KURNIA HANDARI PUSPITA, . (2011) ANTRIAN PELAYANAN MARKOVIAN BULK SALURAN TUNGGAL DENGAN DELAYED VACATIONS. Sarjana thesis, UNIVERSITAS NEGERI JAKARTA.
Text
skripsi_revisi.pdf Download (0B) |
Abstract
Skripsi ini menjelaskan mengenai sistem antrian M/M(a, d, b)/1 dengan apli�kasi liburan dan masa penantian (changeover time). Pada model ini kedatangan pelanggan merupakan proses Poisson dan dilayani oleh sebuah fasilitas pelayanan dengan kebijakan pelayanan (a, d, b). Pelayanan dimulai ketika menemukan sedikit�nya d unit dalam baris antrian dan maksimum pelayanan sebesar b unit dalam satu kelompok. Pelayan melanjutkan pelayanan ketika panjang baris antrian ku�rang dari d tapi tidak kurang dari batas nilai a (a ≤ d). Jika sejumlah pelayanan terpenuhi dan panjang baris antrian a−1 maka pelayan menanti beberapa saat di dalam sistem, atau dengan seketika mengambil liburan. Pelayan mulai melayani ketika menemukan satu kedatangan selama masa penantiannya dan jika seba�liknya maka pelayan mengambil liburan. Lamanya pelayanan, liburan, dan masa penantian berdistribusi eksponensial. Persamaan sistem antrian dan distribusi panjang antrian steady state dibangun lebih lanjut untuk menentukan rata-rata panjang antrian. Dari hasil tersebut, penulis menyajikan dua kasus khusus. This thesis is concerned for the study of M/M(a, d, b)/1 queueing system with delayed vacations and changeover time. In this model the arrivals customer are according to a Poisson process and are served by a single server under the policy (a, d, b). The server begins service if there are at least d units in the queue and serves a maximum of b units in a batch. The server continues the service even when the queue size is less than d but not less than a secondary limit a (a ≤ d). If after a service completion epoch the queue size is a − 1, the server waits in the system for some time (changeover time), instead of going for vacations immediately. The server starts service on finding an arrival during the changeover time otherwise the server will go for a vacations. The duration of service time, vacation, and changeover time is exponential distributed. The queuing system equations and the steady state queue size distributions is establish which is further employed to determine average queue length. The earlier existing result, the authors will be present two particular cases.
Item Type: | Thesis (Sarjana) |
---|---|
Additional Information: | 1) Prof. Dr. Suyono, M. Si 2) Yudi Mahatma, M. Si |
Subjects: | Sains > Matematika |
Divisions: | FMIPA > S1 Matematika |
Depositing User: | sawung yudo |
Date Deposited: | 28 Jun 2022 11:13 |
Last Modified: | 28 Jun 2022 11:13 |
URI: | http://repository.unj.ac.id/id/eprint/30905 |
Actions (login required)
View Item |