b. 175 volt
 - c. 150 volt
 - d. 100 volt
 - e. 50 volt


- 27. Perhatikan gambar di bawah ini, apabila batang magnit tetap kita keluarkan dari dalam kumparan maka arus yang dibangkitkan oleh kawat penghantar seperti yang ditunjukkan oleh tanda panah, hal ini diakibatkan oleh adanya ...
 - a. Arus yang mengalir pada kawat penghantar
 - b. Induksi dari magnit kepada kawat penghantar
 - c. Induksi yang ditimbulkan oleh magnit batang
 - d. Elektron elektron yang bergerak pada magnit batang
 - e. Induksi yang ditimbulkan oleh kawat penghantar

- 28. Perhatikan gambar di bawah ini, rangkaian hambatan listrik yang dibutuhkan secara paralel, maka besar kuat arus yang mengalir pada I adalah
 - a. 1,0 A
 - b. 1,2 A
 - c. 1,4 A
 - d. 1,6 A
 - e. 1,8 A

- 29. Suatu beban yang mempunyai tahanan sebesar 110Ω , dihubungkan kesumber tegangan yang besarnya 220 Volt. Berapa besar daya yang mengalir pada rangkaian tersebut?
 - a. 50 Watt
 - b. 100 Watt
 - c. 270 Watt
 - d. 350 Watt
 - e. 440 Watt
- 30. Hitung nilai arus total (I_T) yang mengalir pada rangkaian di bawah ini :
 - a. 1,0A
 - b. 1,2 A
 - c. 2,0 A
 - d. 2,2 A
 - e. 3,0 A

KUNCI JAWABAN

1.	D	
2.	E	
3.	C	
4.	A	
5.	A	
6.	D	
7.	C	
8.	C	
9.	C	
10.	D	

11. B	
12. D	
13. A	
14. D	
15. E	
16. D	
17. E	
18. B	
19. D	
20. C	

21. E
22. D
23. D
24. A
25. A
26. A
27. B
28. B
29. E
30. B

Lampiran 2. Perhitungan Uji Validitas Instrumen

A. Instrumen Kuesioner Motivasi Belajar

- 1. Membuat tabel penolong untuk uji validitas.
- 2. Menghitung nilai korelasi item dengan rumus korelasi product momen pearson.

Contoh perhitungan butir pernyataan nomor 1

$$r = \frac{n \cdot \Sigma XY - (\Sigma X) (\Sigma Y)}{\sqrt{n \cdot \Sigma X^2 - (\Sigma X)^2} \left\{n \cdot \Sigma Y^2 - (\Sigma Y)^2\right\}}$$

$$r = \frac{30.\ 12551 - 108.\ 3413}{\sqrt{(30.422 - 108^2)(30.394297 - 3413^2)}}$$

$$r = 0.59$$

3. Membandingkan nilai r hitung dengan r tabel dimana taraf signifikansi 0,05 dan n=30 maka didapat r tabel = 0,361

Kriteria:

Jika $r_{hitung} > r_{tabel} = valid$

Jika $r_{hitung} < r_{tabel} = tidak valid/gugur$

- 4. Membuat kesimpulan : Pada butir pernyataan nomor 1 didapat (0,59>0,361); maka butir pernyataan nomor 1 valid.
- 5. Jadi pernyataan nomor 1 dapat dilanjutkan untuk mengambil data penelitian.

TABEL UJI VALIDITAS INSTRUMEN KUESIONER MOTIVASI BELAJAR SISWA (X2)

preposines	PERNYATAAN PERNYATAAN															vit.																
RESPONDEN	1	2	3	4	- 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	SKOR TOTAL (Y)	Y
1	4	4	4	4	5	2	5	4	4	5	4	5	4	3	5	5	4	4	5	4	5	4	5	4	5	5	5	5	5	4	131	17161
2	5	4	5	3	3	5	2	2	5	5	4	- 4	5	4	5	4	4	3	4	4	5	5	4	3	4	4	5	2	3	- 4	119	14161
3	4	5	4	5	- 4	5	4	3	4	4	4	- 4	3	3	3	5	4	3	4	4	4	5	4	5	4	4	5	3	4	5	122	14884
4	2	2	4	3	3	2	1	3	2	4	2	5	3	3	4	3	2	2	2	4	5	4	5	2	4	3	3	3	2	4	91	8281
5	4	4	4	4	2	5	4	4	4	5	4	5	5	4	5	4	4	3	3	2	4	4	5	5	4	4	5	5	5	4	124	15376
6	4	4	4	4	- 4	5	2	4	3	- 4	4	- 4	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5	4	4	118	13924
7	4	5	5	5	5	3	5	1	4	5	4	5	4	5	3	3	3	3	1	1	3	5	5	3	3	5	5	3	1	3	110	12100
8	3	4	4	4	- 4	2	3	2	5	5	4	4	5	3	5	3	4	3	2	2	5	4	- 5	1	4	5	3	4	5	4	111	12321
9	5	4	5	5	2	5	4	4	4	3	4	- 4	4	4	5	4	4	4	4	4	5	3	4	5	4	5	3	4	4	4	123	15129
10	4	2	4	3	- 5	1	5	4	3	3	2	5	3	3	1	4	3	3	1	2	3	2	- 5	1	4	4	1	3	2	5	91	8281
- 11	2	3	4	3	5	4	3	2	4	5	1	4	4	4	5	3	3	3	1	5	5	5	5	5	3	5	5	5	5	3	114	12996
12	2	5	4	5	3	3	4	4	3	3	1	5	3	4	3	1	3	3	2	2	1	4	3	2	3	4	4	1	5	3	93	8649
13	5	4	5	5	- 5	2	5	3	5	5	4	5	4	5	5	3	5	4	4	3	4	5	5	3	4	5	5	5	5	5	132	17424
14	3	4	5	4	4	5	4	4	2	4	4	5	2	5	5	3	5	4	4	2	5	2	5	5	4	5	4	3	4	4	119	14161
15	5	5	5	5	2	3	2	5	5	3	5	4	4	5	5	4	4	3	3	1	5	4	5	3	5	4	5	3	4	4	120	14400
16	3	4	4	3	2	1	4	3	2	5	3	3	5	3	3	5	3	3	5	4	5	3	5	1	4	5	3	4	4	4	106	11236
17	4	4	4	4	3	3	4	5	5	3	3	5	5	4	4	3	4	4	2	2	4	5	5	5	3	4	3	3	5	3	115	13225
18	3	5	4	5	5	3	4	4	4	5	5	5	5	5	5	5	4	3	4	5	5	4	5	4	4	5	4	4	5	4	132	17424
19	2	4	5	3	- 5	2	3	4	1	5	4	4	1	4	3	1	2	4	5	2	3	2	5	2	2	4	2	3	1	4	92	8464
20	4	4	4	4	3	2	4	5	2	4	4	4	4	5	4	4	4	4	3	4	4	3	4	4	4	4	4	5	4	3	115	13225
21	5	5	5	5	- 4	2	4	4	5	5	5	- 4	3	4	1	4	5	3	2	4	5	4	5	1	3	5	4	3	5	4	118	13924
22	4	2	4	5	- 4	5	4	4	2	3	4	- 4	4	4	3	3	4	4	4	3	4	3	3	4	3	5	4	4	4	4	112	12544
23	4	4	4	4	- 5	4	5	3	5	5	1	- 5	5	1	5	1	4	4	4	2	5	4	5	5	5	5	5	5	2	1	117	13689
24	4	4	4	5	3	5	3	4	2	4	4	- 4	2	4	2	4	3	2	2	2	4	2	5	1	3	5	4	3	4	- 4	102	10404
25	4	4	4	5	- 4	2	5	5	4	4	4	- 5	3	4	3	5	4	3	4	- 5	5	4	- 5	4	4	5	5	4	5	5	127	16129
26	4	4	5	5	3	3	4	4	3	5	4	3	5	4	4	3	4	4	4	2	5	4	- 4	4	4	5	4	5	4	2	118	13924
27	5	4	5	5	- 5	5	5	5	4	4	4	4	5	5	4	5	5	4	4	4	5	5	- 5	5	5	5	4	4	5	5	139	19321
28	2	5	5	5	5	4	5	5	3	5	5	4	4	4	5	4	5	4	5	2	5	4	5	5	4	5	3	5	4	2	128	16384
29	2	2	3	3	- 4	1	4	2	1	4	3	2	1	2	1	3	3	4	2	4	3	1	- 5	4	3	5	2	4	2	4	84	7056
30	2	3	4	5	3	1	3	2	2	4	5	5	4	2	2	2	3	2	1	4	5	1	4	3	4	4	1	1	5	3	90	8100
ΣX	108	117	130	128	114	95	114	108	102	128	109	129	112	114	112	105	113	101	95	93	130	109	139	103	114	137	114	111	117	112	3413	394297
EX ²	422	481	572	566	466	363	466	424	394	564	435	571	458	462	470	407	445	353	351	331	590	437	655	415	448	635	474	449	503	444		
ΣXY	12551	13515	14886	14721	13049	11095	13131	12462	11938	14650	12599	14732	13003	13168	13097	12217	13132	11599	11107	10671	14999	12717	15850	12046	13127	15684	13299	12882	13587	12783		
r hitung	0.59	0.53	0.42	0.46	0.18	0.47	0.36	0.38	0.63	0.27	0.41	0.18	0.53	0.48	0.64	0.56	0.81	0.39	0.54	0.18	0.52	0.64	0.14	0.54	0.53	0.41	0.67	0.53	0.52	0.10		
r tabel	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361		

TOTAL PERNYAT	'AAN VALID
DROP =	6
VALID =	24

k

RANGKUMAN UJI VALIDITAS INSTRUMEN KUESIONER MOTIVASI BELAJAR SISWA (X2)

No.	No. Butir	Phitung	r tabel	Kesimpulan
1	Pernyataan 1	0.59	0.361	VALID
2	Pernyataan 2	0.53	0.361	VALID
3	Pernyataan 3	0.42	0.361	VALID
4	Pernyataan 4	0.46	0.361	VALID
5	Pernyataan 5	0.18	0.361	DROP
6	Pernyataan 6	0.47	0.361	VALID
7	Pernyataan 7	0.36	0.361	VALID
8	Pernyataan 8	0.38	0.361	VALID
9	Pernyataan 9	0.63	0.361	VALID
10	Pernyataan 10	0.27	0.361	DROP
11	Pernyataan 11	0.41	0.361	VALID
12	Pernyataan 12	0.18	0.361	DROP
13	Pernyataan 13	0.53	0.361	VALID
14	Pernyataan 14	0.48	0.361	VALID
15	Pernyataan 15	0.64	0.361	VALID
16	Pernyataan 16	0.56	0.361	VALID
17	Pernyataan 17	0.81	0.361	VALID
18	Pernyataan 18	0.39	0.361	VALID
19	Pernyataan 19	0.54	0.361	VALID
20	Pernyataan 20	0.18	0.361	DROP
21	Pernyataan 21	0.52	0.361	VALID
22	Pernyataan 22	0.64	0.361	VALID
23	Pernyataan 23	0.14	0.361	DROP
24	Pernyataan 24	0.54	0.361	VALID
25	Pernyataan 25	0.53	0.361	VALID
26	Pernyataan 26	0.41	0.361	VALID
27	Pernyataan 27	0.67	0.361	VALID
28	Pernyataan 28	0.53	0.361	VALID
29	Pernyataan 29	0.52	0.361	VALID
30	Pernyataan 30	0.10	0.361	DROP

B. Instrumen Tes Hasil Belajar Menganalisis Rangkaian Listrik

- 1. Membuat tabel penolong untuk uji validitas.
- 2. Menghitung nilai korelasi item dengan rumus *korelasi product momen pearson*.

Contoh perhitungan butir soal nomor 1

$$r = \frac{n \cdot \Sigma XY - (\Sigma X) (\Sigma Y)}{\sqrt{n \cdot \Sigma X^2 - (\Sigma X)^2} \left\{n \cdot \Sigma Y^2 - (\Sigma Y)^2\right\}}$$

$$r = \frac{30. \ 386 - 25. \ 476}{\sqrt{(30. \ 25 - 25^2)(30. \ 8460 - 476^2)}}$$

$$r = -0.173$$

3. Membandingkan nilai r hitung dengan r tabel dimana taraf signifikansi 0,05 dan n=30 maka didapat r tabel = 0,361

Kriteria:

Jika $r_{hitung} > r_{tabel} = valid$

Jika $r_{hitung} < r_{tabel} = tidak valid/gugur$

- 4. Membuat kesimpulan : Pada butir soal nomor 1 didapat (-0,173 < 0,361); maka butir soal nomor 1 Tidak Valid.
- 5. Jadi butir soal nomor 1 tidak dapat dilanjutkan untuk mengambil data penelitian.

TABEL UJI VALIDITAS INSTRUMEN SOAL MENGANALISIS RANGKAIAN LISTRIK (Y)

No.															Butir I	em															Y	Y ²
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30		
1	- 1	- 1	- 1	0	- 1	1	- 1	- 1	1	0	- 1	0	0	0	0	0	- 1	0	- 1	0	- 1	0	- 1	0	- 1	0	0	0	0	1	15	225
2	- 1	0	- 1	0	0	0	- 1	0	1	0	0	1	0	- 1	1	1	1	-	- 1	1	0	0	- 1	1	0	0	0	0	0	٥	14	196
3	- 1	0	- 1	0	- 1	1	0	- 1	0	- 1	0	1	0	- 1	- 1	0	0	0	0	0	1	0	0	0	0	0	0	- 1	0	0	- 11	121
4	- 1	- 1	- 1	- 1	0	- 1	- 1	- 1	- 1	0	- 1	0	- 1	- 1	0	0	- 1	0	- 1	0	1	- 1	- 1	0	- 1	0	- 1	- 1	0	0	19	361
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	- 1	- 1	- 1	- 1	1	1	1	0	0	0	- 1	1	- 1	0	0	- 11	121
6	- 1	- 1	- 1	1	1	1	- 1	- 1	1	- 1	1	1	- 1	- 1	1	1	- 1	0	- 1	0	1	1	0	1	1	0	1	- 1	- 1	0	25	625
7	0	- 1	- 1	1	0	0	- 1	0	1	- 1	1	1	0	- 1	1	1	- 1	0	- 1	0	1	0	- 1	0	1	0	1	- 1	- 1	0	19	361
8	- 1	- 1	0	1	0	1	- 1	- 1	1	- 1	1	0	0	0	1	1	- 1	0	- 1	0	1	0	- 1	1	1	0	0	- 1	0	- 1	19	361
9	- 1	- 1	- 1	1	1	1	0	- 1	1	0	1	0	0	- 1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	- 11	121
10	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1	1	0	- 1	1	1	1	0	- 1	- 1	1	12	144
11	1	1	1	0	1	0	1	- 1	1	1	0	0	0	1	1	1	1	1	1	0	1	1	1	1	0	0	1	1	0	0	20	400
12	1	1	1	1	1	1	1	- 1	1	1	1	1	1	1	0	1	1		1	1	1	1	1	1	1	1	1	1	0	0	27	729
13	- 1	1	0	1	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	- 1	0	1	10	100
14	- 1	1	1	1	1	1	1	- 1	1	0	1	0	1	1	1	1	1	0	0	0	1	1	0	1	1	1	0	- 1	1	1	23	529
15	- 1	0	1	1	1	1	1	0	1	1	0	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	25	625
16	- 1	1	0	0	-	0	0	- 1	0	0		0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1	1	0	0	10	100
17	- 1	1	1	0	1	0	1	1		0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	- 1	12	144
18	- 1	0	1	0	0	1	1	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	1	0	0	- 1	0	1	11	121
19	1	1	0	0	1	0	0	- 1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	- 1	- 1	1	10	100
20	- 1	1	1	1	0	1	1	1	1	0	1	0	0	0	0	0	1	0	1	0	1	1	1	0	1	0	1	- 1	0	0	17	289
21	1	0	0	0	0	0	1	- 1	0	0	0	0	-	0	0	- 1	0	1	0	0	1	1	0	0	0	0	0		0		10 26	100
22		- 1	0	0	0	- 1	0	- 1		- 1			- 1	0		- 1	1	0	1	1	1	0	1	0	- 1	1	- 1	- 1	- 1	1		676
23		1	0	0	0	0	0		+	- 1		0	0	0		- 1	1	0	1	0	1	0	1	0	-	- 1	- 1	- 1	0	0	20 15	400 225
25	- ;	1	1	1	0	1	1			0	-	0	1	1	0	0	0	- 1	1	0	1	0	0	0	0	0	0		0	0	15	225
26	- ;	0	0	1	0	0	0		0	0	0	0	0	0	0	1	1		1	0	0	1	1	1	1	0	1	-	1		11	121
27	0	1	1	1	1	0	0	0	1	1	1	0	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	0	1	1	22	484
28	1	0	0	1	0	1	0	1	-	0	0	1	0	1	0	0	1	0	1	0	1	1	1	1	0	0	1	0	- 1	- 1	16	256
29	- i	0	0	i	0	i	0	- 1	0	1	1	0	1	i	0	0	0	0	0	0	0	0	0	0	0	0	i	0	0	-	10	100
30	- 1	1	0	1	0	1	1		0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	1	0	0	0		10	100
ΣX	25	20	17	18	13	17	17	10	22	13	18	10	10	16	13	17	18	10	20	2	23	15	15	14	17	9	16	21	- 11	15	476	8460
ΣX ²	25	20	17	18	13	17	17	10	22	13	18	10	10	16	13	17	18	10	20	,	23	15	15	14	17	0	16	21	- 11	15	779	9100
EXY	186	345	306	317	237	300	307	311	393	249	315	193	187	288	250	307	334	154	359	137	397	273	272	266	318	176	288	155	209	231		+-
	0.761	0.361	0.361	0.361	0.361	0.361	0.361	0.262	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.363	0.361	0.361		+
Flatel	0.361		_	_	_			0.361	_	_		_	_			_	_	0.361	_	_	_	_	_	_				0.361				+1
Thirang	-0.173	0.356	0.444	0.388	0.376	0.370	0.456	0.120	0.602	0.523	0.364	0.441	0.364	0.415	0.535	0.456	0.599	-0.060	0.536	0.372	0.460	0.424	0.412	0.533	0.590	0.439	0.415	0.288	0.433	-0.085		\vdash
Ket	Drop	Deep	Valid	Valid	Valid	Valid	Valid	Drop	Valid	Valid	Valid	Drop	Valid	Drop	Valid	Drop																

TOTAL PERNYATAAN VALID DROP = 5 VALID = 25

RANGKUMAN UJI VALIDITAS INSTRUMEN SOAL MENGANALISIS RANGKAIAN LISTRIK (Y)

No.	No. Soal	Phitung	r tabel	Kesimpulan
1	Soal 1	-0.17	0.361	DROP
2	Soal 2	0.36	0.361	DROP
3	Soal 3	0.44	0.361	VALID
4	Soal 4	0.39	0.361	VALID
5	Soal 5	0.38	0.361	VALID
6	Soal 6	0.37	0.361	VALID
7	Soal 7	0.46	0.361	VALID
8	Soal 8	0.12	0.361	DROP
9	Soal 9	0.60	0.361	VALID
10	Soal 10	0.52	0.361	VALID
11	Soal 11	0.36	0.361	VALID
12	Soal 12	0.44	0.361	VALID
13	Soal 13	0.36	0.361	VALID
14	Soal 14	0.41	0.361	VALID
15	Soal 15	0.53	0.361	VALID
16	Soal 16	0.46	0.361	VALID
17	Soal 17	0.60	0.361	VALID
18	Soal 18	-0.06	0.361	DROP
19	Soal 19	0.54	0.361	VALID
20	Soal 20	0.37	0.361	VALID
21	Soal 21	0.46	0.361	VALID
22	Soal 22	0.42	0.361	VALID
23	Soal 23	0.41	0.361	VALID
24	Soal 24	0.53	0.361	VALID
25	Soal 25	0.59	0.361	VALID
26	Soal 26	0.44	0.361	VALID
27	Soal 27	0.41	0.361	VALID
28	Soal 28	0.29	0.361	DROP
29	Soal 29	0.44	0.361	VALID
30	Soal 30	-0.08	0.361	DROP

Lampiran 3. Perhitungan Uji Reliabilitas Instrumen

A. Reliabilitas Instrumen Kuesioner Motivasi Belajar

1. Membuat tabel penolong uji reliabilitas

2. Menghitung varians skor tiap item soal.

$$Si = \frac{\Sigma X i^2 - \frac{(\Sigma X i)^2}{N}}{N}$$

$$Si = \frac{422 - \frac{108^2}{30}}{30}$$

$$Si = 1,145$$

3. Menghitung varians semua item

$$\sum S = S1 + S2 + \dots + S30$$
$$= 20,975$$

4. Menghitung varians total.

$$St = \frac{\Sigma X t^2 - \frac{(\Sigma X t)^2}{N}}{N}$$

$$St = \frac{248082 - \frac{2698^2}{30}}{30}$$

$$St = 187,651$$

5. Menghitung koefisien Alpha

$$\mathbf{r}_{11} = (\frac{k}{k-1})\mathbf{x}(1 - \frac{\Sigma Si}{St})$$

$$r11 = \frac{24}{24 - 1} \times 1 - \frac{28,423}{187,651}$$
$$= 0,885$$

6. Menentukan tingkat reliabilitas : nilai reliabilitas 0,885 = Reliabilitas sangat tinggi

UJI RELIABILITAS INSTRUMEN KUESIONER MOTIVASI BELAJAR SISWA (X2)

PECPOLIPEL	NOEN PERNYATAAN													CUOD POTAL OUT	,											
RESPONDEN	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	SKOR TOTAL (Xt)	Xt²
1	4	4	4	4	2	5	4	4	4	4	3	5	5	4	4	5	5	4	4	5	5	5	5	5	103	10609
2	5	4	5	3	5	2	2	5	4	5	4	5	4	4	3	4	5	5	3	4	4	5	2	3	95	9025
3	4	5	4	5	5	4	3	4	4	3	3	3	5	4	3	4	4	5	5	4	4	5	3	4	97	9409
4	2	2	4	3	2	1	3	2	2	3	3	4	3	2	2	2	5	4	2	4	3	3	3	2	66	4356
5	4	4	4	4	5	4	4	4	4	5	4	5	4	4	3	3	4	4	5	4	4	5	5	5	101	10201
6	4	4	4	4	5	2	4	3	4	3	4	4	4	4	4	4	4	4	4	4	4	4	5	4	94	8836
7	4	5	5	5	3	5	1	4	4	4	5	3	3	3	3	1	3	5	3	3	5	5	3	1	86	7396
8	3	4	4	4	2	3	2	5	4	5	3	5	3	4	3	2	5	4	1	4	5	3	4	5	87	7569
9	5	4	5	5	5	4	4	4	4	4	4	5	4	4	4	4	5	3	5	4	5	3	4	4	102	10404
10	4	2	4	3	1	5	4	3	2	3	3	1	4	3	3	1	3	2	1	4	4	1	3	2	66	4356
11	2	3	4	3	4	3	2	4	1	4	4	5	3	3	3	1	5	5	5	3	5	5	5	5	87	7569
12	2	5	4	5	3	4	4	3	1	3	4	3	1	3	3	2	1	4	2	3	4	4	1	5	74	5476
13	5	4	5	5	2	5	3	5	4	4	5	5	3	5	4	4	4	5	3	4	5	5	5	5	104	10816
14	3	4	5	4	5	4	4	2	4	2	5	5	3	5	4	4	5	2	5	4	5	4	3	4	95	9025
15	5	5	5	5	3	2	5	5	5	4	5	5	4	4	3	3	5	4	3	5	4	5	3	4	101	10201
16	3	4	4	3	1	4	3	2	3	5	3	3	5	3	3	5	5	3	1	4	5	3	4	4	83	6889
17	4	4	4	4	3	4	5	5	3	5	4	4	3	4	4	2	4	5	5	3	4	3	3	5	94	8836
18	3	5	4	5	3	4	4	4	5	5	5	5	5	4	3	4	5	4	4	4	5	4	4	5	103	10609
19	2	4	5	3	2	3	4	1	4	1	4	3	1	2	4	5	3	2	2	2	4	2	3	1	67	4489
20	4	4	4	4	2	4	5	2	4	4	5	4	4	4	4	3	4	3	4	4	4	4	5	4	93	8649
21	5	5	5	5	2	4	4	5	5	3	4	1	4	5	3	2	5	4	1	3	5	4	3	5	92	8464
22	4	2	4	5	5	4	4	2	4	4	4	3	3	4	4	4	4	3	4	3	5	4	4	4	91	8281
23	4	4	4	4	4	5	3	5	1	5	1	5	1	4	4	4	5	4	5	5	5	5	5	2	94	8836
24	4	4	4	5	5	3	4	2	4	2	4	2	4	3	2	2	4	2	1	3	5	4	3	4	80	6400
25	4	4	4	5	2	5	5	4	4	3	4	3	5	4	3	4	5	4	4	4	5	5	4	5	99	9801
26	4	4	5	5	3	4	4	3	4	5	4	4	3	4	4	4	5	4	4	4	5	4	5	4	99	9801
27	5	4	5	5	5	5	5	4	4	5	5	4	5	5	4	4	5	5	5	5	5	4	4	5	112	12544
28	2	5	5	5	4	5	5	3	5	4	4	5	4	5	4	5	5	4	5	4	5	3	5	4	105	11025
29	2	2	3	3	1	4	2	1	3	1	2	1	3	3	4	2	3	1	4	3	5	2	4	2	61	3721
30	2	3	4	5	1	3	2	2	5	4	2	2	2	3	2	1	5	1	3	4	4	1	1	5	67	4489
ΣΧί	108	117	130	128	95	114	108	102	109	112	114	112	105	113	101	95	130	109	103	114	137	114	1111	117	2698	248082
ΣXi²	422	481	572	566	363	466	424	394	435	458	462	470	407	445	353	351	590	437	415	448	635	474	449	503		
VARIANS XI	1.145	0.852	0.299	0.685	2.144	1.131	1.214	1.628	1.344	1.375	0.993	1.789	1.362	0.668	0.447	1.730	0.920	1.413	2.116	0.510	0.323	1.407	1.321	1.610	28.423	
VADIANS TOTAL	187 651																									,

NILAI INDEKS	RELIABILITAS
$0,00 \le r \le 0,20$	reliabilitas sangat rendah
$0,20 \le r \le 0,40$	reliabilitas rendah
$0,40 \le r \le 0,60$	reliabilitas sedang
$0,60 \le r \le 0,80$	reliabilitas tinggi
$0.80 < r \le 1.00$	reliabilitas sangat tinggi

RELIABILITAS

RELIABILITAS SANGAT TINGGI

B. Reliabilitas Instrumen Tes Hasil Belajar Menganalisis Rangkaian Listrik

- 12. Membuat tabel penolong uji reliabilitas
- 13. Menghitung varians skor tiap item soal.

$$Si = \frac{\Sigma X i^2 - \frac{(\Sigma X i)^2}{N}}{N}$$

$$Si = \frac{20 - \frac{20^2}{30}}{30}$$

$$Si = 0.230$$

14. Menghitung varians semua item

$$\sum S = S1 + S2 + \dots + S30$$
= 6,016

15. Menghitung varians total.

$$St = \frac{\Sigma X t^2 - \frac{(\Sigma X t)^2}{N}}{N}$$

$$St = \frac{5884 - \frac{386^2}{30}}{30}$$

$$St = 31,637$$

16. Menghitung koefisien Alpha

$$\mathbf{r}_{11} = (\frac{k}{k-1})\mathbf{x}(1 - \frac{\Sigma Si}{St})$$

$$r11 = \frac{25}{25 - 1} \times 1 - \frac{6,016}{31,637}$$
$$= 0,844$$

17. Menentukan tingkat reliabilitas : nilai reliabilitas 0,844= Reliabilitas sangat tinggi

TABEL UJI RELIABILITAS INSTRUMEN SOAL TEKNIK LISTRIK DASAR (Y)

												PE	RNYATA	AAN													20.2
RESPONDEN	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	SKOR TOTAL (Xt)	Xt ²
1	1	1	0	1	1	1	1	0	1	0	0	0	0	0	1	1	0	1	0	1	0	1	0	0	0	12	144
2	0	1	0	0	0	1	1	0	0	1	0	1	1	1	1	1	1	0	0	1	1	0	0	0	0	12	144
3	0	1	0	1	1	0	0	1	0	1	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	8	64
4	1	1	1	0	1	1	1	0	1	0	1	1	0	0	1	1	0	1	1	1	0	1	0	1	0	16	256
5	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	1	1	0	9	81
6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	0	1	1	0	1	1	22	484
7	1	1	1	0	0	1	1	1	1	1	0	1	1	1	1	1	0	1	0	1	0	1	0	1	1	18	324
8	1	0	1	0	1	1	1	1	1	0	0	0	1	1	1	1	0	1	0	1	1	1	0	0	0	15	225
9	1	1	1	1	1	0	1	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	9	81
10	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	1	9	81
11	1	1	0	1	0	1	1	1	0	0	0	1	1	1	1	1	0	1	1	1	1	0	0	1	0	16	256
12	1	1	1	1	1	1	1	1	1	- 1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	0	23	529
13	1	0	1	0	0	0	1	0	1	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	7	49
14	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1	0	0	1	1	0	1	1	1	0	1	19	361
15	0	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1	1	1	1	0	1	1	1	1	1	21	441
16	1	0	0	1	0	0	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	6	36
17	1	1	0	1	0	1	1	0	1	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	9	81
18	0	1	0	0	1	1	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1	1	0	0	0	8	64
19	1	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	6	36
20	1	1	1	0	1	1	1	0	1	0	0	0	0	0	1	1	0	1	1	1	0	1	0	1	0	14	196
21	0	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0	1	1	0	0	0	0	0	0	5	25
22	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	23	529
23	1	1	0	0	1	0	1	1	1	1	0	1	1	1	1	1	0	1	0	1	0	1	1	1	1	18	324
24	1	0	0	0	0	0	1	1	1	0	0	0	1	1	1	1	0	1	0	1	1	1	0	0	0	12	144
25	1	1	1	0	1	1	1	0	1	0	1	1	0	0	0	1	0	1	0	0	0	0	0	0	0	11	121
26 27	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	1	1	1	0	1	1	10 21	100
28	0	0	1	0	0	0	1	0	0	1	0	1	0	0	1	1	0	1	1	1	1	0	0	1	1	13	441
	_	_	<u> </u>	_	1	_	1	_	_			1			<u> </u>	<u> </u>		1			<u> </u>		_	<u> </u>		7	169
29 30	0	0	1	0	1	0	0	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	7	49
50 ΣXi	20	17	18	13	17	1 17	22	13	0 18	10	0	0	13	17	0	20	7	23	15	0 15	0 14	0 17	9	0	0 11	386	49 5884
	_		_								10	16			18	_								16	_	380	3884
∑Xi²	20	17	18	13	17	17	22	13	18	10	10	16	13	17	18	20	7	23	15	15	14	17	9	16	11		,
VARIANS Xi	0.230	0.254	0.248	0.254	0.254	0.254	0.202	0.254	0.248	0.230	0.230	0.257	0.254	0.254	0.248	0.230	0.185	0.185	0.259	0.259	0.257	0.254	0.217	0.257	0.240	6.016	
VARIANS TOTAL	31.637																										
RELIABILITAS	0.8	44	RELIABILITAS SANGAT TINGGI																								

NILAI INDEKS	TINGKAT RELIABILITAS
$0,00 < r \le 0,20$	reliabilitas sangat rendah
$0,20 < r \le 0,40$	reliabilitas rendah
$0,40 < r \le 0,60$	reliabilitas sedang
0,60 < r ≤ 0,80	reliabilitas tinggi
$0.80 < r \le 1.00$	reliabilitas sangat tinggi

Lampiran 4. Taraf Kesukaran dan Daya Pembeda Instrumen Tes Hasil Belajar Menganalisis Rangkaian Listrk

A. Taraf Kesukaran Instrumen Tes Hasil Belajar Menganalisis Rangkaian LIstri

- 1. Membuat tabel bantu skor nilai instrumen teknik listrik dasar.
- 2. Menghitung taraf kesukaran dengan rumus :

Contoh perhitungan butir soal nomor 1:

$$P = \frac{B}{JS}$$

$$P = \frac{25}{30} = 0.83$$

3. Menentukan taraf kesukaran berdasarkan indeks taraf kesukaran.

P (indeks kesukaran soal)	Taraf Kesukaran Soal
$0.00 < P \le 0.30$	Soal Sukar
$0,30 < P \le 0,70$	Soal Sedang
$0.70 < P \le 1.00$	Soal Mudah

4. Pada butir soal nomor 1 didapat nilai P sebesar 0,83, sehingga butir soal nomor satu dikategorikan soal yang **mudah.**

B. Daya Pembeda Instrumen Tes Hasil Belajar Menganalisis Rangkaian Listrik

- 1) Membuat tabel bantu perhitungan daya pembeda soal.
- 2) Mengurutkan siswa berdasarkan jumlah skor, dan membagi menjadi dua kelas. Kelas atas dan kelas bawah.
- 3) Menghitung indeks daya pembeda soal dengan rumus :

$$D = \frac{B_A}{J_A} - \frac{B_B}{J_B}$$

$$D = \frac{13}{16} - \frac{12}{14}$$

$$D = 0.812 - 0.85$$

$$D = -0.04$$

4) Menentukan daya pembeda soal berdasarkan indeks

No.	Indeks daya beda	Klasifikasi
1	0,00-0,20	Jelek
2	0,21-0,40	Cukup
3	0,41-0,70	Baik
4.	0,71-1,00	Baik Sekali
5.	Minus	Jelek Sekali

Pada butir soal nomor 1 didapat nilai indeks daya pembeda sebesar – 0,04. Sehingga dapat disimpulkan bahwa butir soal nomor 1 memiliki daya pembeda yang **jelek sekali.**

TARAF KESUKARAN INSTRUMEN SOAL MENGANALISIS RANGKAIAN LISTRIK

															Soal																Jumlah	
RESPONDEN	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	Benar	Nilai
1	1	-1	- 1	0	1	- 1	1	- 1	1	0	1	0	0	0	0	0	- 1	0	1	0	1	0	- 1	0	1	0	0	0	0	- 1	15	50.00
2	- 1	0	- 1	0	0	0	1	0	1	0	0	- 1	0	1	- 1	- 1	1	- 1	1	- 1	0	0	- 1	- 1	0	0	0	0	0	0	14	46.67
3	1	0	- 1	0	1	- 1	0	- 1	0	- 1	0	1	0	1	- 1	0	0	0	0	0	1	0	0	0	0	0	0	- 1	0	0	11	36.67
4	1	- 1	- 1	- 1	0	- 1	1	- 1	1	0	1	0	1	1	0	0	- 1	0	1	0	1	- 1	- 1	0	1	0	1	- 1	0	0	19	63.33
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 1	- 1	- 1	- 1	1	- 1	1	- 1	0	0	0	- 1	1	- 1	0	0	11	36.67
6	_	-1	- 1	- 1	1	- 1	1	- 1	1	- 1	1	- 1	1	1	- 1	- 1	- 1	0	1	0	1	- 1	0	- 1	1	0	1	- 1	1	0	25	83.33
7	0	- 1	- 1	- 1	0	0	1	0	1	- 1	1	- 1	0	- 1	- 1	- 1	- 1	0	1	0	- 1	0	- 1	0	- 1	0	1	- 1	1	0	19	63.33
8	1	-1	0	- 1	0	- 1	1	- 1	1	- 1	1	0	0	0	- 1	- 1	- 1	0	1	0	- 1	0	- 1	- 1	1	0	0	- 1	0	- 1	19	63.33
9	- 1	-1	- 1	- 1	1	- 1	0	- 1	1	0	1	0	0	- 1	0	0	0	0	0	0	0	- 1	0	0	0	0	0	0	0	0	11	36.67
10	0	0	0	- 1	0	0	0	0	1	0	0	0	0	0	0	0	0	- 1	0	- 1	- 1	0	- 1	- 1	- 1	- 1	0	- 1	1	- 1	12	40.00
ii	- 1	-1	- 1	0	1	0	1	- 1	1	- 1	0	0	0	1	- 1	- 1	1	- 1	1	0	1	- 1	- 1	- 1	0	0	1	- 1	0	0	20	66.67
12	- 1	-1	- 1	- 1	1	- 1	1	- 1	1	1	1	- 1	1	1	0	- 1	1	- 1	1	1	1	- 1	- 1	- 1	1	- 1	1	- 1	0	0	27	90.00
13	1	1	0	- 1	0	0	0	0	1	0	1	- 1	0	0	0	- 1	0	0	0	0	1	0	0	0	0	0	0	- 1	0	- 1	10	33.33
14	1	1	- 1	- 1	1	1	1	- 1	1	0	1	0	1	1	- 1	- 1	1	0	0	0	1	- 1	0	- 1	1	1	0	- 1	1	- 1	23	76.67
15	- 1	0	- 1	- 1	1	- 1	1	0	1	- 1	0	- 1	0	1	- 1	- 1	1	- 1	1	1	1	- 1	0	- 1	1	- 1	1	- 1	1	- 1	25	83.33
16	1	- 1	0	0	- 1	0	0	- 1	0	0	1	0	1	0	0	0	0	- 1	0	0	0	- 1	0	0	0	0	1	- 1	0	0	10	33.33
17	1	1	- 1	0	1	0	1	- 1	1	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	0	- 1	12	40.00
18	1	0	- 1	0	0	- 1	1	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	1	0	0	- 1	0	- 1	11	36.67
19	1	1	0	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	- 1	1	- 1	10	33.33
20		1	- 1	1	0	1	1	+	1	0	1	0	0	0	0	0	1	0	1	0	1	1	1	0	1	0	1	1	0	0	17	56.67
21	-	0	0	0	0	0	1	1	0	0	0	0	1	0	0	1	0	- 1	0	0	1	1	0	0	0	0	0	- 1	0	- 1	10	33.33
22	0	1	0	1	1	1	1	1	+	1	1	1	0	0	1	- 1	1	0	+	1	1	1	1	1	1	- 1	1	1	- 1	- 1	26	86.67
23		1	0	0	0	Ó	0	0	+	-	1	1 0	0	0	- 1	-	-	0	+	0	-	0		0	1	- 1	ı n	1	1	0	20	66.67
24	-	1		0	0		0	- 1	+	- 1		0	0	0	- 1	1	0	0	+	0	-	0	- 1	- 1	0	0	0	- 1	0	0	15	50.00
25		0	- 1	- 1	0	- 1	1	1	0	0	1	0	1	1	0	0	0	- 1		0	1	0		0	0	0	0	- 1	0	0	15	50.00 36.67
26		0	0	+	0	0	0	0	0	0	0	0	0	0	0	-	1	0	+	0	0	+		+	1	0	1	0	-	0	22	73.33
27	0	0	0	+	0	0	0	0	+	1	1	0	1	-	1	- 1	0	0	+	1	-	-	-	+	1	- 1	1	0	-	- 1	12	53.33
28 29		0	0	-	0	-	0	-	0	0	0	0	0	-	0	0	1	0	i i	0	i i	i i	i i	i i	0	0	-	0	0	-	16	33.33
29		1	0	-	0	-	0	0	0	0	i i	0	i i	i i	0	0	0		0	0	0	0	0	Ó	0		i i	0	0	-	10	33.33
Jumlah benar tiap butir	25	20	17	18	13	17	17	10	22	13	18	10	10	16	13	17	18	/ 10	20	2	23	15	15	14	17	0	16	7 24	ii	1 10	476	52.89
TARAF KESUKARAN	0.83	0.67	0.57	0.60	0.43	0.57	0.57	0.63	0.73	0.43	0.60	0.33	0.33	0.53	0.43	0.57	0.60	0.33	0.67	0.23	0.77	0.50	0.50	0.47	0.57	0.30	0.53	0.70	0.37	0.50	4/0	34.83
	MUDAH	SEDANO	SVDANO	SEDANO	SEDANC	SEDANO	SEDANG	SEDANO	MUD AT	CPD 43/0	SEDANC	SEDANG	SEDANG	SVDANO	SEDANO	SEDANC	CPD 4350	SEDANO	CED VEC	CHULAN	MUDAN	0.30 CPD 4.372	0.30	CEDANO	CPD 4 NO	SUKAR	SEDANC	CUD AND	SVDANC	SEDANC	\rightarrow	\dashv
Status	MUDAH	SEDANG	SEDANG	SEDANG	SEDANG	SEDANG	i SEDANG	SEDANG	DIUDAH	SEDANG	SEDANG	MEDANG	SEDANG	SEDANG	SEDANG	SEDANG	SEDANG	SEDANG	SEDANG	SUKAR	MUDAH	SEDANG	SEDANG	MEDANG	SEDANG	SUKAR	SEDANG	SEDANG	SEDANG	SEDANG	ightharpoonup	

INDEKS KESUKARAN	KLASIFIKASI
$0,00 < P \le 0,30$	SUKAR
0,30 < P ≤ 0,70	SEDANG
0,70 < P ≤ 1	MUDAH

DAYA PEMBEDA INSTRUMEN SOAL MENGANALISIS RANGKAIAN LISTRIK (Y)

KELAS	ATAS																															
Responden																16															Jumbh	Nilai
Attipolotio	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	Benar	
12	1	- 1	- 1	-1	-1	-1	- 1	- 1	-1	1	1	1	- 1	- 1	0	- 1	- 1	1	- 1	- 1	- 1	1	1	- 1	1	1	1	- 1	0	0	27	90.00
22	0	1	0	1	1	1	- 1	- 1	-1	1	1	1	- 1	0	- 1	1	- 1	0	- 1	1	- 1	1	1	- 1	1	1	1	- 1	1	- 1	26	86.67
6	- 1	1	- 1	1	1	1	- 1	- 1	-1	1	1	1	1	1	1	1	- 1	0	- 1	0	1	1	0	1	1	0	1	- 1	1	0	25	83.33
15	1	0	1	1	1	1	1	0	1	1	0	1	0	1	1	1	1	- 1	- 1	1	1	1	0	1	1	1	1	- 1	1	1	25	83.33
14	1	1	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1	0	0	0	1	1	0	1	1	1	0	- 1	1	1	23	76.67
27	0	- 1	1	1		0	0	0	1	1	1	0	1	1	1	1	0	0	1	1	1	1	1	- 1	1	1	1	0	1	1	22	73.33
11	1			0	-	0	1	1		-	0	0	0	1		1	1	1	1	0	1	1	1	- 1	0	0	1	1	0	0	20	66.67
23	1	1		0	0	H	0	0	1	1	-	1	0	1	1	1	1	0	1	0	1	0	1	0	-	1	1	1	1	0	20	66.67
7	1		1	1	0		1	1	1	0	- 1	0	1	1	0	0	1	0	1	0	1	1	1	0	- 1	0	1	1	0	0	19	63.33
	0	1	1	1	0	0	1	0				1	0	1		1		0	1	0	-	0	- 1			0	1	- 1			19	63.33
8 20			0	1	0	1	1	1	1	0	1	0	0	0	0	0	1	0	+	0	1	0	1	0	1	0	0		0	- 1	19 17	63.33 56.67
28		0	0	1	0	1	0	-	+	0	0	1	0	0	0	0	1	0		0	-	1	1	1	0	0	1		1	- 0	16	53.33
1		- 0	1	0	1		1	-	+	0	1	0	0	0	0	0	-	0	+	0	-	0	1	0	1	0	0	0	0		15	50.00
24			0	0	0	0	0	1	+	1	- 1	0	0	0	1	1	1	0	-	0	1	0	1	1	1	0	0	1	0		15	50.00
25	- 1	- i	1	1	0	1	1	-	i	0	- 1	0	1	1	0	0	0	1	- 1	0	1	0	0	0	0	0	0	- 1	0		15	50.00
BA BA	13	14	12	12	8	12	12	12	16	10	13	2	- 1	11	10	11	14	4	15	4	16	10	12	10	13	6	11	12	8	7 7	15	30.00
JA.	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	-	
PA	0.81	0.88	0.75	0.75	0.50	0.75	0.75	0.75	1.00	0.63	0.81	0.44	0.44	0.69	0.63	0.69	0.88	0.25	0.94	0.25	_	0.63	0.75	0.63	0.81	0.38	0.69	0.81	0.50	0.44	-	
Responden	AWAH															Soal															_	
жевропаен	1	2	3	4	5	6	7	8	9	10						3044															Jumlah	NULL
2	1	0	- 1	0	0	0	1				11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	Jumlah Benar	Nilai
10	0	0	0	- 1				0	1	0	0	12	13 0	14	15 1	_	17 1	18 1	19 1	20 1	21 0	22	23	24	25 0	26 0	27 0	28 0	29 0	30 0	_	Nilai 46.67
17	1	1	1		0	0	0	0	1	0		12 1 0	0 0	14 1 0		_	17 1 0	18 1	19 1 0	20 1	21 0 1	_	23 1	24 1	25 0 1		_	28 0 1		30 0 1	Benar	
3	1		_	0	1	0	0	0	1 1	-	0	1	0 0 0	- 1	- 1	16 1	- 1	18 1 1 0	1 0 1	1 1 0	0 1 0	0	23 1 1 0	24 1 1 0	25 0 1		0	28 0 1 0	0 1 0	30 6 1	14 12 12	46.67 40.00 40.00
5		0	1	0	1	0	1 0	0 1	1 1 1 0	0 0	0 0 1 0	1 0 0	0 0 0 0	0 0 1	1 0	16 1 0	1 0 1 0	18 1 1 0 0	1 0 1	1 1 0 0	0	0	1	24 1 1 0 0	25 0 1 1 0	0	0	28 0 1 0	0 1 0	30 0 1 1	Benar 14 12 12 11	46.67 40.00 40.00 36.67
	0	0	0	0	1 1 0	0 1 0	0 0	0 1 1 0	0	0 0 1 0	0 0 1	1 0 0 1	0	1 0	1 0 0 1	16 1 0 0 0	1 0 1 0	18 1 1 0 0	1 0 1 0	20 1 1 0 0	0 1 0 1	0	1 1 0 0	24 1 1 0 0	25 0 1 1 0 0	0 1 0 0	0 0 0 0	28 0 1 0 1	0 1 0 0	30 0 1 1 0 0	14 12 12 11 11	46.67 40.00 40.00 36.67 36.67
9	0	0		0	1	0 1 0 1	1 0	0 1 1 0 1		0 0 1 0	0 0 1 0	1 0 0 1 0	0 0 0	0 0 1	1 0 0 1 1	16 1 0 0 0 1	1 0 1 0 1	18 1 1 0 0 1	1 0 1	20 1 1 0 0 1	0 1 0 1 1 0	0	1 1 0	1 1 0	25 0 1 1 0 0	0 1 0 0 1 0 0	0 0 0 0 1	28 0 1 0 1 1 1	0 1 0 0 0	30 0 1 1 0 0	Benar 14 12 12 11 11 11	46.67 40.00 40.00 36.67 36.67 36.67
18	0 1	0 1 0	1 1	0	1	0 1 0 1 1	1 0 0 0	0 1 1 0 1 0	1	0 0 1 0 0 0 0	0 0 1 0 0 1	1 0 0 1 0 0	0 0 0	1 0 0 1 0 1	1 0 0 1 1 0 0	16 1 0 0 0	1 0 1 0	18 1 1 0 0 1 1 0	1 0 1 0	20 1 1 0 0 1 0	0 1 0 1 1 0	0	1 1 0 0	1 1 0	25 0 1 1 0 0 0	0 1 0 0 1 0	0 0 0 0	28 0 1 0 1 1 1 0	0 1 0 0	30 0 1 1 0 0	Benar 14 12 12 11 11 11	46.67 40.00 40.00 36.67 36.67 36.67
18 26	0 1 1	0 1 0	0 1 1 0	0	1 1 0 1 0	0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 1	0 1 1 0 1 0 0	0	0 0 1 0 0 0	0 0 1 0	1 0 0 1 0	0 0 0	1 0 0 1 0 1 1 0	1 0 0 1 1 0 0	16 1 0 0 0 1	1 0 1 0 1 0 0	18 1 1 0 0 1 0 0	1 0 1 0 1 0 1	20 1 1 0 0 1 0 0	0 1 0 1 1 0	0 0 0 1 1 1	1 0 0 0 0 0	1 1 0	25 0 1 1 0 0 0	0 1 0 0 1 0 0	0 0 0 0 1 0 0	28 0 1 0 1 1 1 0	0 1 0 0 0 0 0	30 0 1 1 0 0 0	Benar 14 12 12 11 11 11 11	46.67 40.00 40.00 36.67 36.67 36.67 36.67 36.67
18 26 13	1 1 1	0 1 0 0	0 1 1 0	0 0 1 0 1 1 1	1	0 1 0 1 1 0	1 0 0 0 1 0	0 1 1 0 1 0 0 0 0	0 1 1 0 1	0 0 1 0 0 0	0 0 1 0 0 1	1 0 0 1 0 0 0 0	0 0 0	1 0 0 1 0 1 1 1 0	1 0 0 1 1 0 0 0	16 1 0 0 0 1 0 0 1	1 0 1 0 1 0 0 1	18 1 1 0 0 1 0 0 0 1 0 0 0	1 0 1 0 1 0 1 1 0	20 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 1 0 0 0	0	1 0 0 0 0 0 1	1 0 0 0 0 1 1	25 0 1 1 0 0 0 0 1 1	0 1 0 0 1 0 0 0	0 0 0 0 1	28 0 1 0 1 1 0 1 0 1	0 1 0 0 0 0 0	30 0 1 1 0 0 0 0	Benar 14 12 12 11 11 11 11 11 10	46.67 40.00 40.00 36.67 36.67 36.67 36.67 36.67 33.33
18 26 13 16	0 1 1 1 1	0 1 0 0 1	0 1 1 0 0	0 0 1 0 1 1	1 1 0 1 0	0 0 1 0 1 1 0 0	1 0 0 0 1 0 0	0 1 1 0 0 0 0 1 1	0 1 1 0 1 0	0 0 1 0 0 0	0 0 1 0 0 1 0 0	1 0 0 1 0 0 0 0	0 0 0	1 0 0 1 0 1 1 0 0	1 0 0 1 1 0 0 0	16 1 0 0 0 1 0 0 1 0	1 0 1 0 1 0 0 1 0	18 1 1 0 0 1 1 0 0 0 0	1 0 1 0 1 0 1 1 0	20 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 1 0	0 0 0 1 1 0 1 0	1 0 0 0 0 0 1 0	1 1 0	25 0 1 1 0 0 0 1 1 1 0	0 1 0 0 1 0 0 0 0 0 0 0	0 0 0 0 1 0 0	28 0 1 0 1 1 0 1 0 1	0 1 0 0 0 0 0	30 0 1 1 0 0 0 1 1 0	Benar 14 12 12 11 11 11 11 11 10 10	46.67 40.00 40.00 36.67 36.67 36.67 36.67 33.33
18 26 13 16 19	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 0 1 1	0 1 1 0 0 0	0 0 1 0 1 1 0	1 1 0 1 0 0 0	0 0 1 0 1 1 0 0 0	1 0 0 0 1 0 0	0 1 1 0 0 0 0 1 1 1 1 1 1	0 1 1 0 1 0	0 0 1 0 0 0 0 0	0 0 1 0 0 1 0 0 1 1 0	1 0 0 1 0 0 0 0 1 0	0 0 0	1 0 0 1 0 1 1 0 0 0 0 0 0	1 0 0 1 1 0 0 0 0	16 1 0 0 0 1 0 0 1 0 0 1 0 0	1 0 1 0 1 0 0 1 0 0	18 1 1 0 0 1 1 0 0 0 0 0 0	1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0	20 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 1 0 0 0	0 0 0 1 1 1	1 1 0 0 0 0 0 1 0	1 0 0 0 0 1 1	25 0 1 1 0 0 0 1 1 1 0 0	0 1 0 0 1 0 0 0 0 0 0 0	0 0 0 1 0 1 0 1	28 0 1 0 1 1 0 1 0 1 1 0 1 1 0	0 1 0 0 0 0 0 1 0	30 0 1 1 0 0 0 1 1 0	Benar 14 12 12 11 11 11 11 11 10 10	46.67 40.00 40.00 36.67 36.67 36.67 36.67 36.67 33.33 33.33
18 26 13 16 19 21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 0 1 1 1 0	0 1 1 1 0 0 0 0 0 0 0 0	0 0 1 0 1 1 0 0	1 1 0 1 0 0 0 1 1	0 0 1 0 1 1 0 0 0 0	1 0 0 0 1 0 0 0 0	0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 0 1 0 0 0	0 0 1 0 0 0	0 0 1 0 0 1 0 0	1 0 0 1 0 0 0 0 0	0 0 0	1 0 0 1 0 1 1 0 0	1 0 0 1 1 0 0 0 0 0	16 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0	1 0 1 0 1 0 0 0 0 0 0 0 0	18 1 0 0 0 1 1 0 0 0 0 1 1 0 0	1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0	20 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 1 0 0 0 0 1 1 0	0 0 0 1 1 1 0 1 0	1 1 0 0 0 0 0 1 0 0	1 1 0 0 0 0 1 1 1 0 0	25 0 1 1 0 0 0 1 1 1 0 0 0	0 1 0 0 1 1 0 0 0 0 0 0	0 0 0 0 1 0 0	28 0 1 0 1 1 0 1 0 1 1 0 1 1 1 0	0 1 0 0 0 0 0 1 0 0	30 0 1 1 0 0 0 0 1 1 0 1 1 0	Benar 14 12 12 11 11 11 11 11 10 10 10 10	46.67 40.00 40.00 36.67 36.67 36.67 36.67 33.33 33.33 33.33
18 26 13 16 19 21 29	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 0 1 1 1 0 0	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 1 1 0	1 1 0 1 0 0 0	0 0 1 0 1 1 0 0 0 0 0	1 0 0 0 1 0 0	0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 0 1 0 0 0	0 0 1 0 0 0 0 0 0	0 0 1 0 0 1 0 0 1 1 0 0	1 0 0 1 0 0 0 0 0 1 0 0	0 0 0	1 0 0 1 0 1 1 0 0 0 0 0 0	1 0 0 1 1 0 0 0 0 0 0	16 1 0 0 0 1 0 0 1 0 0 1 0 0	1 0 1 0 1 0 0 0 0 0 0 0 0 0 0	18 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0	1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0	20 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 1 0 0 0	0 0 0 1 1 1 0 1 0 1 0	1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 0 0 1 1 1 0 0 0	25 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0	0 1 0 0 1 0 0 0 0 0 0 0	0 0 0 1 0 0 1 0 1 1 0 1	28 0 1 0 1 1 0 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1	0 1 0 0 0 0 0 1 1 0 0	30 0 1 1 0 0 0 0 1 1 0 0 1 1 0	Benar 14 12 12 11 11 11 11 11 10 10 10	46.67 40.00 40.00 36.67 36.67 36.67 36.67 36.33 33.33 33.33 33.33 33.33
18 26 13 16 19 21 29 30	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 0 1 1 1 0 0	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 1 1 1 0 0 0	1 1 0 1 0 0 0 1 1 1 0	0 0 1 0 1 1 0 0 0 0 0	1 0 0 0 1 0 0 0 0	0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 7	0 1 1 0 1 0 0 0 0	0 0 1 0 0 0 0 0	0 0 1 0 0 1 0 0 1 1 0	1 0 0 1 0 0 0 0 0	0 0 0	1 0 0 1 0 1 1 1 0 0 0 0 0 0	1 0 0 1 1 0 0 0 0 0 0	16 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0	1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	18 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0	1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0	20 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0	0 1 0 1 1 0 0 0 0 1 1 0	0 0 0 1 1 1 0 1 0	1 1 0 0 0 0 0 1 0 0	1 1 0 0 0 0 1 1 1 0 0 0	25 0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0	0 1 0 0 1 1 0 0 0 0 0 0	0 0 0 1 0 0 1 0 1 1 0 1 1 0	28 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0	0 1 0 0 0 0 1 0 0 1 0 0	30 0 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1	Benar 14 12 12 11 11 11 11 11 10 10 10 10	46.67 40.00 40.00 36.67 36.67 36.67 36.67 33.33 33.33 33.33
18 26 13 16 19 21 29 30 88	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 0 1 1 1 0 0 1 6	0 1 1 1 0 0 0 0 0 0	0 0 1 0 1 1 0 0 0 0	1 1 0 1 0 0 0 1 1 1 0 0	0 0 1 0 1 1 0 0 0 0 0 1 1 1	1 0 0 0 1 0 0 0 0 0	0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 7 7 14	0 1 1 0 1 0 0 0 0	0 0 1 0 0 0 0 0 0 0 1 0 0	0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1	1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 1 0 1 1	1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 5 5	1 0 0 1 1 0 0 0 0 0 0 0 0	16 1 0 0 0 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0	1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 4	1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0	1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 5 5	1 1 0 0 1 0 0 0 0 0 0 0 0 0	0 1 0 1 1 0 0 0 0 1 0 1 1 0 1	0 0 0 1 1 0 1 0 1 0 1 0 1	1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 0 1 1 1 0 0 0 0	0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0	0 1 0 0 1 0 0 0 0 0 0 0 0	0 0 0 1 0 0 1 0 1 0 1 1 0 1	28 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0	0 1 0 0 0 0 0 1 0 0 0 1 0 0 0	0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1	Benar 14 12 12 11 11 11 11 11 10 10 10	46.67 40.00 40.00 36.67 36.67 36.67 36.67 36.33 33.33 33.33 33.33 33.33
18 26 13 16 19 21 29 30 88 JB	14	0 1 0 0 1 1 1 0 0 0 1 6	0 1 1 1 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 1 1 0 0 0 0 1 1 1 0 0	1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0	0 0 1 0 1 1 0 0 0 0 0 1 1 1 5 1 1 0 0 0 1 1 1 0 0 0 0	1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1	0 1 1 1 0 0 0 0 1 1 1 1 1 0 7 1 1	0 1 1 0 1 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 1 0 1 0 1	0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0	1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 1 0 1 1 0 3	1 0 0 1 1 0 0 0 0 0 0 0 1 0 5 24	1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	16 1 0 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 0 1	1 0 1 0 1 0 0 0 0 0 0 0 0 0 4 24	1 1 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0	1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 5 24	1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 1 1 0 0 0 1 0 1 1 0 1 1 7	0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0	0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 1 0	28 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1	0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0	0 1 1 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1	Benar 14 12 12 11 11 11 11 11 10 10 10	46.67 40.00 40.00 36.67 36.67 36.67 36.67 36.33 33.33 33.33 33.33 33.33
18 26 13 16 19 21 29 30 88		0 1 0 0 1 1 1 0 0 1 6	0 1 1 1 0 0 0 0 0 0	0 0 1 0 1 1 0 0 0 0	1 1 0 1 0 0 0 1 1 1 0 0	0 0 1 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0	1 0 0 0 1 0 0 0 0 0	0 1 1 1 0 1 0 0 0 1 1 1 1 1 0 7 7 14 0.50 0.25	0 1 1 0 1 0 0 0 0	0 0 1 0 0 0 0 0 0 0 1 0 0	0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1	1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 1 0 1 1	1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 5 5	1 0 0 1 1 0 0 0 0 0 0 0 0	16 1 0 0 0 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0	1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 4	1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0	1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 5 5	1 1 0 0 1 0 0 0 0 0 0 0 0 0	0 1 0 1 1 0 0 0 0 1 0 1 1 0 1	0 0 0 1 1 0 1 0 1 0 1 0 1	1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 0 1 1 1 0 0 0 0	0 1 1 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0	0 1 0 0 1 0 0 0 0 0 0 0 0	0 0 0 1 0 0 1 0 1 0 1 1 0 1	28 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 1 0 0 0 1 0 0 0	0 1 1 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1	Benar 14 12 12 11 11 11 11 11 10 10 10	46.67 40.00 40.00 36.67 36.67 36.67 36.67 36.33 33.33 33.33 33.33 33.33

No.	Indeks daya beda	Klasifikasi	JUMLAH SOAL
1	0,00-0,20	Jelek	3 SOAL
2	0,21-0,40	Cukup	14 SOAL
3	0,41-0,70	Baik	10 SOAL
4	0,70-1,00	Baik sekali	0 SOAL
5	Minus	Jelek sekali	3 SOAL

RANGKUMAN UJI INSTRUMEN SOAL MENGANALISIS RANGKAIAN LISTRIK (Y)

NO. SOAL	VALIDITAS	RELIABILITAS	TARAF KESUKARAN	DAYA PEMBEDA
1	DROP		MUDAH	JELEK SEKALI
2	VALID		SEDANG	BAIK
3	VALID		SEDANG	CUKUP
4	VALID		SEDANG	CUKUP
5	VALID		SEDANG	JELEK
6	VALID		SEDANG	CUKUP
7	VALID		SEDANG	CUKUP
8	DROP		SEDANG	CUKUP
9	VALID		MUDAH	BAIK
10	VALID		SEDANG	BAIK
11	VALID		SEDANG	BAIK
12	VALID		SEDANG	CUKUP
13	VALID		SEDANG	CUKUP
14	VALID		SEDANG	CUKUP
15	VALID	0,844 (Reabilitas Sangat	SEDANG	BAIK
16	VALID	Tinggi)	SEDANG	CUKUP
17	VALID		SEDANG	BAIK
18	DROP		SEDANG	JELEK SEKALI
19	VALID		SEDANG	BAIK
20	VALID		SUKAR	JELEK
21	VALID		MUDAH	BAIK
22	VALID		SEDANG	CUKUP
23	VALID		SEDANG	BAIK
24	VALID		SEDANG	CUKUP
25	VALID		SEDANG	BAIK
26	VALID		SUKAR	JELEK
27	VALID		SEDANG	CUKUP
28	DROP		SEDANG	CUKUP
29	VALID		SEDANG	CUKUP
30	DROP		SEDANG	JELEK SEKALI

Lampiran 5. Instrumen Penelitian Final

A. Instrumen Final Kuesioner Motivasi Belajar KUISIONER PENELITIAN

No. Responden:
Nama:
Kelas:
Petunjuk pengisian:

- 5. Angket ini bertujuan untuk mengetahui Motivasi Belajar Siswa. Untuk itu kami mohon bantuan untuk mengisi angket ini.
- 6. Kesungguhan serta kejujuran atas jawaban yang diberikan sangat diharapkan dan tidak mempengaruhi prestasi belajar anda.
- 7. Bacalah pernyataan dengan teliti
- 8. Jawaban terdiri dari 5 (lima) alternatif:

- SS (Sangat Setuju)

- TS (Tidak setuju)

- S (Setuju)

- STS (Sangat tidak setuju)

- R (Ragu-ragu)
- 9. Berilah tanda silang (x) pada kolom yang tersedia untuk pernyataan yang sesuai dengan pendapat anda.

No.	Pernyataan	SS	S	R	TS	STS
1	Saya belajar karena ingin menjadi juara kelas					
2	Saya kurang tertarik pada kegiatan belajar					
3	Saya belajar karena pelajarannya menyenangkan					
4	Saya merasa sangat malu jika mendapat nilai jelek, karena bagi saya itu hal yang sangat memalukan					
5	Saya belajar apabila ada ulangan					
6	Belajar tidak ada kaitannya dengan cita cita saya kelak					
7	Saya malas belajar karena tugas yang diberikan guru banyak sekali					
8	Saya belajar karena lingkungan tempat tinggal saya nyaman					
9	Saya belajar karena semua alat - alatnya tersedia di sekolah					
10	Saya belajar karena tugas akan diperiksa guru dan diberi nilai					
11	Saya segera menyelesaikan tugas yang sulit sampai selesai					
12	Saya terburu - buru dalam mengerjakan tugas di sekolah					
13	Saya suka mengerjakan soal - soal latihan					
14	Saya akan menyelesaikan tugas yang diberikan guru hingga tuntas					
15	Saya merasa tidak mampu menyelesaikan setiap tugas yang diberikan oleh guru					

No.	Pernyataan	SS	S	R	TS	STS
16	Lebih menyenangkan bermain daripada mengerjakan PR					
17	Saya berusaha mencapai prestasi semaksimal mungkin sesuai dengan kemampuan					
18	Saya tak acuh (cuek) dengan saran yang diberikan guru untuk meningkatkan prestasi belajar					
19	Saya merasa senang bila guru berhalangan hadir					
20	Saya memenuhi kewajiban di sekolah walaupun sulit sekali					
21	Saya yakin dapat mencapai cita - cita yang saya inginkan					
22	Saya suka dikritik atau diberi saran oleh siapapun					
23	Saya tidak senang nilai ulangan saya diketahui orang lain					
24	Saya tidak yakin bisa lulus ujian dengan baik					

B. Instrumen Tes Final Menganalisis Rangkaian Listrik

LEMBAR SOAL INSTRUMEN PENELITIAN

Satuan Pendidikan : Sekolah Menengah Kejuruan

Nama Sekolah : SMKN 1 Tambelang

Paket Keahlian : Teknik Otomasi Industri

Kelas : X

Mata Pelajaran : Menganalisis Rangkaian Listrik

Alokasi Waktu : 1 Jam

Jawablah soal-soal berikut dengan memberi tanda silang (X) pada lembar jawaban!

1. Rumus mencari arus listrik adalah

a.I = Q/t d.E = P/I

b.I = P/E e.I = V/R

c.I = F.G

- 2. Dalam hakikat listrik arus terbagi menjadi 2, yaitu
 - a. Arus berbanding terbalik dan arus rendah
 - b. Arus berbanding terbalik dan arus kuat
 - c. Arus searah dan bolak balik
 - d. Arus tegak lurus dan arus kuat
 - e. Arus sebanding terbalik dengan tegak lurus
- 1. Rumus dari tegangan listrik adalah

a.
$$V = I.R$$

d. V = R.C

b.
$$V = M.A$$

e. V = I/R

c.
$$V = R/C$$

- 2. Satuan arus listrik adalah ...
 - a. Ampere

d. Farad

b. Ohm

e. Volt

- c. Joule
- 1. Jika suatu penghantar dialiri listrik 200 mA selama 30 menit, maka banyaknya muatan listrik yang mengalir adalah ...

a. 6 C

d. 360 C

b. 6,67 C

e. 6000 C

c. 3600 C

	2. Berapakah nilai resistansi total	l dari rangkaian resistor yang dihubungkan seri di bawa	ιh
	ini ?		
a.	25 Ω	d. 50Ω $R_1 = 20 \Omega$ $R_2 = 25 \Omega$ $R_3 = 30 \Omega$	
	b. 45 Ω	e. 55 Ω	
	c. 75 Ω		
	7. Sebuah Milliamper memilik	ti batas ukur 1 mA dengan tahanan dalam 100 s	2.
	-	ng harus dipasang agar batas kurnya menjadi 100 mA	
	a. 2,00 Ω	d. 0,02 Ω	
	b. 3,01 Ω	e. 0,01 Ω	
	c. 1,01 Ω		
	8 Raranakah nilai racistansi tota	ıl dari rangkaian resistor yang dihubung paralel di bawa	h
	ini?	$R_1 = 4 \Omega$	111
	a. 0,5 Ω	1 200	
	b. 1,0 Ω	e. 2.5Ω $R_2 = 6 \Omega$	
	c. 1,5 Ω	$R_3 = 12 \Omega$	
			1
		nbatan 150 Ω dilalui arus listrik 0,05 A, maka bed	ıa
	potensial penghantar tersebut		
	a. 3,0 V	d. 75 V	
	b. 7,5 V	e. 300 V	
	c. 3,5 V		
	10. Suatu lampu mempunyai ham	batan 500 Ω , dihubungkan dengan sumber tegangan 20	0
	volt. Berapakah besarnya arus	s yang mengalir pada lampu tersebut ?	
	a. 0,1 A	d. 0,4 A	
	b. 0,2 A	e. 0,6 A	
	c. 0,3 A		
	11. Perhatikan gambar!		
Ku	at arus yang melalui rangkaian ada	lah 2 Ω	
	a. 1,5 A	d. 6 A 2 Ω 3 Ω	
	b. 2 A	e. 4 A	

c. 3A

- 12. Sumber tegangan listrik mengalir sebesar 220 V dengan tahanan R sebesar 10 Ω . Maka arus listriknya adalah
 - a. 0,22 Ampere

d. 22 Ampere

b. 2,2 Ampere

e. 2200 Ampere

- c. 220 Ampere
- 13. Berapa harga besaran batas arus jika tegangan listrik sebesar 25 Volt dengan resistansi mulanya 3 Ω . Rangkaian tersebut diberikan R bantu yang dipasang seri sebesar 2 Ω adalah ...
 - a. 25 A

d. 15 A

b. 20 A

e. 5 A

c. 10 A

14. Jika ada dua resistor yaitu, R₁ dan R₂. Tentukan nilai total hambatan resistor tersebut untuk cara pemasangan seri yang benar adalah ...

a.
$$1/R_T = 1/R_1 + 1/R_2$$

d. $R_T = R_1 + R_2$

b. $1/R_T = (R_1 \times R_2)/(R_1+R_2)$

e. $R_T = 1/(R_1 + R_2)$

c. $R_T = (R_1 \times R_2)/(R_1+R_2)$

15. Berapakah muatan listrik yang akan pindah dari sebuah baterai yang mengeluarkan arus sebesar 2A selama 5 menit ?

a. 200 coulomb

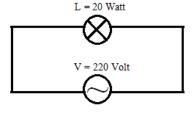
d. 400 coulomb

b. 100 coulomb

e. 600 coulomb

c. 300 coulomb

16. Hitunglah berapa besar nilai arus pada rangkaian di bawah ini?


a. 11 A

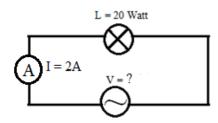
d. 0,09 A

b. 1,00 A

e. 22 A

c. 440 A

17. Hitunglah berapa besar nilai tegangan yang melalui beban L?

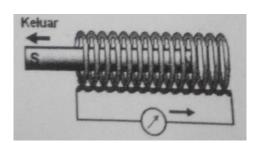

a. 0,1 Volt

d. 40 Volt

b. 0,4 Volt

e. 220 Volt

c. 10 Volt


b.	Coulomb	e.	farad	
c.	Joule			
19. A	rus listrik 400 mA mengalir pa	ada s	uatu penghantar.	Jika beda potensial antara unjung
ka	awat 40 V, berapakah hambata	an lis	strik kawat terseb	out ?
a.	0,1 Ω	d.	100Ω	
b.	10 Ω	e.	140Ω	
c.	40 Ω			
20. Pe	erhatiakan gambar di bawah	ini, 1	rangkaian hamba	ntan listrik yang dirangkai secara
se	eri paralel maka besar harga ha	amba	atan keselurı '	$= 30 \Omega$ $R_2 = 30 \Omega$ $R_4 = 18 \Omega$
a.	40Ω	d.	58Ω	$R_4 = 18 \Omega$
b.	45 Ω	e.	60Ω	$R_3 = 15 \Omega$
c.	50 Ω			
21. Ba	agaimana reaksi gaya antara	dua	ı buah muatan l	istrik yang tidak sejenis apabila
di	dekatkan ?			
a.	Akan saling tarik menarik			
b.	Akan saling tolak menolak			
c.	Tidak ada reaksi			
d.	Tidak ada jawaban yang ben	ar		
e.	Jawaban A dan B benar			
22. Ji	ka diperlukan usaha 100 Jo	oule	untuk setiap me	emindahkan muatan sebesar 10
cc	oulomb. Maka tegangan yang	dibu	tuhkan	
a.	10 volt	d.	4 volt	
b.	8 volt	e.	2 volt	
c.	6 volt			
23. Pe	erhatikan gambar di bawah ini	, ran	gkaian hambatan	n listrik yang dirangkai secara seri
da	an paralel apabila arus yang	mer	ngalir sebesar 5	Ampere maka besarnya sumber
te	gangan (V) adalah			$R_2 = 15 \Omega$
a.	300 volt	d.	100 volt R ₁	$= 30 \Omega$ $R_4 = 20 \Omega$
b.	175 volt	e.	50 volt	R ₃ = 30 Ω
c.	150 volt			,,

18. Satuan dari komponen listrik kapasitor adalah ..

d. Volt

a. Watt

- 24. Perhatikan gambar di bawah ini, apabila batang magnit tetap kita keluarkan dari dalam kumparan maka arus yang dibangkitkan oleh kawat penghantar seperti yang ditunjukkan oleh tanda panah, hal ini diakibatkan oleh adanya ...
 - a. Arus yang mengalir pada kawat penghantar
 - b. Induksi dari magnit kepada kawat penghantar
 - c. Induksi yang ditimbulkan oleh magnit batang
 - d. Elektron elektron yang bergerak pada magnit batang
 - e. Induksi yang ditimbulkan oleh kawat penghantar

- 25. Suatu beban yang mempunyai tahanan sebesar 110 Ω , dihubungkan kesumber tegangan yang besarnya 220 Volt. Berapa besar daya yang mengalir pada rangkaian tersebut?
 - a. 50 Watt
 - b. 100 Watt
 - c. 270 Watt
 - d. 350 Watt
 - e. 440 Watt

KUNCI JAWABAN

1.	E	
2.	C	
3.	A	
4.	A	
5.	D	
6.	C	
7.	C	
8.	D	

9. B

10. D
11. A
12. D
13. E
14. D
15. E
16. D
17. C
18. E

19. D
20. D
21. A
22. A
23. A
24. B
25. E

Lampiran 6. Data Mentah Skor Hasil Penelitian

SKOR DATA MENTAH HASIL PENGAMBILAN DATA VARIABEL MOTIVASI BELAJAR SISWA DENGAN STRATEGI PEMBELAJAN TEAM TEACHING

	ъ.,											P	ERNY	ATA	AN											TOTAL SHOP
NO.	Responden	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	TOTAL SKOR
1	ABDUL AZIZ	5	4	5	4	2	4	3	4	4	4	4	2	4	4	3	4	4	4	2	4	4	4	2	4	88
2	ADI RAGIL RIYADI	5	5	4	5	4	5	5	4	3	2	5	3	4	5	5	5	5	5	5	5	1	4	3	5	102
3	ADILAH	5	4	4	4	3	5	4	4	3	3	4	3	4	4	4	3	4	4	3	4	5	4	3	5	93
4	AKBAR ARI ADITIA SAPUTRA	4	4	4	5	2	5	3	5	5	4	4	4	4	4	4	4	5	5	3	4	4	4	5	5	100
5	ANDIKA SAPUTRA JAYA	4	5	4	5	3	5	4	3	2	3	4	3	3	4	5	5	5	5	3	5	5	5	2	5	97
6	ANTONI	4	4	4	4	4	4	3	4	4	4	4	4	4	4	4	4	4	2	4	3	5	5	3	5	94
7	ARI SETIAWAN	5	4	4	5	4	4	4	3	3	4	4	3	4	5	4	4	5	2	4	4	5	4	4	4	96
8	ASUMPENA	4	5	5	5	1	4	5	4	4	4	5	3	4	5	5	5	5	5	5	4	5	4	1	5	102
9	BAMBANG ERLANGGA	5	2	4	3	3	5	4	2	4	2	5	3	5	4	5	5	5	4	2	3	5	4	3	5	92
10	DAHLIA	5	5	3	5	4	5	4	4	2	2	5	3	5	5	4	5	5	5	3	4	5	4	3	5	100
11	DEVI PRAMAYSELLA	5	5	4	4	5	4	4	3	2	3	5	4	5	5	5	4	4	4	4	5	5	4	2	5	100
12	DIKKY FAQIH A.S	5	2	4	5	2	4	4	5	2	4	5	2	5	4	2	4	4	2	2	5	4	5	4	4	89
13	HERU HERMAWAN	4	4	5	4	2	5	4	4	2	4	3	4	4	4	4	5	5	1	5	4	5	4	4	5	95
14	IKHSAN MAULANA	4	4	5	4	2	5	4	4	3	4	3	4	5	5	4	5	4	2	4	4	5	4	3	5	96
15	IRFAN MAULANA	5	4	2	5	5	5	4	5	2	2	5	3	4	5	4	4	5	2	1	2	5	4	3	3	89
16	MAYANG SARI	5	5	5	4	4	5	4	4	2	2	5	2	4	4	4	4	5	1	4	5	5	4	3	4	94
17	MOCHHAMAD ALI AKBAR	5	2	5	5	4	5	2	4	2	4	4	2	4	5	3	4	4	1	3	4	4	4	3	4	87
18	MUHAMAD AL FIAN	5	5	4	5	1	5	5	3	3	5	4	4	4	5	5	4	5	2	3	4	5	5	3	5	99
19	NUR'AINI	5	5	4	5	4	4	5	4	2	2	4	4	4	4	5	5	5	1	5	5	5	5	3	4	99
20	NURHAKIM	5	5	5	4	1	4	3	5	5	5	3	2	5	4	4	5	5	2	3	3	4	3	3	4	92
21	PUTRI MAYASARI	5	5	4	2	5	4	5	5	3	4	3	4	4	4	3	3	4	4	4	3	5	4	2	5	94
22	RIAN PERMANA	5	4	5	4	2	4	3	3	4	4	3	2	4	4	3	4	5	3	3	4	4	5	4	5	91
23	RIMAN FEBRIANSYAH	5	3	4	4	4	5	3	4	4	5	4	2	3	4	3	3	5	2	1	4	5	4	3	5	89
24	SABILAH JAUZIAH JUBAEDAH	5	3	4	4	4	5	3	4	4	5	4	2	3	4	3	3	5	2	3	4	5	4	3	5	91
25	SITI AMNAH	5	5	5	5	4	5	4	4	2	5	4	2	5	4	4	4	5	4	4	4	5	4	2	5	100
26	SITI RATNA DILLA	5	4	5	5	5	4	4	4	2	2	1	4	4	4	4	4	5	2	4	4	4	4	4	4	92
27	SUTINAH	5	4	3	5	4	5	4	4	3	3	4	2	4	4	4	4	5	1	3	3	5	3	3	5	90
28	TOMI ALI KURNIAWAN	4	4	4	2	2	5	4	4	3	3	3	3	3	3	5	4	5	2	4	4	5	4	4	4	88
29	WAHYU SAMSUL ULUM	5	4	5	4	2	4	3	4	4	4	3	4	4	4	4	3	4	2	3	4	5	3	4	4	90
30	WISNU KAWIRIAN	4	4	4	5	2	5	3	3	2	4	4	4	5	4	4	3	5	5	3	4	4	5	5	4	95

SKOR DATA MENTAH HASIL PENGAMBILAN DATA MOTIVASI BELAJAR SISWA DENGAN STRATEGI PEMBELAJAN NON-TEAM TEACHING

	D											P	ERNY	ATA	AN											TOTAL SHOP
NO.	Responden	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	TOTAL SKOR
1	AGUNG RIFQI ALFARES	4	4	4	5	2	5	5	4	3	4	4	3	3	4	2	3	5	4	2	4	3	4	3	3	87
2	AJI ATMAJAYA	5	4	4	5	4	5	4	4	4	5	4	4	4	4	2	2	5	2	2	4	5	4	4	5	95
3	ANDI MAULANA	4	2	4	5	3	4	4	5	5	5	3	2	4	5	3	3	5	5	5	5	5	5	1	5	97
4	ANGGARA SAPUTRA	5	4	5	4	2	5	4	4	4	5	5	4	4	4	1	4	5	2	4	4	3	2	4	4	92
5	ARI MASYHURI	5	4	4	4	4	5	4	4	5	5	4	2	4	4	2	2	4	4	2	5	5	4	2	5	93
6	ASMAWATI	5	4	4	4	2	4	2	4	4	5	4	2	4	4	3	4	5	4	2	3	4	5	4	5	91
7	AYU SUNDARI	5	3	4	5	2	5	4	2	3	4	5	1	4	4	3	4	5	5	3	4	4	3	3	3	88
8	DALIH	5	4	5	5	2	5	5	5	5	4	5	2	4	4	3	3	5	2	1	5	5	4	1	5	94
9	DICKY PRATAMA	2	5	4	4	4	5	2	2	2	5	4	3	2	5	5	3	5	5	3	3	5	4	1	3	86
10	HERLANGGA	5	5	5	4	1	4	2	5	4	5	4	4	4	4	3	2	5	4	2	5	5	4	4	5	95
11	HIKMAH FAUZIAH ANSHORY	5	5	4	1	2	5	4	4	4	5	5	2	2	5	5	4	5	5	3	5	5	5	4	5	99
12	INDAH SRI WAHYUNI	5	4	4	1	2	4	4	5	4	4	4	3	4	4	3	4	5	2	4	3	5	4	4	5	91
13	JAELANI	5	5	4	4	1	2	4	4	4	5	4	4	4	5	4	5	4	2	1	4	4	5	2	4	90
14	LALA PUTRI SARI	5	4	4	5	2	4	4	4	4	4	3	2	4	4	3	2	5	4	2	5	5	5	2	4	90
15	M. JAYADI	5	4	4	5	2	4	3	4	4	4	4	2	4	4	3	4	4	2	4	4	5	5	4	3	91
16	MOHAMAD WAFA DWIARTO	5	3	5	5	2	5	3	4	4	4	3	4	2	4	5	1	5	4	3	5	4	2	2	5	89
17	MUHAMAD ALI	5	2	5	4	4	2	2	5	2	4	4	2	5	4	4	2	5	4	4	4	5	5	2	3	88
18	MUHAMAD SIDIK	5	5	4	1	4	4	4	5	4	4	4	4	4	5	5	4	4	4	4	4	5	4	4	1	96
19	NANDA MARYADI	5	4	4	5	2	4	4	4	4	3	3	4	4	3	5	3	5	2	3	4	5	4	3	5	92
20	NIPAN HERMANTO	5	4	4	4	4	4	3	4	4	4	4	3	5	5	5	5	3	4	2	4	4	4	4	4	96
21	NURHADI	5	4	5	5	5	4	5	4	5	5	5	4	4	4	5	4	4	5	4	3	4	3	4	5	105
22	PUTRI PURNAMA SARI	5	4	4	1	2	5	3	5	2	4	5	4	4	5	4	5	5	4	2	5	4	4	3	4	93
23	RAMLI FEBRIANSYAH	5	5	5	5	3	4	3	4	3	2	4	4	4	4	5	3	5	5	4	4	5	4	4	5	99
24	RISKI FAUZI	4	4	4	5	2	3	3	4	5	4	3	4	4	4	4	4	5	3	5	4	5	3	2	5	93
25	SEPIA AGUSTIN	5	4	4	3	4	5	4	3	3	4	3	3	3	4	3	4	5	5	4	4	5	4	3	4	93
26	SITI IIN NADIA	5	5	4	5	4	5	2	4	4	4	4	4	3	4	4	2	5	4	3	4	5	4	3	2	93
27	SRI PADILAH	5	5	5	4	2	4	2	3	4	4	4	3	3	3	3	4	4	3	2	3	3	4	5	3	85
28	SUNARTI	5	5	4	5	4	4	4	5	3	4	5	4	5	5	4	4	5	1	4	4	5	4	3	3	99
29	WIRANTO	5	5	5	5	4	5	5	4	4	4	4	3	4	4	5	3	5	4	3	4	5	3	4	5	102
30	ZANETD ANAF	5	2	5	5	2	4	2	5	4	5	4	4	4	4	4	4	5	4	4	4	5	5	2	3	95

SKOR DATA MENTAH HASIL PENGAMBILAN DATA HASIL BELAJAR MENGANALISIS RANGKAIAN LISTRIK DENGAN STRATEGI PEMBELAJAN TEAM TEACHING

														Soal														
NO.	Responden	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	Jumlah	Nilai
1	ABDUL AZIZ	1	1	1	1	0	1	1	1	1	1	0	0	1	0	1	1	1	0	0	1	0	1	1	0	0	16	64
2	ADI RAGIL RIYADI	1	1	1	1	1	1	0	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	23	92
3	ADILAH	1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	1	0	1	1	1	1	1	0	1	1	20	80
4	AKBAR ARI ADITIA SAPUTRA	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	24	96
5	ANDIKA SAPUTRA JAYA	1	1	1	1	1	1	1	1	0	0	1	1	1	1	0	1	0	1	0	1	1	1	1	1	1	20	80
6	ANTONI	1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	0	1	1	1	1	1	1	1	1	0	20	80
7	ARI SETIAWAN	1	1	1	1	1	1	1	1	1	0	1	1	1	1	0	0	1	1	0	1	1	1	1	1	1	21	84
8	ASUMPENA	1	1	1	1	1	1	1	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	23	92
9	BAMBANG ERLANGGA	1	1	1	1	1	1	1	0	1	0	1	0	1	1	1	0	1	1	1	0	1	1	1	1	1	20	80
10	DAHLIA	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	24	96
11	DEVI PRAMAYSELLA	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	0	1	1	1	1	1	22	88
12	DIKKY FAQIH A.S	1	1	1	1	1	1	0	1	0	1	1	1	0	0	1	1	1	1	0	1	0	1	1	0	0	17	68
13	HERU HERMAWAN	1	1	0	1	0	1	1	1	0	1	1	1	0	1	1	1	1	1	0	1	1	1	0	1	1	19	76
14	IKHSAN MAULANA	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	0	0	1	0	0	1	1	0	1	1	19	76
15	IRFAN MAULANA	1	1	1	1	0	1	1	1	0	1	0	1	1	0	1	1	0	1	1	1	1	1	0	0	0	17	68
16	MAYANG SARI	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	0	0	0	21	84
17	MOCHHAMAD ALI AKBAR	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	0	0	0	1	1	19	76
18	MUHAMAD AL FIAN	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	0	1	23	92
19	NUR'AINI	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	23	92
20	NURHAKIM	1	1	1	1	1	1	1	1	1	0	1	1	1	0	1	0	1	1	0	0	1	1	1	1	1	20	80
21	PUTRI MAYASARI	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	1	1	0	1	1	21	84
22	RIAN PERMANA	1	1	0	1	0	1	1	1	1	1	1	1	1	1	0	1	1	1	0	0	1	1	0	1	1	19	76
23	RIMAN FEBRIANSYAH	1	1	1	1	0	1	0	0	1	1	0	1	0	1	1	0	0	1	1	1	1	1	0	1	0	16	64
24	SABILAH JAUZIAH JUBAEDAH	1	1	1	1	1	1	1	1	1	0	1	0	1	0	1	1	0	1	1	1	1	0	1	1	1	20	80
25	SITI AMNAH	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	1	1	1	22	88
26	SITI RATNA DILLA	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	1	1	1	1	1	1	1	1	21	84
27	SUTINAH	1	1	0	1	0	1	0	1	1	0	1	1	0	1	0	1	1	1	0	1	1	1	0	0	0	15	60
28	TOMI ALI KURNIAWAN	1	1	1	1	1	1	1	0	1	0	1	0	1	0	1	1	1	1	0	1	0	1	0	1	1	18	72
29	WAHYU SAMSUL ULUM	1	1	1	1	1	1	1	1	0	1	0	1	1	1	1	0	1	1	1	1	0	1	0	0	0	18	72
30	WISNU KAWIRIAN	1	1	1	1	1	1	1	1	0	1	1	1	1	1	0	1	0	0	1	0	1	1	0	1	1	19	76

SKOR DATA MENTAH HASIL PENGAMBILAN DATA HASIL BELAJAR MENGANALISIS RANGKAIAN LISTRIK DENGAN STRATEGI PEMBELAJAN NON -TEAM TEACHING

													Soal														
NO. Responden	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	Jumlah	Nilai
1 AGUNG RIFQI ALFARES	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	0	0	0	0	1	0	1	1	1	1	18	72
2 AJI ATMAJAYA	1	1	1	1	1	1	1	1	1	1	0	0	1	0	1	1	1	1	1	1	0	1	0	0	1	19	76
3 ANDI MAULANA	1	1	0	1	0	1	0	1	1	1	1	1	1	1	0	0	0	1	0	1	0	1	0	0	1	15	60
4 ANGGARA SAPUTRA	1	1	1	1	1	1	1	1	0	0	0	1	1	0	0	1	1	1	1	0	1	1	1	1	0	18	72
5 ARI MASYHURI	1	1	0	1	0	1	0	1	1	1	1	1	1	1	1	0	1	1	0	1	1	1	0	0	0	17	68
6 ASMAWATI	1	1	1	1	1	1	1	1	0	1	0	1	1	0	0	1	1	1	1	0	1	1	0	1	0	18	72
7 AYU SUNDARI	1	1	1	1	1	1	0	1	0	1	1	0	1	0	1	0	1	1	1	0	1	1	0	0	1	17	68
8 DALIH	1	1	1	1	1	1	1	1	1	0	1	1	0	1	1	1	1	1	0	1	1	1	0	0	0	19	76
9 DICKY PRATAMA	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	0	1	0	1	0	0	1	1	1	19	76
10 HERLANGGA	1	1	1	1	1	1	0	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1	0	0	0	19	76
11 HIKMAH FAUZIAH ANSHORY	1	1	1	1	0	1	0	1	1	1	0	0	0	1	0	0	1	1	1	1	1	1	0	1	0	16	64
12 INDAH SRI WAHYUNI	1	1	1	1	0	1	0	1	1	1	0	1	0	0	1	1	0	1	1	1	1	1	1	0	0	17	68
13 JAELANI	1	1	1	1	1	1	1	1	1	1	0	1	1	0	0	0	0	1	0	1	1	1	1	1	1	19	76
14 LALA PUTRI SARI	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	0	1	0	1	1	1	0	0	0	18	72
15 M. JAYADI	1	1	1	1	1	1	1	1	0	0	1	0	1	1	0	0	1	1	1	0	1	1	0	1	1	18	72
16 MOHAMAD WAFA DWIARTO	1	1	1	1	1	1	1	0	1	0	1	0	1	1	1	0	0	1	1	0	1	1	1	1	1	19	76
17 MUHAMAD ALI	1	1	1	1	0	1	1	1	0	0	1	1	0	0	1	1	1	1	0	1	1	1	1	0	0	17	68
18 MUHAMAD SIDIK	1	1	1	1	1	1	1	1	1	1	0	1	1	0	0	0	1	1	0	1	1	1	0	0	0	17	68
19 NANDA MARYADI	1	1	0	1	0	1	1	1	1	1	1	1	1	1	1	0	0	1	0	1	0	1	1	0	0	17	68
20 NIPAN HERMANTO	1	1	1	1	1	1	1	1	1	0	0	0	1	0	0	0	1	1	0	1	1	1	0	0	0	15	60
21 NURHADI	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	0	1	1	0	1	0	19	76
22 PUTRI PURNAMA SARI	1	1	1	1	1	1	0	1	0	1	1	0	0	1	0	1	1	1	0	1	1	1	1	0	0	17	68
23 RAMLI FEBRIANSYAH	1	1	0	1	1	1	1	1	1	1	1	0	1	0	0	0	0	1	0	1	1	1	0	0	1	16	64
24 RISKI FAUZI	1	1	0	1	0	1	1	0	1	0	1	1	1	0	0	1	0	1	1	1	1	1	0	1	1	17	68
25 SEPIA AGUSTIN	1	1	1	1	1	1	1	1	0	1	0	1	0	1	1	1	1	1	0	1	1	0	1	0	0	18	72
26 SITI IIN NADIA	1	1	1	1	1	1	1	0	1	0	1	0	1	0	0	0	1	1	1	1	1	1	0	0	1	17	68
27 SRI PADILAH	1	1	0	1	0	1	0	1	0	1	1	1	1	1	1	0	1	0	1	1	1	1	0	1	0	17	68
28 SUNARTI	1	1	1	1	1	1	1	1	1	0	1	1	1	1	0	1	0	1	1	0	0	1	0	0	0	17	68
29 WIRANTO	1	1	1	1	0	1	0	1	1	0	0	1	1	1	0	0	1	1	0	1	1	1	0	1	1	17	68
30 ZANETD ANAF	1	1	1	1	1	1	1	1	1	1	1	0	1	0	0	0	1	1	1	1	1	1	0	0	0	18	72

REKAPITULASI SKOR HASIL BELAJAR SISWA YANG MENGIKUTI STRATEGI PEMBELAJARAN TEAM TEACHING BERDASARKAN PENGELOMPOKKAN MOTIVASI BELAJAR

No	No Responden	RESPONDEN	SKOR MOTIVASI BELAJAR	NILAI HASIL BELAJAR	TINGKATAN
1	2	ADI RAGIL RIYADI	102	92	
2	8	ASUMPENA	102	92	
3	4	AKBAR ARI ADITIA SAPUTRA	100	96	
4	10	DAHLIA	100	96	TINGGI
5	11	DEVI PRAMAYSELLA	100	88	
6	25	SITI AMNAH	100	88	
7	18	MUHAMAD AL FIAN	99	92	
8	19	NUR'AINI	99	92	
9	5	ANDIKA SAPUTRA JAYA	97	80	
10	7	ARI SETIAWAN	96	84	
11	14	IKHSAN MAULANA	96	76	
12	13	HERU HERMAWAN	95	76	
13	30	WISNU KAWIRIAN	95	76	
14	6	ANTONI	94	80	
15	16	MAYANG SARI	94	84	
16	21	PUTRI MAYASARI	94	84	DIABAIKAN
17	3	ADILAH	93	80	
18	9	BAMBANG ERLANGGA	92	80	
19	20	NURHAKIM	92	80	
20	26	SITI RATNA DILLA	92	84	
21	22	RIAN PERMANA	91	76	
22	24	SABILAH JAUZIAH JUBAEDAH	91	80	
23	27	SUTINAH	90	60	
24	29	WAHYU SAMSUL ULUM	90	72	
25	12	DIKKY FAQIH A.S	89	68	
26	15	IRFAN MAULANA	89	68	RENDAH
27	23	RIMAN FEBRIANSYAH	89	64	KENDAH
28	1	ABDUL AZIZ	88	64	
29	28	TOMI ALI KURNIAWAN	88	72	
30	17	MOCHHAMAD ALI AKBAR	87	76	

REKAPITULASI SKOR HASIL BELAJAR SISWA YANG MENGIKUTI STRATEGI PEMBELAJARAN NON - TEAM TEACHING BERDASARKAN PENGELOMPOKKAN MOTIVASI BELAJAR

No	No Responden	RESPONDEN	SKOR MOTIVASI BELAJAR	NILAI HASIL BELAJAR	TINGKATAN
1	21	NURHADI	105	76	
2	29	WIRANTO	102	68	
3	11	HIKMAH FAUZIAH ANSHORY	99	64	
4	23	RAMLI FEBRIANSYAH	99	64	TINGGI
5	28	SUNARTI	99	68	
6	3	ANDI MAULANA	97	60	
7	18	MUHAMAD SIDIK	96	68	
8	20	NIPAN HERMANTO	96	60	
9	2	AJI ATMAJAYA	95	76	
10	10	HERLANGGA	95	76	
11	30	ZANETD ANAF	95	72	
12	8	DALIH	94	76	
13	5	ARI MASYHURI	93	68	
14	22	PUTRI PURNAMA SARI	93	68	
15	24	RISKI FAUZI	93	68	DIABAIKAN
16	25	SEPIA AGUSTIN	93	72	DIABAIKAN
17	26	SITI IIN NADIA	93	68	
18	4	ANGGARA SAPUTRA	92	72	
19	19	NANDA MARYADI	92	68	
20	6	ASMAWATI	91	72	
21	12	INDAH SRI WAHYUNI	91	68	
22	15	M. JAYADI	91	72	
23	13	JAELANI	90	76	
24	14	LALA PUTRI SARI	90	72	
25	16	MOHAMAD WAFA DWIARTO	89	76	
26	7	AYU SUNDARI	88	68	RENDAH
27	17	MUHAMAD ALI	88	68	
28	1	AGUNG RIFQI ALFARES	87	72	
29	9	DICKY PRATAMA	86	76	
30	27	SRI PADILAH	85	68	

Lampiran 7. Perhitungan Rata-Rata, Varians, dan Simpangan Baku

TABEL BANTU PERHITUNGAN RATA-RATA, VARIANS, DAN SIMPANGAN BAKU A1,A2, B1, B2

NO	A1	A2	B1	B2	X-X	X-X	x-x	X-X	$(\mathbf{X} - \overline{\mathbf{X}})^2$	$(\mathbf{X} - \overline{\mathbf{X}})^2$	$(\mathbf{X} - \overline{\mathbf{X}})^2$	$(\mathbf{X} - \overline{\mathbf{X}})^2$
NO	Al	A.Z	DI	D2	A1	A2	B1	B2	A1	A2	B1	B2
1	92	76	92	60	12.00	7.00	13.00	-10.00	144.00	49.00	169.00	100.00
2	92	68	92	72	12.00	-1.00	13.00	2.00	144.00	1.00	169.00	4.00
3	96	64	96	68	16.00	-5.00	17.00	-2.00	256.00	25.00	289.00	4.00
4	96	64	96	68	16.00	-5.00	17.00	-2.00	256.00	25.00	289.00	4.00
5	88	68	88	64	8.00	-1.00	9.00	-6.00	64.00	1.00	81.00	36.00
6	88	60	88	64	8.00	-9.00	9.00	-6.00	64.00	81.00	81.00	36.00
7	92	68	92	72	12.00	-1.00	13.00	2.00	144.00	1.00	169.00	4.00
8	92	60	92	76	12.00	-9.00	13.00	6.00	144.00	81.00	169.00	36.00
9	60	76	76	76	-20.00	7.00	-3.00	6.00	400.00	49.00	9.00	36.00
10	72	72	68	72	-8.00	3.00	-11.00	2.00	64.00	9.00	121.00	4.00
11	68	76	64	76	-12.00	7.00	-15.00	6.00	144.00	49.00	225.00	36.00
12	68	68	64	68	-12.00	-1.00	-15.00	-2.00	144.00	1.00	225.00	4.00
13	64	68	68	68	-16.00	-1.00	-11.00	-2.00	256.00	1.00	121.00	4.00
14	64	72	60	72	-16.00	3.00	-19.00	2.00	256.00	9.00	361.00	4.00
15	72	76	68	76	-8.00	7.00	-11.00	6.00	64.00	49.00	121.00	36.00
16	76	68	60	68	-4.00	-1.00	-19.00	-2.00	16.00	1.00	361.00	4.00
Jumlah	1280	1104	1264	1120					2560.00	432.00	2960.00	352.00

	Perhitungan Rata-rata,	Varians dan Simpangan Baku	
Variabel Al	Variabel A2	Variabel B1	Variabel B2
	Ra	<u>ita-rata :</u>	
$\overline{X} = \underbrace{\Sigma X}_{n}$ $= \underbrace{1280}_{16}$ $= 80.00$	$ \overline{X}_{l} = \underline{\Sigma} \underline{X} $ $ = \underline{1104} $ $ = 69.00 $	$\overline{X}_1 = \underline{\Sigma} \underline{X}$ = $\underline{1264}$ = 79.00	$\overline{X}_1 = \underbrace{\Sigma X}_{n}$ = $\underbrace{1120}_{16}$ = 70.00
$S^{2} = \frac{\Sigma(X - \overline{X})^{2}}{n - 1}$ $= \frac{2560.00}{15}$ $= 170.67$	$S^{2} = \frac{\Sigma(X-X)^{2}}{n-1}$ $= \frac{432.00}{15}$ $= 28.80$	$S^{2} = \frac{\Sigma(X-\overline{X})^{2}}{n-1}$ $= \frac{2960.00}{15}$ $= 197.33$	$S^{2} = \frac{\Sigma(X - \overline{X})^{2}}{n - 1}$ $= \frac{352.00}{15.00}$ $= 23.47$
	Simpa	ngan Baku :	
$SD = \sqrt{S^2}$ $= \sqrt{170.67}$	$SD = \sqrt{S^2}$ $= \sqrt{28.80}$ $= 5.37$	$SD = \sqrt{S^2}$ $= \sqrt{197.33}$ $= 14.05$	$SD = \sqrt{S^2}$ $= \sqrt{23.47}$ $= 4.84$
= 13.06	= 3.37	= 14.03	= 4.84
	Mod	us (Mode):	
Mo = 92	Mo = 68	Mo = 92	Mo = 68
	<u>Med</u>	lian (Me):	
Me = 82	Me = 68	Me = 82.0	Me = 70.0

TABEL BANTU PERHITUNGAN RATA-RATA, VARIANS, DAN SIMPANGAN BAKU A1B1,A2B1, A1B2, A2B2

NO	A1B1	A2B1	A1B2	A2B2	X-X	X-X	X-X	$X - \overline{X}$	$(\mathbf{X} - \overline{\mathbf{X}})^2$	$(X - \overline{X})^2$	$(X - \overline{X})^2$	$(X - \overline{X})^2$
NO	Albi	AZDI	AID2	AZDZ	A1B1	A2B1	A1B2	A2B2	A1B1	A2B1	A1B2	A2B2
1	92	76	60	76	0.00	10.00	-8.00	4.00	0.00	100.00	64.00	16.00
2	92	68	72	72	0.00	2.00	4.00	0.00	0.00	4.00	16.00	0.00
3	96	64	68	76	4.00	-2.00	0.00	4.00	16.00	4.00	0.00	16.00
4	96	64	68	68	4.00	-2.00	0.00	-4.00	16.00	4.00	0.00	16.00
5	88	68	64	68	-4.00	2.00	-4.00	-4.00	16.00	4.00	16.00	16.00
6	88	60	64	72	-4.00	-6.00	-4.00	0.00	16.00	36.00	16.00	0.00
7	92	68	72	76	0.00	2.00	4.00	4.00	0.00	4.00	16.00	16.00
8	92	60	76	68	0.00	-6.00	8.00	-4.00	0.00	36.00	64.00	16.00
Jumlah	736	528	544	576					64.00	192.00	192.00	96.00

	Perhitungan Rata-rata,	Varians dan Simpangan Baku	
Variabel A1B1	Variabel A2B1	Variabel A1B2	Variabel A2B2
	Ra	ita-rata :	
$\overline{X} = \underline{\Sigma} \underline{X}$ $= \underline{736}$ 8	\overline{X} = $\underline{\Sigma}\underline{X}$ = $\underline{528}$ = 66.00	$\overline{X} = \underline{\Sigma} \underline{X}$ $= \underline{544}$ 8	$\overline{X}_{l} = \underbrace{\Sigma X_{l}}_{n}$ $= \underbrace{576}_{8}$
= 92.00	= 66.00	= 68.00	= 72.00
	v	arians :	
$S^{2} = \frac{\Sigma(X-\overline{X})^{2}}{n-1}$ $= \frac{64.00}{7}$	$S^{2} = \underbrace{\frac{\Sigma(X - \overline{X})^{2}}{n \cdot 1}}_{n \cdot 1}$ $= \underbrace{\frac{192.00}{7}}_{7}$	$S^{2} = \frac{\Sigma(X-\overline{X})^{2}}{n-1}$ $= \frac{192.00}{7}$	$S^{2} = \frac{\Sigma(X, -\overline{X}_{1})^{2}}{n - 1}$ $= \frac{96.00}{7.00}$
= 9.14	= 27.43	= 27.43	= 13.71
	Simpa	angan Baku :	
$SD = \sqrt{S^2}$	$SD = \sqrt{S^2}$	$SD = \sqrt{S^2}$	$SD = \sqrt{S^2}$
= √ 9.14	= \(\) 27.43	= \sqrt{27.43}	= \(\sqrt{13.71}
= 3.02	= 5.24	= 5.24	= 3.70
	<u>Mod</u>	us (Mode):	
Mo = 92	Mo = 68	Mo = 76	Mo = 76
	Med	lian (Me):	
Me = 92	Me = 66	Me = 68.0	Me = 72.0

128

Lampiran 8. Langkah Membuat Tabel Distribusi Frekuensi dan Histogram

A. Proses perhitungan menggambar grafik histogram dan membuat tabel distribusi frekuensi bagi siswa yang mengikuti strategi pembelajaran *team teaching* A1

1. Menentukan Rentang

Rentang = Data terbesar - data terkecil = 96.00 - 60.00

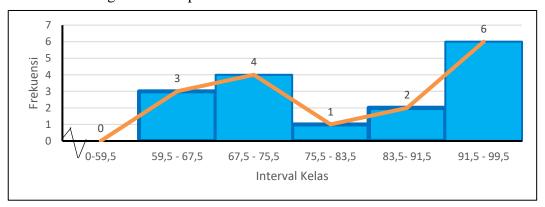
= 36.00

2. Banyaknya Interval Kelas

K = 1 + (3,3) Log n $= 1 + (3,3) \log 16$ = 1 + (3,3) 1,204 = 1 + 3,97

= 4.97 dibulatkan menjadi 5

3. Panjang Kelas Interval


P = Rentang Kelas $= \frac{36}{5}$

= 7.20 dibulatkan menjadi 8

4. Membuat Tabel Distribusi Frekuensi A1

KELAS	INTERVAL		TANDA KELAS	FREKUENSI ABSOLUT	FREKUENSI RELATIF
1	60	- 67	63.5	3	19%
2	68	- 75	71.5	4	25%
3	76	- 83	79.5	1	6%
4	84	- 91	87.5	2	13%
5	92	- 99	95.5	6	38%
JUMLAH			·	16	100%

5. Grafik Histogram Kelompok A1

B. Proses perhitungan menggambar grafik histogram dan membuat tabel

distribusi frekuensi bagi siswa yang mengikuti strategi pembelajaran non

- team teaching A2

1. Menentukan Rentang

Rentang = Data terbesar – data terkecil = 76.00 - 60.00 = 16.00

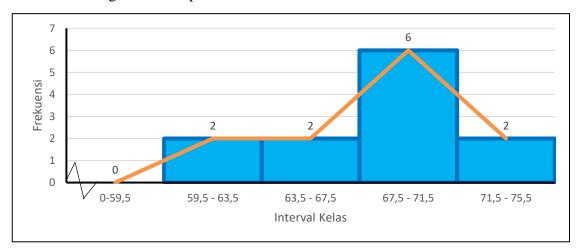
2. Banyaknya Interval Kelas

K = 1 + (3,3) Log n = 1 + (3,3) log 16 = 1 + (3,3) 1,204 = 1 + 3,97

= 4.97 dibulatkan menjadi 5

3. Panjang Kelas Interval

P = Rentang


Kelas $= \frac{16}{5}$

= 3.20 dibulatkan menjadi 4

4. Membuat Tabel Distribusi Frekuensi A2

KELAS	INTERVAL		TANDA KELAS	FREKUENSI ABSOLUT	FREKUENSI RELATIF
1	60	- 63	61.5	2	13%
2	64	- 67	65.5	2	13%
3	68	- 71	69.5	6	38%
4	72	- 75	73.5	2	13%
5	76	- 79	77.5	4	25%
JUMLAH				16	100%

5. Grafik Histogram Kelompok A2

C. Proses perhitungan menggambar grafik histogram dan membuat tabel

distribusi frekuensi bagi siswa yang memiliki Motivasi Tinggi B1

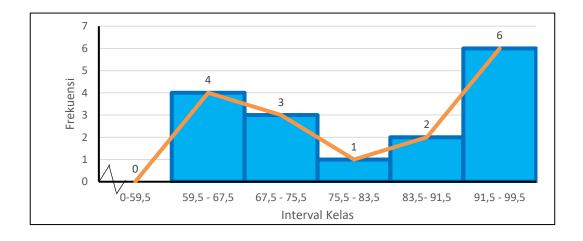
1. Menentukan Rentang

Rentang = Data terbesar - data terkecil = 96.00 - 60.00 = 36.00

2. Banyaknya Interval Kelas

K = 1 + (3,3) Log n = 1 + (3,3) log 16 = 1 + (3,3) 1,204 = 1 + 3,97 = 4.97 dibulatkan menjadi 5

3. Panjang Kelas Interval


 $P = Rentang Kelas = \frac{36}{5}$

= 7.20 dibulatkan menjadi 8

4. Membuat Tabel Distribusi Frekuensi B1

KELAS	INTERVAL	TANDA KELAS	FREKUENSI ABSOLUT	FREKUENSI RELATIF
1	60 - 67	63.5	4	25%
2	68 - 75	71.5	3	19%
3	76 - 83	79.5	1	6%
4	84 - 91	87.5	2	13%
5	92 - 99	95.5	6	38%
JUI	MLAH		16	100%

5. Grafik Histogram Kelompok B1

E. Proses perhitungan menggambar grafik histogram dan membuat tabel distribusi frekuensi bagi siswa yang memiliki Motivasi Rendah B2

1. Menentukan Rentang

= 16.00

2. Banyaknya Interval Kelas

$$K = 1 + (3,3) \text{ Log n}$$

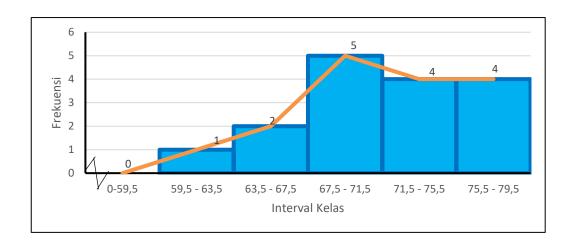
$$= 1 + (3,3) \text{ log } 16$$

$$= 1 + (3,3) 1,204$$

$$= 1 + 3,97$$

$$= 4.97 \text{ dibulatkan menjadi } 5$$

3. Panjang Kelas Interval


P = Rentang
Kelas
$$= \frac{16}{5}$$

= 3.20 dibulatkan menjadi 4

4. Membuat Tabel Distribusi Frekuensi B2

KELAS	INTE	ERVA	L	TANDA KELAS	FREKUENSI ABSOLUT	FREKUENSI RELATIF
1	60	- (63	61.5	1	6%
2	64	- (67	65.5	2	13%
3	68	- ′	71	69.5	5	31%
4	72	- ′	75	73.5	4	25%
5	76	- ′	79	77.5	4	25%
JUMI	LAH	•			16	100%

5. Grafik Histogram Kelompok B2

F. Proses perhitungan menggambar grafik histogram dan membuat tabel distribusi frekuensi bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi belajar tinggi A1B1

1. Menentukan Rentang

Data terbesar - data terkecil Rentang =

> 96.00 -88.00

8.00 =

2. Banyaknya Interval Kelas

$$K = 1 + (3,3) \text{ Log } n$$

 $1 + (3,3) \log 8$ =

1 + (3,3) 0,903=

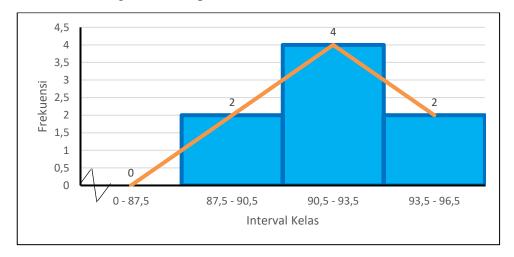
1 + 2,98=

> 3.98 dibulatkan menjadi 3

3. Panjang Kelas Interval

= Rentang

Kelas


8 3

2.67 dibulatkan menjadi 3

4. Membuat Tabel Distribusi Frekuensi A1B1

KELAS	INTERVAL		TANDA KELAS	FREKUENSI ABSOLUT	FREKUENSI RELATIF	
1	88	-	90	89	2	25%
2	91	-	93	92	4	50%
3	94	-	96	95	2	25%
JUMLAH			8	100%		

5. Grafik Histogram Kelompok A1B1

G. Proses perhitungan menggambar grafik histogram dan membuat tabel distribusi frekuensi bagi siswa yang mengikuti strategi pembelajaran non - team teaching dan memiliki motivasi belajar tinggi A2B1

1. Menentukan Rentang

Data terbesar - data terkecil Rentang =

> 76.00 -60.00

2. Banyaknya Interval Kelas

$$K = 1 + (3,3) \text{ Log n}$$

$$= 1 + (3,3) \log 8$$

$$= 1 + (3,3) 0,903$$

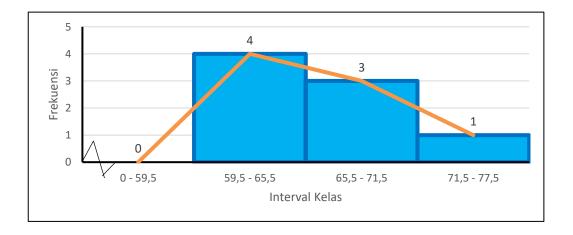
$$= 1 + 2,98$$

$$= 3.98 \text{ dibulatkan menjadi 3}$$

3. Panjang Kelas Interval

P = Rentang

Kelas


=
$$\frac{16}{3}$$

= 5.33 dibulatkan menjadi 6

4. Membuat Tabel Distribusi Frekuensi A2B1

KELAS	INTERVAL	TANDA KELAS	FREKUENSI ABSOLUT	FREKUENSI RELATIF
1	60 - 65	62.5	4	50%
2	66 - 71	68.5	3	38%
3	72 - 77	74.5	1	13%
JUMLAH			8	100%

5. Grafik Histogram Kelompok A2B1

H. Proses perhitungan menggambar grafik histogram dan membuat tabel distribusi frekuensi bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi belajar rendah A1B2

1. Menentukan Rentang

$$=$$
 16.00

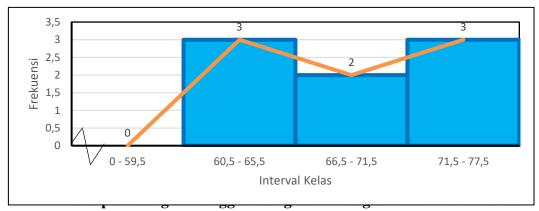
2. Banyaknya Interval Kelas

K =
$$1 + (3,3) \text{ Log n}$$

= $1 + (3,3) \log 8$
= $1 + (3,3) 0,903$
= $1 + 2,98$

= 3.98 dibulatkan menjadi 3

3. Panjang Kelas Interval


$$P = Rentang Kelas = \frac{16}{3}$$

= 5.33 dibulatkan menjadi 6

4. Membuat Tabel Distribusi Frekuensi A1B2

KELAS	INTERVAL		TANDA KELAS	FREKUENSI ABSOLUT	FREKUENSI RELATIF
1	60 -	65	62.5	3	38%
2	66 -	71	68.5	2	25%
3	72 -	77	74.5	3	38%
JUMLAH				8	100%

5. Grafik Histogram Kelompok A1B2

distribusi frekuensi bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi belajar rendah A2B2

1. Menentukan Rentang

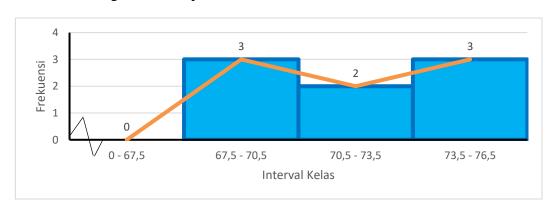
2. Banyaknya Interval Kelas

$$K = 1 + (3,3) \text{ Log n}$$

$$= 1 + (3,3) \log 8$$

$$= 1 + (3,3) 0,903$$

$$= 1 + 2,98$$


$$= 3.98 \text{ dibulatkan menjadi } 3$$

3. Panjang Kelas Interval
P = Rentang
Kelas
=
$$\frac{8}{3}$$
= 2.67 dibulatkan menjadi 3

4. Membuat Tabel Distribusi Frekuensi A2B2

KELAS	INT	ERV	AL	TANDA KELAS	FREKUENSI ABSOLUT	FREKUEN SI RELATIF
1	68	-	70	69	3	38%
2	71	-	73	72	2	25%
3	74	-	76	75	3	38%
JUMLAH					8	100%

5. Grafik Histogram Kelompok A2B2

Lampiran 9. Uji Normalitas

A. Uji Liliefors bagi siswa yang mengikuti strategi pembelajaran team teaching A1

				ategi pembelajai
Variabel	Zi	F(zi)	S(zi)	F(zi) - S(zi)
60	-1.531	0.063	0.063	0.000
64	-1.225	0.110	0.125	0.015
64	-1.225	0.110	0.188	0.077
68	-0.919	0.179	0.250	0.071
68	-0.919	0.179	0.313	0.133
72	-0.612	0.270	0.375	0.105
72	-0.612	0.270	0.438	0.167
76	-0.306	0.380	0.500	0.120
88	0.612	0.730	0.563	0.167
88	0.612	0.730	0.625	0.105
92	0.919	0.821	0.688	0.133
92	0.919	0.821	0.750	0.071
92	0.919	0.821	0.813	0.008
92	0.919	0.821	0.875	0.054
96	1.225	0.890	0.938	0.048
96	1.225	0.890	1.000	0.110

Uji Normalitas Liliefors					
Liliefors Hitung	0.167				
Derajat Kepercayaan	0.050				
Liliefors	0.886				
Liliefors Tabel	0.222				
Kesimpulan	DATA NORMAL				

Statistik	Variabel
N Sampel	16
Mean	80.000
Simpangan Baku	13.064

B. Uji Liliefors bagi siswa yang mengikuti strategi pembelajaran non - team teaching A2

Variabel	Zi	F(zi)	S(zi)	F(zi) - S(zi)
60	-1.677	0.047	0.063	0.016
60	-1.677	0.047	0.125	0.078
64	-0.932	0.176	0.188	0.012
64	-0.932	0.176	0.250	0.074
68	-0.186	0.426	0.313	0.114
68	-0.186	0.426	0.375	0.051
68	-0.186	0.426	0.438	0.011
68	-0.186	0.426	0.500	0.074
68	-0.186	0.426	0.563	0.136
68	-0.186	0.426	0.625	0.199
72	0.559	0.712	0.688	0.024
72	0.559	0.712	0.750	0.038
76	1.304	0.904	0.813	0.091
76	1.304	0.904	0.875	0.029
76	1.304	0.904	0.938	0.034
76	1.304	0.904	1.000	0.096

Uji Normalitas Liliefors					
Liliefors Hitung	0.199				
Derajat Kepercayaan	0.050				
Liliefors	0.886				
Liliefors Tabel	0.222				
Kesimpulan	DATA NORMAL				
Kesimpulan Statistik	DATA NORMAL Variabel				
•	. 2				
Statistik	Variabel				

C. Uji Liliefors bagi siswa

yang memiliki motivasi tinggi B1

Variabel	Zi	F(zi)	S(zi)	F(zi) - S(zi)
60.00	-1.353	0.088	0.063	0.026
60.00	-1.353	0.088	0.125	0.037
64.00	-1.068	0.143	0.188	0.045
64.00	-1.068	0.143	0.250	0.107
68.00	-0.783	0.217	0.313	0.096
68.00	-0.783	0.217	0.375	0.158
68.00	-0.783	0.217	0.438	0.221
76.00	-0.214	0.415	0.500	0.085
88.00	0.641	0.739	0.563	0.177
88.00	0.641	0.739	0.625	0.114
92.00	0.925	0.823	0.688	0.135
92.00	0.925	0.823	0.750	0.073
92.00	0.925	0.823	0.813	0.010
92.00	0.925	0.823	0.875	0.052
96.00	1.210	0.887	0.938	0.051
96.00	1.210	0.887	1.000	0.113

Uji Normalitas Liliefors			
Liliefors Hitung	0.221		
Derajat Kepercayaan	0.050		
Liliefors	0.886		
Liliefors Tabel	0.222		
Kesimpulan	DATA NORMAL		

Statistik	Variabel
N Sampel	16
Mean	79.000
Simpangan Baku	14.048

D. Uji Liliefors bagi siswa yang memiliki motivasi rendah B2

	Linefors bagi siswa yang memiliki motivasi rendah B2					
Variabel	Zi	F(zi)	S(zi)	F(zi) - S(zi)		
60	-1.353	0.088	0.063	0.026		
60	-1.353	0.088	0.125	0.037		
64	-1.068	0.143	0.188	0.045		
64	-1.068	0.143	0.250	0.107		
68	-0.783	0.217	0.313	0.096		
68	-0.783	0.217	0.375	0.158		
68	-0.783	0.217	0.438	0.221		
76	-0.214	0.415	0.500	0.085		
88	0.641	0.739	0.563	0.177		
88	0.641	0.739	0.625	0.114		
92	0.925	0.823	0.688	0.135		
92	0.925	0.823	0.750	0.073		
92	0.925	0.823	0.813	0.010		
92	0.925	0.823	0.875	0.052		
96	1.210	0.887	0.938	0.051		
96	1.210	0.887	1.000	0.113		

Uji Normalitas Liliefors			
Liliefors Hitung	0.160		
Derajat Kepercayaan	0.050		
Liliefors	0.886		
Liliefors Tabel	0.222		
Kesimpulan	DATA NORMAL		

Statistik	Variabel
N Sampel	16
Mean	70.000
Simpangan Baku	4.844

E. Uji Liliefors bagi siswa yang mengikuti strategi pembelajaran team teaching

dan memiliki motivasi tinggi A1B1

Variabel	Zi	F(zi)	S(zi)	F(zi) - S(zi)
88	-1.323	0.093	0.125	0.032
88	-1.323	0.093	0.250	0.157
92	0.000	0.500	0.375	0.125
92	0.000	0.500	0.500	0.000
92	0.000	0.500	0.625	0.125
92	0.000	0.500	0.750	0.250
96	1.323	0.907	0.875	0.032
96	1.323	0.907	1.000	0.093

Uji Normalitas Liliefors		
Liliefors Hitung	0.250	
Derajat Kepercayaan	0.050	
Liliefors	0.886	
Liliefors Tabel	0.313	
Kesimpulan	DATA NORMAL	

Statistik	Variabel
N Sampel	8
Mean	92.000
Simpangan Baku	3.024

F. Uji Liliefors bagi siswa yang mengikuti strategi pembelajaran non - team

teaching dan memiliki motivasi tinggi A2B1

Variabel	Zi	F(zi)	S(zi)	F(zi) - S(zi)
60	-1.146	0.126	0.125	0.001
60	-1.146	0.126	0.250	0.124
64	-0.382	0.351	0.375	0.024
64	-0.382	0.351	0.500	0.149
68	0.382	0.649	0.625	0.024
68	0.382	0.649	0.750	0.101
68	0.382	0.649	0.875	0.226
76	1.909	0.972	1.000	0.028

Uji Normalitas Liliefors			
Liliefors Hitung	0.226		
Derajat Kepercayaan	0.050		
Liliefors	0.886		
Liliefors Tabel	0.313		
Kesimpulan	DATA NORMAL		

Statistik	Variabel
N Sampel	8
Mean	66.000
Simpangan Baku	5.237

G. Uji Liliefors bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi rendah A1B2

Variabel	Zi	F(zi)	S(zi)	F(zi) - S(zi)
60	-1.528	0.063	0.125	0.062
64	-0.764	0.223	0.250	0.027
64	-0.764	0.223	0.375	0.152
68	0.000	0.500	0.500	0.000
68	0.000	0.500	0.625	0.125
72	0.764	0.777	0.750	0.027
72	0.764	0.777	0.875	0.098
76	1.528	0.937	1.000	0.063

Uji Normalitas Liliefors				
Liliefors Hitung	0.152			
Derajat Kepercayaan	0.050			
Liliefors	0.886			
Liliefors Tabel	0.313			
Kesimpulan	DATA NORMAL			

Statistik	Variabel
N Sampel	8
Mean	68.000
Simpangan Baku	5.237

H. Uji Liliefors bagi siswa yang mengikuti strategi pembelajaran non - team

teaching dan memiliki motivasi rendah A2B2

Variabel	Zi	F(zi)	S(zi)	F(zi) - S(zi)
68	-1.080	0.140	0.125	0.015
68	-1.080	0.140	0.250	0.110
68	-1.080	0.140	0.375	0.235
72	0.000	0.500	0.500	0.000
72	0.000	0.500	0.625	0.125
76	1.080	0.860	0.750	0.110
76	1.080	0.860	0.875	0.015
76	1.080	0.860	1.000	0.140

Uji Normalitas Liliefors				
Liliefors Hitung	0.235			
Derajat Kepercayaan	0.050			
Liliefors	0.886			
Liliefors Tabel	0.313			
Kesimpulan	DATA NORMAL			

Statistik	Variabel
N Sampel	8
Mean	72.000
Simpangan Baku	3.703

Tabel hasil belajar siswa kelas A1B1, A1B2, A2B1 dan A2B2

No	A1B1	A2B1	A1B2	A2B2
1	92	76	60	76
2	92	68	72	72
3	96	64	68	76
4	96	64	68	68
5	88	68	64	68
6	88	60	64	72
7	92	68	72	76
8	92	60	76	68
Jumlah	736.00	528.00	544.00	576.00
Rerata	92.00	66.00	68.00	72.00
SD	3.02	5.24	5.24	3.70

Untuk menguji homogenitas varians data dari keempat kelompok digunakan teknik Bartlett. Berdasarkan data di atas dapat dihitung nilai variansi setiap kelompok data seperti pada tabel berikut

Statistik		Perlakua	kuan			
	A1B1 A2B1 A1B2 A2B2					
Rerata (\overline{X})	92.00	66.00	68.00	72.00		
Standar Deviasi (S)	3.02	5.24	5.24	3.70		
Variansi (S ²)	9.14	27.43	27.43	13.71		
Jumlah Data (N)	8	8	8	8		

Tabel Penolong untuk Uji Homogenitas Varians

Sampel	dk	1/dk	Si	Si ²	dk. Si ²	Log Si ²	(dk)logSi ²
1	7	0,14	3.02	9.14	64.00	0.96	6.73
2	7	0,14	5.24	27.43	192.00	1.44	10.07
3	7	0,14	5.24	27.43	192.00	1.44	10.07
4	7	0,14	3.70	13.71	96.00	1.14	7.96
Jumlah	28	0,57	17.20	77.71	544.00	4.97	34.82

Langkah-langkah untuk menghitung uji barlett adalah sebagai berikut:

3. Mencari S^2 dengan rumus:

$$S^2 = \frac{\sum (dk. S_i^2)}{\sum (dk)}$$

$$S^2 = \frac{544,00}{28} = 19,43$$

4. Mencari nilai β dengan rumus:

$$\beta = \sum dk . log S^2$$

$$\beta = 28 . log (19,43)$$

$$= 28 . 1,29$$

= 36,08

5. Menghitung nilai Chi Kuadrat dengan rumus:

$$X_{hitung}^{2} = \{ (ln 10) (\beta - \sum dk. log S^{2}) \}$$

$$= 2,30.(36,08 - 34,82)$$

$$= 2,30.1,25$$

$$= 2,88$$

6. Kriteria Pengujian

H_o : data tidak bersifat homogen

 H_1 : data bersifat homogen

Tolak H₀ jika : $X_{hitung}^2 > X_{tabel}$

Terima H₀ jika: $X_{hitung}^2 < X_{tabel}$

Untuk $\alpha=5\%$, dari daftar distribusi chikuadrat dengan dk (k -1) atau 4 -1 = 3 didapat Xt = 7,81. Ternyata (chikuadrat hitung) X^2 hitung = 2,88 < 7,81. Sehingga H_0 diterima, dengan demikian keseluruhan empat data perlakuan mempunyai varians yang sama besar (homogen).

Lampiran 11. Data Hasil Pengujian Hipotesis

PERHITUNGAN ANAVA DUA JALUR

Tabel persiapan untuk mempermudah perhitungan jumlah kuadrat beberapa sumber varians adalah sebagai berikut:

Statistik	A1B1	A2B1	A1B2	A2B2	Σ
n	8	8	8	8	32
∑Yi	736	528	544	576	2384
$\sum Yi^2$	67776	35040	37184	41568	181568
$\sum yi^2$	64.000	192.000	192.000	96.000	544.000
<u>Ψι</u>	92.00	66.00	68.00	72.00	74.50

a. Menghitung Jumlah Kuadrat (JK) untuk beberapa sumber variansi, yaitu:

JK (T) =
$$\sum Y_T^2 - \frac{(\sum Y_T)^2}{n_T}$$

= 181568 - $\frac{(2384)^2}{32}$

= 3960,000

$$JK (A) = \sum_{i=1}^{a} \left\{ \frac{\left(\sum Y_{i}\right)^{2}}{n_{i}} \right\} - \frac{\left(\sum Y_{T}\right)^{2}}{n_{T}}$$

$$= \frac{\left(\sum A_{1}\right)^{2}}{nA1} + \frac{\left(\sum A_{2}\right)^{2}}{nA2} - \frac{\left(\sum Y_{T}\right)^{2}}{n_{T}}$$

$$= \frac{(736+544)^{2}}{8+8} + \frac{(528+576)^{2}}{8+8} - \frac{(2384)^{2}}{32}$$

$$= 968,000$$

$$JK\left(B\right) = \sum_{i=1}^{b} \left\{ \frac{\left(\sum Y_{i}\right)^{2}}{n_{i}} \right\} - \frac{\left(\sum Y_{T}\right)^{2}}{n_{T}}$$

$$= \frac{\left(\sum B_1\right)^2}{nB1} + \frac{\left(\sum B_2\right)^2}{nB2} - \frac{\left(\sum Y_T\right)^2}{n_T}$$

$$= \frac{(736+528)^2}{8+8} + \frac{(544+576)^2}{8+8} - \frac{(2384)^2}{32}$$

$$= 648,000$$

$$JK (D) = \sum y_T^2 = 544.000$$

b. Menentukan derajat kebebasan (dk) masing – masing sumber variansi

$$dk (T) = n - 1 = 32 - 1 = 31$$

$$dk (A) = 2 - 1 = 1$$

$$dk (B) = 2 - 1 = 1$$

$$dk (AB) = (2 - 1)(2 - 1) = 1$$

$$dk (D) = dk (T) - dk (A) - dk (B) - dk (AB)$$

$$= 31 - 1 - 1 - 1 = 28$$

c. Menentukan Rata – rata Julah Kuadrat (RJK)

RJK (T) =
$$\frac{JK(T)}{dk(T)} = \frac{3960,000}{31} = 127,742$$

RJK (A) = $\frac{JK(A)}{dk(A)} = \frac{968,000}{1} = 968,000$

RJK (B) =
$$\frac{JK(B)}{dk(B)} = \frac{648,000}{1} = 648,000$$

RJK (D) =
$$\frac{JK(D)}{dk(D)} = \frac{544.000}{28} = 19,429$$

d. Menentukan F hitung

F hitung antar A =
$$\frac{RJK(A)}{RJK(D)} = \frac{968,000}{19,429} = 49,824$$

F hitung antar B =
$$\frac{RJK(B)}{RJK(D)} = \frac{648,000}{119,429} = 33,353$$

e. Menyusun Tabel ANAVA

Sumber Varians	JK	dk	RJK	Fo	F tab	Keterangan
Antar A	968,000	1	968,000	49,824	4,196	signifikan
Antar B	648,000	1	648,000	33,353	4,196	signifikan
Dalam	544,000	28	19,429			
Total	3960,000	31	127,742			

Keterangan:

JK = jumlah kuadrat

dk = derajat kebebasan

RJK = Rata - rata jumlah kuadrat

Fo = F hitung

F tab = Ftabel

f. Kesimpulan:

Uji Hipotesis 1 (Antar A):

Karena F_h = **49,824** > **4,196**= F_t maka H_0 ditolak, artinya terdapat perbedaan Hasil belajar menganalisis bagi siswa yang mengikuti strategi pembelajaran *team teaching* dengan yang mengikuti strategi pembelajaran *non- team teaching*.

g. Melakukan Uji Lanjut

Karena dari uji ANAVA dua arah diperoleh hasil terdapat perbedaan dan pengaruh interaksi, maka perlu dilakukan uji lanjut. Uji lanjut yang akan digunakan adalah uji Dunnett.

3. $A_1B_1 dan A_2B_1$:

a. Hipotesis Statistik:

$$H_0: \; \mu_{A1B1} \leq \mu_{A2B1} \; ; \qquad \qquad H_1: \; \mu_{A1B1} > \mu_{A2B1} \; ;$$

b. Uji Hipotesis:

$$t_o(a_1b_1 \times a_2b_1) = \frac{\left|\overline{Y}_{11} - \overline{Y}_{21}\right|}{\sqrt{RJK(D)\left(\frac{1}{n_{11}} + \frac{1}{n_{21}}\right)}} = \frac{\left|92,00 - 66,00\right|}{\sqrt{\left(19,429\right)\left(\frac{1}{8} + \frac{1}{8}\right)}} = 11,80$$

$$t_{tab} = t(\alpha; (n_T - n_a \cdot n_b)) = t(0,05;28) = 1,70$$

c. Kesimpulan:

 $Karena\;t_o=11,\!80>1,\!70=t_{tab}\;\;maka\;H_0\;ditolak.$

Artinya:

"Hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi tinggi lebih tinggi daripada siswa yang mengikuti strategi pembelajaran *non – team teaching* dan memiliki motivasi tinggi".

4. $A_1B_2 dan A_2B_2$:

a. Hipotesis Statistik:

$$H_0: \mu_{A1B2} \ge \mu_{A2B2}; \qquad \qquad H_1: \mu_{A1B2} < \mu_{A2B2}$$

b. Uji Hipotesis:

$$t_{o}(a_{1}b_{2} \times a_{2}b_{2}) = \frac{\left|\overline{Y}_{12} - \overline{Y}_{22}\right|}{\sqrt{RJK(D)\left(\frac{1}{n_{12}} + \frac{1}{n_{22}}\right)}} = \frac{\left|68,00 - 72,00\right|}{\sqrt{\left(19,429\right)\left(\frac{1}{8} + \frac{1}{8}\right)}} = 1,81$$

$$t_{tab} = t(\alpha; (n_T - n_a \cdot n_b)) = t(0,05;28) = 1,70$$

c. Kesimpulan:

 $Karena \; t_o = 1{,}81 > 1{,}70 = t_{tab} \; \; maka \; H_0 \; ditolak.$

Artinya:

"Hasil belajar menganalisis rangkaian listrik bagi siswa yang mengikuti strategi pembelajaran *team teaching* dan memiliki motivasi rendah lebih rendah daripada siswa yang mengikuti strategi pembelajaran *non – team teaching* dan memiliki motivasi rendah"

Lampiran 12. Surat Izin Penelitian Skripsi

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI

UNIVERSITAS NEGERI JAKARTA

Kampus Universitas Negeri Jakarta, Jalan Rawamangun Muka, Jakarta 13220 Telepon/Faximile: Rektor: (021) 4893854, PR. I: 4895130, PR II: 4893918, PR III: 4892926, PR IV: 4893982 BAUK: 4750930, BAAK: 4759081, BAPSI; 4752180

Bagian UHTP: Telepon 4893726, Bagian Keuangan: 4892414, Bagian Kepegawaian: 4890536, Bagian HUMAS: 48984 Laman: www.unj.ac.id

Nomor

: 0487/UN39.12/KM/2017

7 Februari 2017

Lamp. Hal

: Permohonan Izin Mengadakan Penelitian

untuk Penulisan Skripsi

Yth. Kepala SMK Negeri 1 Tambelang Jl. Raya Tambelang No.2 Ds. Sukarapih, Kec. Tambelang, Kab. Bekasi

Kami mohon kesediaan Saudara untuk dapat menerima Mahasiswa Universitas Negeri Jakarta:

Nama

: Furi Endang Palupi

Nomor Registrasi

: 5115102608

Program Studi

: Pendidikan Teknik Elektro

Fakultas

: Teknik Universitas Negeri Jakarta

No. Telp/HP

: 089636182892

Dengan ini kami mohon diberikan ijin mahasiswa tersebut, untuk dapat mengadakan penelitian guna mendapatkan data yang diperlukan dalam rangka penulisan skripsi dengan judul:

"Pengaruh Strategi Pembelajaran Team Teaching dan Motivasi Belajar Siswa Terhadap Hasil Belajar Mata Pelajaran Menganalisis Rangkaian Listrik"

Atas perhatian dan kerjasama Saudara, kami sampaikan terima kasih.

Kepala Bira Akademik, Kemahasiswaan, Manyarakat

NIP. 19630403 198510 2 001

Tembusan:

1. Dekan Fakultas Teknik

Kaprog Pendidikan Teknik Elektro

Lampiran 13. Surat Keterangan Telah Menyelesaikan Penelitian

PEMERINTAH DAERAH PROVINSI JAWA BARAT DINAS PENDIDIKAN SMK NEGERI 1 TAMBELANG

Jl.Raya Tambelang No.2 Desa Sukarapih Kec. Tambelang, Telp./Fax.021-89170636

E-mail: smktambelang@yahoo.co.id Kabupaten Bekasi 17620

Nomor

: 421.5/061/SMKN.1/Disdik/2017

Lamp. Perihal

: Permohonan penelitian

Bekasi, 24 Februari 2017

Kepada

Yth. Bpk Kepala Biro Akademik, Kemahasiswaan

dan HUMAS Universitas Negeri Jakarta

Di Tempat

Dengan Hormat,

Menindaklanjuti Surat Permohonan Nomor: 0487/UN39.12/KM/2017 Tanggal 7 Februari 2017 tentang Permohonan Izin Mengadakan Penelitian untuk Penulisan Skripsi a.n.:

Nama

: Furi Endang Palupi

No. Registrasi

: 5115102608

Program Studi

: Pendidikan Teknik Elektro

Fakultas

: Teknik Universitas Negeri Jakarta

Pada prinsipnya Kepala Sekolah tidak berkeberatan dan mengizinkan selama tidak mengganggu proses belajar mengajar di sekolah.

Demikian surat permohonan ini kami buat, atas perhatian dan kerjasamanya kami ucapkan terimakasih.

SMK NEGERI SPAIN TAMBELAND SPOIL 11990031008

Lampiran 14. Dokumentasi Penelitian

Peneliti sedang melakukan Uji Coba Instrumen pada siswa kelas XI TOI

Siswa kelas XI TOI sedang mengisi Uji Coba Instrumen

Pembelajaran dengan Team Teaching

Pembelajaran dengan Non – Team Teaching

Siswa sedang mengisi Kuisioner Motivasi Belajar siswa

Siswa sedang mengerjakan Tes Hasil Belajar Menganalisis Rangkaian Listrik