HUBUNGAN ANTARA POLA ASUH ORANG TUA DENGAN SOCIAL INTELLIGENCE SISWA KELAS XI JURUSAN AKUNTANSI SMK 22 JAKARTA

ASTRID TRI WAHYULI

8155078187

Skripsi Ini Disusun Sebagai Salah Satu Persyaratan Untuk Memperoleh Gelar Sarjana Pendidikan Pada Fakultas Ekonomi Universitas Negeri Jakarta

PROGRAM STUDI PENDIDIKAN EKONOMI KONSENTRASI PENDIDIKAN AKUNTASI JURUSAN EKONOMI DAN ADMINISTRASI UNIVERSITAS NEGERI JAKARTA

2014

CORRELATION BETWEEN PARENTING WITH SOCIAL INTELLIGENCE OF STUDENTS IN GRADE XI ACCOUNTING CONCENTRATION IN SMK 22 JAKARTA

Astrid Tri Wahyuli

8155078187

Skripsi is Written as Part Of Bachelor Degree in Education Accomplishment

STUDI PROGRAM OF ECONOMIC EDUCATION

CONCENTRATION IN ACCOUNTING EDUCATION

DEPARTMENT OF ECONOMIC AND ADMINISTRATION

FACULTY OF ECONOMIC

STATE UNIVERSITY OF JAKARTA

2014

ABSTRAK

ASTRID TRI WAHYULI. <u>Pengaruh Antara Pola Asuh Orang Tua dengan Social Intelligence Siswa SMK 22 Jakarta Kelas XI Jurusan Akuntansi.</u> Skripsi, Jakarta: Konsentrasi Pendidikan Akuntansi, Program Studi Pendidikan Ekonomi, Jurusan Ekonomi dan Administrasi, Fakultas Ekonomi, Universitas Negeri Jakarta, 2014.

Penelitian ini bertujuan untuk memperoleh data dan fakta yang valid tentang hubungan antara Pola Asuh Orang Tua dengan Social Intelligence siswa SMK 22 Jakarta kelas XI jurusan Akuntansi. Penelitian ini menggunakan metode survei dengan pendekatan korelasional dan menggunakan data ekspos facto. Populasi dalam penelitian ini adalah seluruh siswa yang berada di sekolah menengah kejuruan 22 di Jakarta Timur. Populasi terjangkau dalam penelitian ini adalah siswa kelas XI pada jurusan akuntansi disekolah menegah kejuruan negeri 22 jakarta Timur sejumlah 78 orang siswa. Jumlah sample yang dijadikan penelitian adalah 66 siswa. Teknik pengambilan sample yang digunakan yaitu teknik acak proporsional. Instrumen yang digunakan dalam penelitian berbentuk kuesioner berjumlah 32 butir untuk variabel pola asuh orang tua dan 26 butir untuk variabel social intelligence. Dari uji persyaratan analisis yang dilakukan, data dinyatakan berdistribusi normal dan linear dengan persamaan regresi Y=37,39+0,432X. Berdasarkan hasil uji hipotesis dapat diketahui bahwa terdapat pengaruh yang positif dan signifikan antara kedua variabel dengan dilakukannya uji f, dimana fhitung sebesar 24,72 dan ftabel sebesar 3,99. Kemudian, terdapat pengaruh yang positif dan signifikan untuk variabel pola asuh orang tua terhadap social intelligence dengan dilakukannya uji t, dimana thitung sebesar 4,97 dan ttabel sebesar 1,68. Berdasarkan perhitungan koofisien determinasi yang dilakukan secara bersama-sama untuk kedua variabel menghasilkan R_{square} sebesar 0,2787 atau sebesar 27,87%. Hal ini berarti sebesar 27,87% social intelligence atau kecerdasan sosial ditentukan oleh pola asuh orang tua dan sedangkan sisanya 72,13% dipengaruhi oleh variabel lain yang tidak dijelaskan dalam model ini.

ABSTRACT

ASTRID TRI WAHYULI. <u>The Correlation between Parenting with Social Intelligence Of Students In SMK 22 Jakarta Grade XI Accounting Concentration.</u> Faculty of Economics State University of Jakarta, 2014.

This research aims to determine whether there are a correlation between Parenting with Social Intelligence Of Students In SMK 22 Jakarta Grade XI Accounting Concentration. This observation using survey methods with a correlational approach and use the data facto exposure. Affordable population in this research were the students in the accounting department at a vocational high school, amounting to 78 students. Total of samples used were 66 research. Sampling technique used is proportional random techniques. The instruments used in the form of a questionnaire with 32 statements to variable of parenting and 26 statements to variable of social intelligence. Based on test requirements analysis, the data is normally distributed by linear regretion equation Y=37,39+0,432X. Based on the results of hypothesis testing can be seen that there is a positive and significant effect of the two variables simultaneously with the f test, where Fcount was 24,72 and Ftable was 3,99. Then, there is a positive and significant effect of the two variables of parenting toward social intelligence with t test, in which tcount was 4,97 and then ttable was 1,68. Based on the calculation of coefficient corellation parenting variable (X1) social intelligencevariable (Y) was 0,528 which is shows that the corelation is fair. The calculation of the coefficient determination of two variables simultaneoslly was obtained Rsquare 0.2787 or 27,87%. it showed that 27,87% of parenting affect social intelligence, while the remaining 72,13% is influenced by other variables that are not described in this model.

LEMBAR PENGESAHAN SKRIPSI

"Hubungan Antara Pola Asuh Orang Tua dengan *Social Intelligence* Siswa Kelas XI Jurusan Akuntansi SMK 22 Jakarta"

Penanggung Jawab Dekan Fakultas Ekonomi

Drs. Dedi Purwana ES, M.Bus

NIP.19671207 199203 1 001

Nama	Jabatan	Tanda Tangan Ta	anggal
1. Santi Susanti, S.Pd,M.Ak	Ketua	18	J.J. 2014
NIP 197701132005012002		AMMA. 18	T1: 2014
2. Susi Indriani, M.S.Ak NIP 197608202009122001	Sekertaris		Ili 2014
3. Dr. Mardi, M.Si	Penguji Ahli	HB 1 12	Juli 2014
NIP 196003011987031001			
4. Dra. Sri Zulaihati, M.Si	Pembimbing I		Ili 2014
NIP 196102281986022001	_	F 50 18	TI
5. Ahmad Fauzi, S.Pd, M.Ak	Pembimbing II	1-5210	JU 2019
NIP 197705172010121002			
Tanggal Lulus: 24 Juni 2014			

PERNYATAAN ORISINALITAS

Dengan ini, saya menyatakan bahwa:

- Karya tulis skripsi ini adalah asli dan belum pernah diajukan untuk mendapatkan gelar akademik sarjana, baik di Universitas Negeri Jakarta maupun di perguruan tinggi lain.
- Karya tulis ini adalah murni gagasan, rumusan dan penelitian saya sendiri, tanpa bantuan pihak lain, kecuali arahan dosen pembimbing.
- Dalam karya tulis ini tidak terdapat karya atau pendapat yang telah ditulis atau dipublikasikan orang lain, kecuali secara tertulis dengan jelas dicantumkan sebagai acuan naskah dengan disebutkan nama pengarang dan dicantumkan dalam daftar pustaka.
- 4. Pernyataan ini saya buat dengan sesungguhnya dan apabila dikemudian hari terdapat penyimpangan dan ketidakbenaran dalam pernyataan ini, maka saya bersedia menerima sanksi akademik berupa pencabutan gelar yang telah diperoleh karena karya tulis ini, serta lainnya sesuai dengan norma yang berlaku di Universitas Negeri Jakarta.

Jakarta, Juli 2014

Yang membuat pernyataan

Astrid Tri Wahyuli

No. Reg 8155078187

KATA PENGANTAR

Dengan memanjatkan Puji Syukur kehadirat Tuhan Yang Maha Esa atas rahmat dan Karunia yang dilimpahkankan kepada peneliti sehingga dapat menyelesaikan penulisan skripsi ini. Adapun tujuan dan maksud penulisan skripsi ini yaitu sebagian salah satu syarat untuk menyelesaikan pendidikan Strata-1 Fakultas Ekonomi, Jurusan Ekonomi dan Administrasi, Program Studi Pendidikan Ekonomi, Konsentrasi Pendidikan Akuntansi.

Peneliti menyadari bahwa penulisan ini berkat bantuan dan bimbingan dari berbagai pihak terutama kepada:

- Dra. Sri Zulaihati, M.Si, selaku Dosen Pembimbing I yang telah bersedia meluangkan waktu, tenaga dan pikirannya kepada peneliti dengan penuh kesabaran dalam membimbing, dan mengarahkan serta membantu dalam penyusunan skripsi ini.
- 2. Ahmad Fauzi, S,Pd, M.Ak selaku Dosen Pembimbing II yang telah banyak menberikan saran dan masukan yang membangun bagi peneliti.
- 3. Santi Susanti, S.Pd, M.Ak selaku Ketua Konsentrasi Pendidikan Akuntansi.
- 4. Dr.Siti Nurjanah, S.E. selaku Ketua Program Studi Pendidikan Ekonomi.
- 5. Drs. Nurdin Hidayat, MM, M.Si selaku Ketua Jurusan Ekonomi dan Administrasi.
- 6. Drs. Dedi Purwana E.S, M.Bus, selaku Dekan Fakultas Ekonomi.
- 7. Kedua orang tuaku tercinta, ayah dan mama yang telah memberikan dorongan serta doa, bantuan moril dan materiil.
- 8. Teman-teman terbaik, Oom, Irma dan rekan-rekan dari KidZania yang senantiasa membantu dan tak pernah bosan menyemangati peneliti.

9. Seluruh teman-teman seperjuangan Pendidikan Akuntansi 2007 yang telah bersama-sama selama ini.

10. Semua pihak yang tidak dapat disebut namanya yang telah membantu peneliti dalam penyusunan skripsi.

Peneliti menyadari bahwa hasil penyusunan skripsi ini jauh dari sempurna, karenanya peneliti berharap kiranya ada saran dan kritik yang dapat membangun dan semoga skripsi ini dapat bermanfaat bagi kita semua. Akhir kata, peneliti mengucapkan terima kasih sebesarnya dan puji syukur sebesarnya dan puji syukur atas terselesainya skripsi ini.

Jakarta, Juli 2014

Peneliti

DAFTAR ISI

ABSTRAK iii		
	ACT	iii
	AR PENGESAHAN SKRIPSI	iv
	ATAAN ORISINALITAS	V
	PENGANTAR	vi
	AR ISI	vii
	AR TABEL	ix
	AR GAMBAR	X
DAFTA	AR LAMPIRAN	хi
BAB I	PENDAHULUAN	
	A. Latar Belakang	1
	B. Identifikasi Masalah	9
	C. Pembatasan Masalah	9
	D. Perumusan Masalah	10
	E. Kegunaan Penelitian	10
	L. Regulatali i chelitali	10
BAB II	KAJIAN TEORITIK	
	A. Deskripsi Konseptual	12
	B. Hasil Penelitian Yang Relevan	23
	C. Kerangka Teoritik	26
	D. Perumusan Hipotesis Penelitian	31
BAB II	I METODOLOGI PENELITIAN	
	A. Tujuan Penelitian	32
	B. Tempat dan Waktu Penelitian	32
	C. Metode Penelitian	32
	D. Populasi dan Teknik Pengambilan Sampel	33
	E. Teknik Pengumpulan Data	34
	F. Teknik Analisis Data	45
	1. Termix Analisis Data	43
BAB IV	HASIL PENELITIAN DAN PEMBAHASAN	
	A. Deskripsi Data	50
	B. Analisis Data	56
	C. Pembahasan Hasil Penelitian	60
BAR V	KESIMPULAN, IMPLIKASI DAN SARAN	
	A. Kesimpulan	66
	B. Implikasi	67
	C. Saran	68
	AR PUSTAKA	69
LAMPI		U)
	IVAL V	

DAFTAR TABEL

Tabel	Judul	Halaman
II.1	Contoh sikap Social Intelligence	17
III.1	Distribusi populasi Penelitian	34
III.2	Pengambilan Sampel Tiap Kelas	34
III.3	Kisi-kisi Instrumen Pola Asuh Orang Tua	36
III.4	Pilihan Jawaban Instrumen	37
III.5	Kisi-kisi Instrumen Social Intelligence	40
III.6	Pilihan Jawaban Instrumen	42
IV.1	Rata-Rata Hitung Skor Indikator Pada Variabel X	51
IV.2	Tabel Distribusi Frekuensi Pola Asuh Orang Tua	52
IV.3	Rata-Rata Hitung Skor Indikator Pada Variabel Y	54
IV.4	Tabel Distribusi Frekuensi Social Intelligence	55

DAFTAR GAMBAR

Gambar	Judul	Halaman
IV. 1	Grafik Histogram Variabel X (Pola Asuh Orang Tua)	53
IV. 2	Grafik Histogram Variabel Y (Social Intelligence)	56
IV.3	Grafik Persamaan Regresi	57

DAFTAR LAMPIRAN

Lam	piran Judul I	Halaman
1	Surat Permohonan Izin Penelitian Di SMK N 22	73
2	Surat Keterangan Melakukan Penelitian Di SMK N 22	74
3	Kuesioner Uji Coba Pola Asuh Orang Tua	75
4	Kuesioner Uji Coba Social Intelligence	82
5	Kuesioner Penelitian Final Pola Asuh Orang Tua	. 87
6	Kuesioner Penelitian Final Social Intelligence	. 93
7	Uji Validitas Untuk Variabel Pola Asuh Orang Tua (X)	. 97
8	Uji Validitas Untuk Variabel Social Intelligence (Y)	. 99
9	Uji Realibilitas Untuk Variabel Pola Asuh Orang Tua (X)	. 101
10	Uji Realibilitas Untuk Variabel Social Intelligence (Y)	. 102
11	Daftar Nama Responden Penelitian	103
12	Perhitungan Kuesioner Final Untuk Variabel Pola Asuh Orang Tua	
	(X)	104
13	Perhitungan Kuesioner Final Untuk Variabel	
	Social Intelligence (Y)	105
14	Proses Perhitungan Menggambar Grafik Histogram	
	Pola Asuh Orang Tua (X)	106
15	Proses Perhitungan Menggambar Grafik Histogram	
	Social Intelligence (Y)	107
16	Data Berpasangan Variabel X dan Variabel Y	108
17	Tabel Perhitungan Rata-rata, Varians dan Simpangan Baku	
	Variabel X dan Y	109
18	Perhitungan Uji Linieritas dengan Persamaan Regresi	
	Linier	111
19	Tabel Perhitungan Persamaan Regresi	112
20	Grafik Persamaan Regresi	113

21	Tabel Perhitungan Rata-rata, Varians dan Simpangan Baku		
	Regresi		
22	Perhitungan Rata-rata, Varians dan Simpangan Baku		
23	Langkah Perhitungan Uji Normalitas Galat Taksiran		
	Regresi		
24	Perhitungan Normalitas Galat Taksiran Y atas X Regresi 117		
25	Perhitungan Uji Keberartian Regresi		
26	Perhitungan Uji Kelinieran Regresi		
27	Perhitungan JK (G)		
28	Tabel Anava untuk Uji Keberartian dan Uji Kelinieran Regresi 121		
29	Perhitungan Koefisien Korelasi Product Moment		
30	Perhitungan Uji Signifikansi 123		
31	Perhitungan Uji Koefisien Determinasi		
32	Tabel Penentuan Jumlah Sampel Dari Popoulasi Tertentu		
	Dengan Taraf Kesalahan 1%, 5% dan 10%		
33	Table Nilai-Nilai r Product Moment dari Pearson		
34	Nilai Kritis L untuk Uji Liliefors		
35	Tabel T		
36	Tabel F		
37	Tabel Z		

BABI

PENDAHULUAN

A. Latar Belakang

Masalah pendidikan merupakan masalah yang sangat penting dalam kehidupan seseorang. Untuk membedakan kualitas individu, bisa dilihat dari pendidikannya. Orang yang mendapatkan pendidikan tentunya menjadi orang yang lebih memiliki tujuan, berwawasan luas dan memikirkan masa depan yang lebih baik dan orang yang kurang mendapat pendidikan hidupnya kurang memiliki hasrat untuk lebih maju atau ingin berusaha memiliki masa depan yang lebih baik, bahkan beberapa kadang memiliki pikiran yang sempit.

Tetapi lembaga pendidikan seperti sekolah-sekolah yang ada juga menjadi suatu permasalahan tersendiri. Menjadi suatu permasalahan yang Negara ini pun sampai sekarang belum dapat menyelesaikannya. Setiap warna Negara berhak mendapatkan pendidikan yang layak begitulah kata Undang-undang Dasar 1945 pasal 31, namun pada kenyataannya masih jauh dari apa yang dimaksud Undang-undang tersebut. Orang yang kurang mampu belum sepenuhnya memiliki kesempatan yang sama dalam mendapatkan pendidikan yang layak dan tinggi dengan orang yang mampu. Karena pendidikan masih mahal dan sekolah gratis yang diprogramkan pemerintah masih saja ada pungutan. Padahal pendidikan adalah salah satu alat bagi Negara ini untuk maju dan berkembang, karena pendidikan dapat menciptakan sumber daya manusia yang lebih baik dan dapat bersaing di era globalisasi ini.

Tetapi seiring berjalannya waktu, lembaga-lembaga pendidikan yang ada sekarang banyak yang belum mampu bahkan gagal menghasilkan manusia-manusia yang berkualitas yang nantinya akan membuat hidupnya menjadi lebih baik. Padahal setiap sekolah sudah memiliki kurikulum yang baik, selalu disempurnakan dan selalu bertujuan membuat murid-muridnya menjadi manusia yang berkualitas baik. Siswa belajar di sekolah tentunya untuk mempersiapkan masa depan yang lebih baik dan membuat mereka menjadi individu yang dapat bersaing didunia pekerjaan nantinya.

Ada satu kecerdasan yang harus dikembangkan untuk membuat seorang siswa siap untuk bersaing dalam dunia kerja selain kecerdasan otak. Beberapa orang mengatakan bahwa IQ (intelligence quotients) atau kecerdasan otak merupakan fakta genetik yang tak mungkin diubah oleh pengalaman hidup, dan bahwa takdir kita dalam hidup sangat ditentukan oleh faktor ini. Para peneliti dari University of Queensland menggunakan data genetic dan skor IQ dari ribuan anak di empat Negara. Mereka menemukan sekitar 20 hingga 40 persen dari variasi IQ anak karena faktor genetik. ¹ Kenyataannya sering sekali kita dapati orang dengan IQ tinggi gagal dan orang dengan IQ rata-rata menjadi sangat sukses. Ternyata selain IQ ada kecerdasan lain yang membuat orang memiliki kemampuan-kemampuan lebih daripada orang-orang yang cerdas dengan kemampuan otaknya, itulah yang dikatakan kecerdasan sosial atau SI (social intelligence). Pada tahun 1920, Edward Thorndike mengungkapkan pendapatnya tentang kecerdasan sosial, bahwa kecerdasan sosial merupakan kemampuan memahami seseorang yang pada

¹ Ismi Wahid. *Benarkah Kecerdasan Anak Warisan Dari Orang Tua*. 17 Maret 2013 http://www.tempo.co/read/news/2013/03/17/061467497/Benarkah-Kecerdasan-Anak-Warisan-dari-Orang-Tua.h.1. (Diakses 16 Desember 2013).

akhirnya akan membentuk suatu hubungan sosial yang bijaksana. Teori ini banyak sekali dijadikan acuan beberapa penelitian tentang kecerdasan sosial sampai saat ini. Selain Edward Thorndike, Daniel Goleman yang terkenal dengan pembahasannya tentang kecerdasan emosional pun membahas secara lebih dalam tentang kecerdasan sosial ini. Daniel Goleman berpendapat bahwa kecerdasan sosial merupakan kemampuan yang dimiliki seseorang untuk dapat mengerti orang lain dan dengan mengerti situasi orang lain, maka seseorang tersebut dapat bereaksi terhadap situasi sosial yang berbeda. Maka dari itu, kecerdasan sosial sangat penting untuk dikembangkan, karena manusia pada dasarnya adalah makhluk sosial yang perlu berinteraksi dengan orang lain dalam kehidupan seharihari dalam masyarakat.

Kecerdasan sosial ini sendiri mencakup kemampuan untuk kemampuan untuk mengamati dan memahami orang lain, kemampuan memecahkan masalah dan kemampuan komunikasi antar individu. Kemampuan-kemampuan ini harus ditanamkan kepada anak-anak agar mereka tidak hanya cerdas secara intelektual tetapi cerdas secara sosial. Zirkel mengemukakan pendapatnya mengapa kecerdasan sosial sangat penting bagi kehidupan seseorang,

Those with social intelligence are fully aware of themselves and understand their environment. This enables them to control their emotions, make decisions about their goals in life. Her model centered on the term "purposive behavior" which is deliberate action taken after evaluating one's environment, opportunities and risks and the goals set.²

Mereka yang memiliki kecerdasan sosial sepenuhnya menyadari diri mereka sendiri dan memahami lingkungan mereka. Hal ini memungkinkan

² Yahyazadeh-Jeloudar, Soleiman and Fatemeh Lotfi-Goodarzi. *The Relationship between Social Intelligence and Job Satisfactionamong MA and BA Teachers*. Int J Edu Sci, 4(3): 209-213 (2012)

mereka untuk mengontrol emosi mereka, membuat keputusan tentang tujuan mereka dalam kehidupan. Model nya berpusat pada istilah "perilaku purposive" yang merupakan tindakan sengaja diambil setelah mengevaluasi lingkungan seseorang, peluang dan risiko dan tujuan yang ditetapkan. Cerdas secara sosial sangat penting karena bagaimana seorang anak dapat menempatkan dirinya dalam masyarakat atau lingkungannya sangat berpengaruh untuk kesuksesannya.

Kita menyadari bahwa untuk membentuk seseorang menjadi manusia terbaik dan sukses bukan hanya dengan mengasah intelektualnya menjadi sempurna, tetapi juga mengajarkan mereka untuk cerdas secara sosial. Yang pada akhirnya mereka menjadi manusia yang benar-benar berkualitas, cerdas dan dapat berinteraksi sosial dengan baik. Karena saat pertama kali bertemu dengan seseorang dalam lingkungan pendidikan atau pekerjaan, bukan intelektual atau perilaku kita yang langsung kelihatan, melainkan kemampuan kita bersosialisasi. Sedangkan intelektual dan sifat pribadi kita akan muncul dan mulai kelihatan seiring dengan berjalannya waktu. Kemampuan kita untuk cerdas secara sosial juga dibutuhkan untuk mencapai kesuksesan, karena kita adalah makhluk yang selalu berinteraksi dengan orang lain dan harus bekerja sama dengan orang lain, maka untuk dapat sukses kita pun harus dapat cerdas secara sosial. Terdapat hasil penelitian dari Thomas J. Stanley, Ph.D., yang dibukukan dengan judul The Millionaire Mind membuktikan bahwa kecerdasan emosi, kecerdasan sosial dan spiritual memberikan kontribusi terhadap keberhasilan sebesar 90% intelektual hanya 10%.³

³ Winarno, Jacinta." EMOTIONAL INTELEGENCE SEBAGAI SALAH SATU FAKTOR PENUNJANG PRESTASI KERJA". Jurnal Manajemen, November 2008, Vol.8, No.1.h.12-19

Kecerdasan sosial sangat penting bagi seseorang untuk dapat mencapai kehidupan yang sukses terutama didalam dunia setelah sekolah yaitu dunia pekerjaan, maka peneliti dalam hal ini memilih melakukan penelitian di Sekolah Menengah Kejuruan (SMK) yang merupakan lembaga pendidikan yang bertujuan mencetak sumber daya manusia yang unggul, terlatih, terdidik dan siap bersaing dalam dunia kerja. Sekolah Menengah Kejuruan (SMK) memang memfokuskan kegiatan belajarnya untuk dapat mempersiapkan siswanya dapat memiliki kemampuan lebih dibanding dengan siswa dari Sekolah Menengah Atas atau SMA. Siswa SMK dilatih dengan banyak praktek nyata agar siswanya lebih siap untuk dapat memiliki *skill* dalam dunia pekerjaan nantinya.

Berdasarkan pengalaman peneliti ketika melakukan program PPL, di salah satu SMK Negeri di Jakarta untuk jurusan akuntansi, peneliti melihat ada beberapa siswa yang memiliki masalah dengan kecerdasan sosialnya. Misalnya disaat kegiatan dikelas anak tersebut terlihat pendiam dan tidak aktif dalam melakukan tugas secara kelompok, penyendiri dan terlihat tertutup. Sebagian besar siswa kelas Akuntansi SMK tersebut memang terlihat sudah mampu bersosialisasi dengan baik dengan melakukan kegitan ekstrakurikuler, bermain bersama temannya yang berbeda jurusan maupun berkomunikasi dengan baik antar sesama murid satu jurusan. Dan kebanyakan siswa jurusan Akuntansi tersebut juga menunjukan sikap peduli apabila ada temannya yang kelihatan sulit mengerti pelajaran atau mencoba mengerti tentang temannya yang sedang memiliki masalah. Salah satu ketua jurusan Akuntansi yang penulis minta keterangannya mengatakan bahwa anak muridnya secara umum memang sudah mulai dapat mengikuti kerja kelompok dan bersosialisasi dengan baik di kelas.

Tetapi terdapat beberapa anak didalam kelas yang memang memiliki masalah dengan sosialisasi dikelas dengan berbagai macam alasan, bisa saja karena masalah keluarga ataupun karena kemampuan akademiknya yang memang kurang dibandingkan temannya yang lain.

SMK merupakan lembaga pendidikan yang mempersiapkan siswanya untuk memiliki skill yang dapat digunakan secara langsung dalam dunia pekerjaan dan didalam dunia pekerjaan *Social Intelligence* adalah faktor yang sangat penting maka hal tersebut menjadi pertimbangan bagi peneliti untuk memilih SMK dengan siswanya yang berjurusan Akuntansi sebagai sasaran penelitian untuk skripsi ini. Karena kecerdasan sosial memiliki peran penting bagi seseorang untuk dapat sukses dan bersaing terutama dalam dunia pekerjaan, maka kita harus mengetahui apa sajakah faktor-faktor yang mempengaruhi seseorang untuk dapat memiliki *Social Intelligence* atau kecerdasan sosial. Brooks mengungkapkan macam-macam lingkungan yang mempengaruhi kegiatan sosial seorang anak:

Lingkungan ini menunjuk pada lingkungan yang berinteraksi langsung dengan perkembangan anak dan pola kehidupan keseharian mereka. Pola aktivitas dan interaksi keseharian anak dipengaruhi langsung oleh orang tua, pengasuh, guru, teman sepermainan, dan juga media. ⁴

Oleh karena itu, beberapa faktor yang mempengaruhi kecerdasan sosial adalah faktor lingkungan sekolah, faktor masyarakat dan faktor pola asuh orang tua. Faktor yang pertama, yang mempengaruhi adalah lingkungan sekolah. Kecerdasan sosial tentunya dapat diajarkan dan diterapkan disekolah melalui cara dari sekolah itu masing-masing tentunya, misalnya saja dengan cara berorganisasi

⁴ Florensia Ghozaly, Laura, Diah Krisnatuti dan Alfiasari. "Hubungan Teman Sebaya yang Berkualitas dan Pemanfaatan Media Massa Meningkatkan Kecerdasan Sosial Atlet Muda". Jurnal Ilmu keluarga dan konseling. 2012, Vol 5, no.1.h.29-37

atau ikut dalam kegiatan ekstrakurikuler. Bukan hanya sekolah, lingkungan pergaulan, teman-teman, segala sesuatu yang ditemui setiap harinya dapat membentuk Social Intelligence seorang anak. Lingkungan sekolah, tentunya sangat berpengaruh terhadap perkembangan sosial anak, karena hampir setengah hari seorang anak dihabiskan dengan berada disekolah, berinteraksi dengan guru, mempelajari materi, dan mematuhi peraturan-peraturan yang ada disekolah. Bagaimana guru disini berfungsi untuk membimbing anak dan menjadi orang tua kedua untuk anak, lingkungan sekolah dapat membentuk kecerdasan sosial seorang anak. Karena di sekolah anak belajar merasakan hal-hal yang bersifat organisasi, bergaul dan berkomunikasi dengan banyak orang. Oleh karena itu, maka guru dan diri anak tersebut harus bisa bekerja sama agar dapat membentuk anak yang cerdas secara sosial. Guru harus dapat memotivasi seorang anak agar menjadi anak yang bisa bersosialisasi, harus dapat melakukan pendekatan agar anak muridnya yang terlihat penyendiri dapat berusahan untuk bergaul dan juga membimbing anak-anak muridnya untuk bisa bersosialisasi secara sehat, baik, benar dan sesuai dengan aturan yang ada.

Faktor kedua yang mempengaruhi kecerdasan sosial adalah lingkungan masyarakat. Dimana didalamnya mencakup lingkungan pergaulan anak atau teman-teman sebaya. Lingkungan tersebut juga sangat mempengaruhi tingkat kecerdasan sosial seorang anak karena lingkungan teman adalah lingkungan yang penuh dengan hal-hal yang menurut seorang anak sangat dia sukai, sesuatu yang sesuai minatnya, menarik dan lebih menyenangkan daripada disekolah dengan kata lain lingkungan masyarakat atau lingkungan bermain merupakan tempat terjadinya sosialisasi itu sendiri. Lingkungan pergaulan merupakan pembuktian

diri bagi seorang anak apakah dia termasuk orang yang pandai bergaul atau tidak. Bagaimana lingkungan atau perkumpulan pergaulan yang dia jalani dan dia minati dapat membentuk dan mempengaruhi seseorang untuk dapat cerdas atau tidak secara sosial. Misalnya, lingkungan pergaulan seorang anak terdiri didalamnya orang-orang yang positif dan memiliki kegiatan-kegiatan yang tidak hanya bermain tapi banya hal positif dan terbuka, tentunya akan membawa anak tersebut agar cerdas secara sosial, karena terbiasa dengan hal yang positif. Tetapi apabila lingkungan pergaulannya adalah lingkungan yang tidak peduli sekitar, lebih banyak melakukan hal negatif atau tertutup, tentunya akan membuat seorang anak menjadi kurang bisa bersosialisasi dengan baik.

Faktor ketiga yang mempengaruhi kecerdasan sosial adalah pola asuh orang tua. Pengenalan sosial yang paling berpengaruh besar adalah pengenalan dan pengajaran sosial dari dalam keluarga terutama orang tua, karena pengajaran pertama dan utama yang dapat membentuk suatu kecerdasan ada dari dalam diri seorang anak dimulai dari rumah, dimulai dari lingkungan keluarganya. Setiap keluarga tentunya memiliki peraturan-peraturan tersendiri yang ada dalam keluarganya. Setiap orangtua tentunya memiliki pola asuh yang dapat berpengaruh dengan keadaan emosional seorang anak nantinya. Keluarga merupakan salah satu agen atau saluran utama sosialisasi dalam perkembangan awal anak. Komponen-komponen utama keluarga seperti ayah, ibu, dan saudara memiliki peran yang penting dalam perkembangan anak untuk mengenal nilainilai dan keyakinan-keyakinan sosial budaya yang dianut oleh sebuah keluarga. Maka dari itu pola pengasuhan yang diterapkan oleh orang tua sangat penting bagi perkembangan kegiatan sosialisasi seorang anak.

Dari faktor-faktor yang mempengaruhi kecerdasan sosial, maka faktor yang menurut penulis paling penting adalah pola asuh orang tua. Oleh karena itu, peneliti tertarik untuk meneliti hubungan yang terdapat antara pola asuh orang tua dengan kecerdasan sosial (*Social Intelligence*).

B. Identifikasi Masalah

Berdasarkan uraian latar belakang, maka dapat diidentifikasi masalah-masalah yang mempengaruhi *Social Intelligence* (SI) atau kecerdasan sosial adalah sebagai berikut:

- 1. Lingkungan sekolah yang kurang baik.
- 2. Lingkungan pergaulan dan permainan yang kurang baik.
- 3. Pengaruh teman sebaya yang kurang baik.
- 4. Pola asuh orang tua yang kurang tepat.

C. Pembatasan Masalah

Berdasarkan Latar Belakang Masalah dan Identifikasi Masalah terlihat bahwa kecerdasan sosial memiliki beberapa faktor yang mempengaruhi, oleh karena itu peneliti membatasi masalah pada "Hubungan Antara Pola Asuh Orang Tua dengan Social Intelligence"

Dimana kecerdasan sosial diperoleh dari indikatornya yaitu, *Social Sensitivity*, *Social Insight, Social Communication*. Sedangkan pola asuh orang tua diperoleh dari indikatornya Bagaimana orang tua mendidik, membimbing, memberi aturan dan mendisiplinkan anaknya.

D. Perumusan Masalah

Berdasarakan pembatasan masalah diatas, maka permasalahan dalam penelitian dapat dirumuskan sebagai berikut : "Apakah Terdapat Hubungan Antara Pola Asuh Orang Tua dengan Social Intelligence?

E. Kegunaan Penelitian

1. Peneliti

Untuk menambah pengalaman, mengembangkan wawasan berpikir dan sebagai bahan masukan serta informasi, agar peneliti dalam menghadapi dunia pekerjaan khususnya dalam bidang pendidikan dapat memperhatikan dan menerapkan hasil penelitian yang telah dilakukan untuk meningkatkan kualitas diri peneliti dalam dunia pekerjaan.

2. Universitas Negeri Jakarta

Untuk menambah dan melengkapi literatur dan perbendaharaan perpustakaan terutama tentang hubungan antara pola asuh orang tua dengan *Social Intelligence* atau kecerdasan sosial. Skripsi ini dapat berguna untuk menambah literatur bacaan yang nantinya dapat akan dapat bermanfaat dan membantu untuk penelitian atau bahan bacaan bagi semua pihak yang berada di Universitas Negeri Jakarta.

3. Mahasiswa

Sebagai masukan khusus bagi mahasiswa untuk dapat menambah pengetahuan tentang kecerdasan sosial dan hubungannya denga pola asuh

orang tua dan manfaatnya bagi pendidikan sehingga dapat menciptakan anak didik yang cerdas secara intelektual dan secara sosial.

4. Bagi Dunia Pendidikan

Penelitian ini dapat menjadi bahan masukan dalam dunia pendidikan khususnya pada Sekolah Menengah Kejuruan untuk terus meningkatkan kecerdasan sosial para siswanya.

BAB II

KAJIAN TEORITIK

A. Deskripsi Konseptual

1. Kecerdasan Sosial

Kecerdasan sosial merupakan hal yang penting sekali dalam bersosialisasi dengan masyarakat dan lingkungan. Karena dengan kecerdasan sosial kita menjadi seseorang yang lebih punya sikap dalam bersosialisasi atau bergaul dengan orang lain. Kecerdasan sosial memiliki tiga dimensi utama, yang pertama adalah *Social Sensitivity*. *Social Sensitivity* merupakan seberapa jauh seseorang mampu merasakan dan memahami orang lain sehingga seseorang tersebut dapat menunjukan reaksi yang tepat dalam berhubungan sosial dengan orang lain. Pendapat yang sejalan dengan dimensi *Social Sentivity* adalah teori menurut Edward Thorndike, Kecerdasan sosial diartikan: "*Social Intelligence is the ability to understand and manage men and women, boys and girls, to act wisely in a human relation*"⁵

Thorndike menjelaskan kecerdasan social sebagai kemampuan untuk memahami dan mengelola pria dan wanita, anak laki-laki dan perempuan, untuk bertindak bijaksana dalam hubungan manusia. Kecerdasan sosial sangat erat hubungannya dengan bagaimana seseorang dapat memahami orang lain, bagaimana dia dapat mengelola individu agar dapat bekerja bersama-sama membentuk suatu proses sosial. Bagaimana seseorang memiliki kemampuan

⁵ H. Zastrow. Charles, Karen Kay Kirst-Ashman. *Understanding Human Behavior in the Social Environment*. Cangage Learning: Belmont. 2010. h.476

untuk lebih sensitif dan berempati terhadap keadaan orang lain. Beberapa ahli mengemukakan pendapatnya tentang kecerdasan sosial yang berhubungan dengan bagaimana memahami seseorang. Pendapat kedua yang mengacu kepada dimensi *Social Sensitivity* dikemukakan oleh Daniel Goleman bahwa "Kecerdasan Sosial adalah kemampuan untuk mengerti orang lain dan bagaimana mereka akan bereaksi terhadap berbagai situasi sosial yang berbeda"

Seseorang dengan kecerdasan sosial yang tinggi mampu melihat dan mengerti bagaimana orang lain dan dengan mengerti keadaan orang lain juga memahami orang lain maka orang tersebut dapat mengambil keputusan dan lebih memiliki sikap harus bagaimana dalam menghadapi situasi-situasi sosial yang berbeda dan terjadi disekelilingnya. Berikutnya terdapat satu pendapat lagi tentang kecerdasan sosial yang mengacu kepada dimensi *Social Sensitivity*, dikemukakan oleh John Dewey "the ultimate moral motives and forces are nothing more or less than Social Intelligence--- the power of observing others and comprehending social situation." Motif utama dan kekuatan dari Kecerdasan Sosial tidak lebih atau tidak kurang adalah kekuatan mengamati orang lain dan memahami situasi sosial.

Ketiga teori tersebut setuju bahwa kecerdasan sosial adalah kemampuan seseorang dalam memahami, mengamati orang lain dan juga bagaimana orang tersebut dapat bertahan dalam situasi-situasi sosial yang berbeda. Selain pendapat tentang memahami orang lain, terdapat pendapat juga yang mengatakan bahwa seseorang yang cerdas secara sosial adalah orang yang mampu memecahkan berbagai masalah sosial. Pemecahan masalah sosial merupakan dimensi kedua

Goleman, Daniel. Social Intelligence. Gramedia Pustaka Utama: Jakarta. 2007.h. 446

⁷ Rahim, M. Afzalur. *Social Intelligence, Leadership, and Problem Solving*. Transaction Publisher: New Jersey. vol. 16. 2013. h. 40

dari kecerdasan sosial, yaitu *Social Insight. Social Insight* merupakan kemampuan seseorang dalam memecahkan masalah sosial yang membantu suatu relasi sosial tetap terjaga dengan baik. Masalah-masalah sosial dapat juga disebut sebagai masalah-masalah interpersonal. Hal ini sama seperti yang dikatakan oleh Marlowe, beliau berpendapat "*Social Intelligence is the ability to use feelings, thoughts, and behaviuors of one's self and others in understanding and solving interpersonal problem.*" Dimana Kecerdasan Sosial berarti kemampuan untuk menggunakan perasaan, pikiran, dan tingkah laku diri seseorang dan orang lain dalam memahami dan memecahkan masalah interpersonal.

Cantor and Kihlstrom menyatakan bahwa, "social intelligence is specifically geared to solving the problems of social life, and in particular managing the life task, current concerns, or personal projects, that people select for themselves, or that other people impose on them from outside". Kecerdasan Sosial secara khusus diarahkan untuk memecahkan masalah kehidupan sosial, dan khususnya mengelola tugas hidup, keprihatinan saat ini, atau pandangan pribadi, yang orang-orang pilih untuk diri mereka sendiri, atau orang lain yang menempatkan atau memaksakan pada mereka dari luar. Dalam kecerdasan sosial, seseorang dituntut untuk bisa lebih sensitif dalam memahami karakter-karakter orang yang berada didalam lingkungan tempat dia bersosialisasi, tetapi selain harus bisa sensitif, orang yang cerdas secara sosial adalah orang yang diharapkan dapat memecahkan masalah-masalah yang terjadi didalam lingkungannya.

-

⁸ Juchniewicz. Jay Allen. *The Influence of Social Intelligence on Effective Music Teaching*. Proquest. 2009. h.22

⁹ Kauffman, Scott Barry and Robert J. Stenberg. The Camridge Handbook Of Intelligence. Camridge University Press: 2011. h.576

Setelah memahami karakter orang lain dan seseorang mampu menjadi bagian untuk dapat memecahkan masalah yang terjadi secara sosial, yang menjadi bagian penting dalam cerdas secara sosial adalah bagaimana seseorang dapat membangun komunikasi atau membangun suatu hubungan sosial yang baik antar satu dan yang lainnya. Hal ini termasuk kedalam dimensi terakhir dari kecerdasan sosial, yaitu *Social Communication*. Dimana *Social Communication* berarti seseorang memiliki keterampilan dalam menciptakan, membangun dan mempertahankan relasi sosial yang ada. Membangun komunikasi dalam berhubungan sosial sangatlah penting karena seseorang selalu bersosialisasi dan harus selalu membangun hubungan yang baik agar dapat bekerja sama satu sama lain dengan baik. Vernon mengemukakan pendapatnya bahwa,

Social Intelligence is the ability to get along with people in general, social technique or ease in society, knowledge of social matters, and susceptibility to stimuli from other members of a group, as well as insight into temporary, moods or underlying personality traits of stranger. ¹⁰

Kecerdasan Sosial adalah kemampuan untuk bergaul dengan orang-orang secara umum, teknik sosial atau kemudahan dalam masyarakat, pengetahuan tentang masalah sosial, dan kerentanan terhadap rangsangan dari anggota lain dari kelompok, serta wawasan, suasana hati atau bagaimana kita memperlakukan orang asing. Pendapat Vernon tersebut menerangkan bahwa bagaimana kita dapat bergaul dengan baik dengan seseorang dan membangun hubungan sosial, apabila seseorang cerdas secara sosial, komunikasi yang terjadi akan membantu terjadinya kerja sama yang baik antar individu. Karena berhubungan dengan seseorang erat hubungannya dengan komunikasi yang dibangun, mengingat sosialisasi bertujuan

¹⁰ Suresh, K. Social Intelligence of Student Teachers. Discovery Publishing House: New Delhi. 2009.

h.11

untuk dapat membangun kerja sama antar individu yang akan membantu kelompok menyelesaikan masalahnya. Hal ini seperti yang dikatakan oleh Karl Albrecht, "social Intelligence is the ability to get along well with others and to get them to cooperate with you" Kecerdasan Sosial adalah kemampuan untuk bergaul baik dengan orang lain dan untuk mendapatkan mereka untuk bekerja sama dengan Anda. Membangun komunikasi secara sosial merupakan bagian dari seseorang yang cerdas secara sosial, karena seseorang yang cerdas secara sosial dituntut untuk dapat berhubungan satu sama lain atau bersosialisasi secara cerdas. Cerdas disini adalah bagaimana seseorang dapat membangun hubungan sosialnya dengan baik, dengan memahami setiap karakter orang lain, dengan begitu seseorang dapat membangun komunikasi yang baik dan akhirnya dapat bergaul dan bekerja sama satu sama lain dengan baik pula.

Social Intelligence encompasses our abilities to interpret others behavior in terms of mental states (thoughts, intentions, desire, and beliefs), to interact both in complex social group and in close relationships, to empathize with others states of mind, and to predict how others will feel think and behave ¹²

Kecerdasan Sosial meliputi kemampuan kita untuk menafsirkan perilaku orang lain dalam hal mental (pikiran, niat, keinginan, dan keyakinan), untuk berinteraksi baik dalam kelompok sosial yang kompleks dan dalam hubungan dekat, untuk berempati terhadap pendapat dan keadaan orang lain, dan untuk memprediksi bagaimana orang lain akan berpikir dan berperilaku. Dari teori- teori yang telah dipaprkan, dapat kita simpulkan bahwa seseorang dengan kecerdasan sosial adalah seseorang yang dapat bergaul dengan membangn suatu lingkungan

¹¹ Albrecht, Karl. *Social Intelligence: The New Science of Success*. Jossey-Bass: San Fransisco. 2006. hal. 3

¹² T.Cacippo, John et. al. Foundation In Social Neuroscience. Library Of Congress Cataloging: Massachussetts. 2002.p. 355

sosial yang sehat. Dimana didalamnya terdapat kepedulian untuk memahami orang lain, baik karakter atau latar belakang seseorang yang akan menjadi bahan pertimbangan untuk dapat bersikap terhadap individu-individu yang terdapat didalam lingkungan sosialnya. Dengan memahami sifat seseorang, maka komunikasi yang baik akan terbangun dengan sendirinya, seseorang akan mampu bergaul dan membangun hubungan komunikasi yang baik dengan orang lain dan tentunya komunikasi yang terbangun dengan baik akan membuat seseorang tersebut dapat menjadi bagian dari lingkungan sosial yang dapat membantu memecahkan masalah interpersonal yang ada. Maka dari itu kecerdasan sosial sangat penting karena seseorang hidup selalu berhubungan dengan orang lain dan agar dapat menjalin hubungan baik dengan orang lain, seseorang harus dapat memahami orang lain dan segala keadaannya yang akan membantunya mendapatkan relasi sosial yang baik. Berikut contoh-contoh sikap sosial:

Tabel: II. 1. Contoh Sikap Social Intelligence

No	Social Sensitivity	Social Communication	Social Insight
1	Seorang perokok yang sedang berada ditempat umum atau kendaraan umum tidak semena-mena merokok karena dia mampu memahami orang lain disekitarnya yang mungkin tidak merokok dan akan terganggu dengan asap rokoknya, maka dia tidak merokok.	Di dalam lingkungan baru, mencoba untuk berkenalan dengan beberapa orang dan membangun hubungan sosial yang baru.	Seorang ketua kelompok dalam memutuskan suatu masalah melakukan musyawarah agar mendapat keputusan akhir yang adil dan disetujui semua pihak.
2	Seorang teman terlihat sedang memiliki masalah, seorang dengan kecerdasan sosial mampu memahami temannya, dan membuat keadaan	Seorang Manager membuat peraturan yang baru tentang kebijakan perusahaan bagi Customer, dan membutuhkan pihak-	Dalam menyelesaikan suatu permasalahan, melihat dari sudut atau perpsektif yang berbeda agar dapat menyelesaikan

	temannya menjadi lebih baik.	pihak Front Liner untuk	masalah secara objektif.
		menyampaikan kepada	
		Customer. Untuk mendapat	
		kerjasama yang baik perlu	
		adanya komunikasi dan	
		relasi sosial yang baik agar	
		tercapai maksud dan tujuan	
		yang dimaksud.	
			Di sekolah terdapat teman
			yang bertengkar, kita
			menyelesaikan
	Seorang dengan kecerdasan sosial memiliki sifat empati	Di sekolah, siswa aktif dalam mengikuti kegiatan	permasalahan mereka
			dengan memisahkan
3	-		mereka, disaat mereka
	yang tinggi terhadap	sosial, misalnya seperti OSIS atau ekstrakulikuler	sudah tidak emosi
	temannya.	OSIS atau ekstrakunkuler	mencoba untuk mengajak
			mereka bicara dan
			membuat mereka
			berbaikan.

2. Pola Asuh Orang Tua

Pola Asuh menurut Kamus Besar Bahasa Indonesia berarti Pola adalah sistem; cara kerja. Asuh adalah menjaga (merawat dan mendidik) anak kecil; membimbing (membantu, melatih) supaya dapat berdiri sendiri. Pola asuh adalah suatu hal yang sangat terkait dengan lingkungan keluarga terutama orang tua. Lingkungan keluarga merupakan pendidikan dasar dari setiap individu, yang membentuk seseorang pertama terjadi dirumah, karena bersama keluargalah pendidikan pertama seorang individu dimulai, melalui bagaimana cara orang tua mengasuh atau membesarkan anaknya.

Seorang ahli bernama Tarsis Tarmudji berpendapat bahwa

Pola asuh orang tua merupakan interaksi antara orang tua dengan anaknya selama mengadakan pengasuhan. Pengasuhan ini berarti orang tua

mendidik, membimbing, dan mendisiplinkan serta melindungi anak untuk mencapai kedewasaan sesuai dengan norma-norma yang ada dalam masyarakat ¹³

Pola asuh orang tua merupakan interaksi antara orang tua dengan anak, Bagaimana aturan-aturan yang diberlakukan orang tua, bagaimana pula cara orang tua mendidik dan membimbing anaknya, bagaimana cara orang tua melakukan pendisiplinan terhadap anaknya, seperti apa suasana keluarga yang diciptakan oleh orang tua, seberapa dekat intensitas orang tua dalam berinteraksi dengan anaknya, seberapa peduli orang tua terhadap apa yang terjadi kepada anak didalam lingkungan yang dijalani oleh anak, dan lain sebagainya. Sri lestari mengungkapkan bahwa:

Pola asuh orang tua atau *Parenting* adalah sebuah kata benda yang berarti keberadaan atau tahap menjadi orang tua, menjadi kata kerja yang berarti melakukan sesuatu pada anak seolah-olah orang tualah yang membuat anak menjadi manusia. ¹⁴

Orang tua harus dapat mengajarkan dan membimbing anak agar anak dapat menjadi seorang manusia yang taat peraturan, mengerti tentang normanorma yang ada, memiliki kepribadian yang sesuai dengan norma yang berlaku dalam masyarakat, menjadikan seorang anak menjadi manusia yang seutuhnya. Dan untuk menjadikan anak sebagai seorang manusia yang baik, tugas orang tua pun kemudian tumbuh dari sekedar mencukupi kebutuhan dasar anak dan melatihnya dengan keterampilan hidup yang mendasar dari rumah, menjadi memberikan yang terbaik bagi kebutuhan anak diluar rumah, yaitu menyediakan kesempatan untuk menempuh pendidikan yang terbaik.

¹³ Pramawaty, Nisha dan Elis Hartati. "Hubungan Pola Asuh Orang Tua Dengan Konsep Diri Anak Usia Sekolah (10-12 Tahun)", Nursing Studies. 2012, 1, h.88

¹⁴ Lestari, Sri. Psikologi Keluarga. Kencana:2012. h.36

Pola asuh orang tua dianggap sebagai suatu proses, proses yang dilalui orang tua berinteraksi dengan anaknya agar dapat membentuk anaknya menjadi seseorang. Bagaimana hasil akhirnya sangat bergantung pada hal-hal dan komunikasi apa saja yang dilakukan orang tua terhadap anak selama proses itu berlangsung. Jane B. Brooks mengatakan bahwa pengasuhan oleh orang tua merupakan suatu proses, "Parenting in general can be describe as a series of actions and interactions on the part of parents to promote the development of *children*" ¹⁵ Pola asuh secara umum dapat digambarkan sebagai kumpulan dari tindakan-tindakan dan interaksi sebagai bagian dari orang tua untuk meningkatkan perkembangan anak. Pola asuh orang tua adalah suatu proses dan proses, tidak bisa terjadi hanya sekali, harus dilakukan berulang-ulang dan menjadi kebiasaan, karena untuk membentuk karakter seseorang harus melalui proses, dimana anak dapat berinteraksi dan larut bersama dengan orang tuanya. Interaksi tersebut harus dijalani untuk membantu seorang anak membentuk karakter dirinya dan membentuk seorang anak menjadi seseorang yang disiplin. Moh Shochib menjelaskan:

Pola asuh orang tua dalam membantu anak untuk mengembangkan disiplin diri ini adalah upaya orang tua yang diaktualisasikan terhadap penataan: (1) lingkungan fisik, (2) lingkungan social dan eksternal, (3) pendidikan internal dan eksternal, (4) dialog dengan anak-anaknya, (5) suasana psikologis, (6) sosiobudaya, (7) perilaku yang ditampilkan pada saat terjadinya "pertemuan" dengan anak-anak, (8) kontrol terhadap perilaku anak-anak, dan (9) menentukan nilai-nilai moral sebgai dasar berprilaku dan yang diupayakan kepada anak-anak. ¹⁶

Pola asuh orang tua merupakan interaksi dengan orang tua dan anak yang terjalin dan pola asuh juga merupakan suatu proses yang dilakukan dan

¹⁵ B.Brooks, Jane." The Process Of Parenting", Mayfield: United States. 2004. h.3

¹⁶ Shochib, Moh. Pola Asuh Orang Tua.PT RINEKA CIPTA:Jakarta. 2000.hal.15

dihadapi oleh orang tua selama masa-masa mendidik dan berinteraksi dengan anak, pola asuh pun memiliki beberapa tipe yang sering dibicarakan.

Tipe inilah yang nantinya akan menentukan anak akan dididik dengan cara seperti apa dan bagaimana. Pola asuh ini merupakan gaya-gaya atau arah yang dipilih orang tua dalam mendidik anaknya.

Pola Asuh orang tua Menurut Hurlock dan Baumrind ada 3 jenis, yaitu:

- 1. Pola Asuh Demokratis
- 2. Pola Asuh Otoriter
- 3. Pola Asuh Permisif¹⁷

Tipe-Tipe pola asuh orang tua kepada anak:

• Pola Asuh Permisif

Pola asuh permisif adalah jenis pola mengasuh anak yang acuh terhadap anak. Jadi apa pun yang mau dilakukan anak diperbolehkan misalnya seperti tidak sekolah. Hurlock mengatakan bahwa Dengan begitu seorang anak kurang bisa dipimpin dan kurang memiliki rasa tanggung jawab, meskipun baiknya adalah anak diberikan kebebasan dalam melakukan apapun yang diinginkan. Hanya saja itu akan menyebabkan seorang anak menjadi kurang bisa diatur dan mematuhi peraturan yang ada.

• Pola Asuh Otoriter

Pola asuh otoriter adalah pola pengasuhan anak yang bersifat pemaksaan, keras dan kaku di mana orangtua akan membuat berbagai aturan yang saklek harus dipatuhi oleh anak-anaknya tanpa mau tahu perasaan sang

¹⁷ Bunda Fathi. Mendidik Anak dengan Al-Quran Sejak Janin. Grasindo:Jakarta. 2011. Hal.53

anak. Orang tua akan emosi dan marah jika anak melakukan hal yang tidak sesuai dengan yang diinginkan oleh orang tuanya. Hukuman mental dan fisik akan sering diterima oleh anak-anak dengan alasan agar anak terus tetap patuh dan disiplin serta menghormati orang-tua yang telah membesarkannya. Hersheys dan Blanchard menyatakan bahwa "Pada dasarnya pola asuh terdiri atas komunikasi satu arah antara orang tua dengan anak. Dimana orang tua menentukan peran anak dan mengatakan apa, bagaimana, kapan dan dimana anak harus melakukan berbagai macam tugas" ¹⁸ Hal ini sesuai dengan pengertian pola asuh orang tua yang otoriter

Pola Asuh Demokratis

Pola asuh demokratis adalah pola asuh orangtua pada anak yang memberi kebebasan pada anak untuk berkreasi dan mengeksplorasi berbagai hal sesuai dengan kemampuan anak dengan sensor batasan dan pengawasan yang baik dari orangtua. Pola asuh ini adalah pola asuh yang cocok dan baik untuk diterapkan para orangtua kepada anak-anaknya.

Dari tipe-tipe yang dijelaskan sebelumnya, sangat jelas bahwa seorang anak akan terbentuk memiliki karakter seperti apa, semua tergantung pada tipe pola asuh yang dilakukan orang tua. Bagaimana interaksi orang tua terhadap anaknya, bagaimana orang tua berinteraksi dengan anaknya. Orang tua yang demokratis tentunya akan memiliki anak yang karakternya akan berbeda dengan seorang anak dengan orang tua yang otoriter.

¹⁸ Garliah, Lili dan Fatma Kartika Sary Nasution. "Peran Pola Asuh Orang Tua Dalam Motivasi Berprestasi", *Psikologia*. Juni 2005, 1, h.38-47

Seorang anak adalah cerminan dari keluarganya, apa yang terjadi didalam keluarganya lah yang membentuk dia menjadi seseorang yang seperti apa dalam kehidupan sosial. Karena lingkungan keluarga adalah lingkungan pertama anak-anak mendapatkan pendidikan dan diajarkan nilai-nilai moral yang berlaku dalam masyarakat. Hal ini senada dengan yang dikatakan oleh Dr. Tony Setiabudhi dan Dr. Hardywinoto yang menjelaskan "Pola asuh adalah pola pengasuhan anak yang berlaku dalam keluarga, yaitu bagaimana keluarga membentuk perilaku generasi berikut sesuai dengan norma dan nilai yang baik dan sesuai dengan kehidupan masyarakat".

Peran orang tua sebagai awal anak mendapatkan pendidikan moral dan nilai-nilai yang baik sesuai norma sangatlah penting, karena pendidikan oleh orang tua mempersiapkan seseorang untuk berprilaku sesuai norma-norma yang berlaku dalam masyarakat. Bagaimana orang tua mengasuh anaknya jugalah yang pertama kali menentukan karakter seorang anak dan bagaimana seorang anak tersebut akan dapat bersikap dilingkungan di luar keluarganya.

B. Hasil Penelitian yang Relevan

Sebagai bahan pertimbangan dalam penelitian ini akan dicantumkan beberapa hasil penelitian terdahulu oleh beberapa peneliti yang pernah penulis baca diantaranya:

 Hasil penelitian terdahulu yang relevan dengan penelitian ini adalah berjudul "Pengasuhan Otoriter Berpotensi menurunkan Kecerdasan Sosial, Self Esteem dan Prestasi Akademik,"²⁰ oleh Alfiasari, Melly Latifah dan Astuti Wulandari

¹⁹ Dr.Tony Setiabudhi Ph.D, Dr. Hardywinoto. SKM. "Anak Unggul Berotak Prima". PT. Gramedia:Jakarta. 2002. h.212

²⁰ Alfiasari, et al. "Pengasuhan Otoriter Berpotensi menurunkan Kecerdasan Sosial, Self Esteem dan Prestasi Akademik". Jurnal Ilmu Keluarga dan Konsumen. Januari 2011. Vol. 4, No. 1. h. 45-56

dalam Jurnal Ilmu Keluarga dan Konsumen Volume 4 No.1 tahun 2011. Penelitian ini memakai teori pola asuh orang tua yang dikemukakan oleh Diana Baumrind, Baumrind menyebutkan bahwa tingkat kompetensi dan daya adaptasi anak dapat dijelaskan dari praktek orang tua dalam menggabungkan dan menyeimbangkan ekspresi kasih sayangnya dan penggunaan otoritasnya, yang dikenal sebagai gaya pengasuhan orang tua. Tipe pola pengasuhan yang digunakan adalah, pola asuh otoriter yaitu pola asuh yang tegas dan memaksakan kehendak terhadap anak, pola asuh demokratis yaitu pola asuh dimana orang tua memberikan kasih sayang dan mengajarkan seorang anak berdiskusi dan pola asuh permisif yaitu pola asuh dimana orang tua tidak peduli terhadap anaknya.

Penelitian ini mengembangkan teori dari Diana Baumrind yang menyatakan bahwa faktor yang mempengaruhi kecerdasan sosial salah satunya adalah pola asuh orang tua. Sedangkan untuk teori kecerdasan sosial oleh penelitian ini menggunakan pendapat dari Steinberg dan Daniel Goleman. Menurut Daniel Goleman kecerdasan sosial adalah kemampuan untuk mengerti orang lain dan bagaimana bereaksi terhadap situasi sosial yang berbeda. Terdapat dua unsur kecerdasan sosial, yaitu kesadaran sosial dan fasilitas sosial.

2. Hasil penelitian terdahulu yang relevan dengan penelitian ini adalah berjudul "A Study of Himachal Pradesh: Parenting Style and Social Intelligence of Adolescent," oleh Ruchi Takur, Shubhangana Sharma dan Raj Pathania dalam Indian Journal Of Applied Research Volume 3, September 2012. pada penelitian ini disebutkan bahwa teori yang digunakan oleh peneliti jurnal ini mengacu kepada teori Multiple Intelligence oleh Gardner. Yang mengatakan bahwa, kecerdasan sosial termasuk dalam kecerdasan majemuk oleh Gardner yaitu

_

²¹ Thakur, Ruhi, et al. "A Study of Himachal Pradesh: Parenting Style and Social Intelligence of Adolescent". Indian Journal Of Applied Research. September 2012.vol.3, h.556-557

kecerdasan Interpersonal dan Intrapersonal. Selain Gardner, teori kecerdasan sosial yang digunakan diambil dari Steinbergs. Penelitian ini mengembangkan teori dari Gardner dan Steinbergs yang menyatakan bahwa kecerdasan sosial dan pola asuh orang tua adalah hal yang yang sangat berhubungan apalagi bagi kehidupan remaja. Teori mereka mengatakan "Social Intelligence of adolescents wholly depends upon the parenting styles adopted by parents". Mereka meyakini bahwa Kecerdasan sosial yang dimiliki remaja sepenuhnya bergantung kepada pola pengasuhan yang diterapkan oleh orang tua.

3. Hasil penelitian terdahulu yang relevan dengan penelitian ini adalah berjudul "Pengaruh Lingkungan Keluarga dengan Kecerdasan Interpersonal Anak Usia 1-3 Tahun di Desa Badal Pandean Kecamatan Ngadiluwih Kabupaten Kediri," oleh Suwoyo, Siti Asiyah dan Luciana Sadavin dalam Jurnal Penelitian Kesehatan Suara Forikes Volume 3 Nomor 4, Oktober 2012. Penelitian ini kepada teori Multiple Intelligence milik Gardner tentang kecerdasan interpersonal. Kecerdasan sosial termasuk dalam kecerdasan majemuk oleh Gardner yaitu kecerdasan Interpersonal. Teori lain yang digunakan dalam penelitian ini adalah teori yang dikemukakan oleh Daniel Goleman, yang membagi kecerdasan sosial menjadi dua, yaitu kesadaran sosial dan fasilitas sosial. Penelitian ini mengembangkan teori dari Gardner dan Daniel Goleman yang menyatakan bahwa lingkungan keluarga adalah lingkungan pertama yang sangat berpengaruh bagi kecerdasan sosial anak dalam hal ini, adalah pola asuh yang diterapkan oleh orang tua.

-

²² Suwoyo, et al. "Pengaruh Lingkungan Keluarga dengan Kecerdasan Interpersonal Anak Usia 1-3 Tahun di Desa Badal Pandean Kecamatan Ngadiluwih Kabupaten Kediri". Jurnal Penelitian Kesehatan Suara Forikes, Oktober 2012.vol.3.no.4, h.188-194

C. Kerangka Teoritik

Kecerdasan sosial merupakan bentuk kecerdasan yang sangat penting selain kecerdasan intelektual pada seorang anak. Terbukti anak yang memiliki kecerdasan sosial yang tinggi dapat menjadi sukses dengan seimbang. Cerdas secara emosi merupakan bentukan dari faktor internal dan eksternal. Faktor eksternal membentuk kecerdasan sosial anak dari pergaulannya dengan teman sebaya, tempat bermain dan lingkungan sekolah. Sedangkan faktor internal membentuk kecerdasan sosial seorang anak yang ia dapat dari pola asuh orang tua dan lingkungan keluarga. Kecerdasan sosial adalah proses pembelajaran yang berlangsung seumur hidup. Memang ada temperamen khusus yang dibawa anak sejak ia dilahirkan, tetapi pola asuh orang tua dan pengaruh lingkungan akan membentuk kepribadian seorang anak yang nantinya akan dia bawa untuk melakukan interaksi sosial dengan lingkungan yang ada dan tentunya akan sangat berpengaruh dengan bagaimana seseorang itu menunjukan perilakunya dalam lingkungan sosialnya.

Dalam sebuah penelitian Diana Baumrind mengatakan menganalisa polapola pengasuhan dan kecakapan sosial dalam masa remaja.

Perhatian dan dukungan orang tua berkaitan dengan kecakapan sosial remaja. Dan ketika orang tua sendiri memiliki masalah perilaku (contohnya, masalah alcohol dan konflik pernikahan), remaja seringkali mempunyai masalah dan menunjukan penurunan kecakapan sosial.²³

Hal tersebut menjelaskan bahwa pola asuh orang tua merupakan langkah awal seorang anak dalam membentuk perilaku atau kebiasaan sebagai seorang individu yang akan bersaing didalam kehidupannya bermasyarakat ataupun kehidupan

 $^{^{\}rm 23}$ W.Santrock, John. Adolescene Perkembangan Remaja. Erlangga:
Jakarta. 2003.hal. 186

sekolahnya, pola asuh orang tua yang baik akan menjadikan seorang anak lebih cerdas atau cakap secara sosial.

Orang tua harus pintar menempatkan dirinya menjadi seperti yang dibutuhkan oleh seorang anak. Anak-anak memiliki emosi yang tidak stabil disinilah peran dan kreatifitas dari orang tua diuji. Bagaimana orang tua dapat bermain peran secara pintar untuk memberikan pola asuh yang tepat dan menjadi seseorang yang tepat untuk kebutuhan emosi seorang anak, dengan begitu akan tertanam didalam diri anak bagaimana dia diajarkan bijaksana, jujur dan lain sebagainya dirumah oleh orang tuanya dan tentunya proses tersebutlah yang akan membuat seorang anak nantinya akan mampu cerdas secara sosial. Perilaku orang tua dirumah pun dapat menanamkan karakter terhadap anak-anak, bagaimana suasana hati orang tua ataupun kejadian-kejadian didalam lingkungan rumah yang terjadi disekitar seorang anak sangat berperan penting kepada seorang anak dalam membentuk karkter dan pola pikir dia terhadap dirinya, terhadap orang lain dan bagaimana dia melihat masalah. Daniel Goleman mengatakan bahwa,

Proses larut bersama orang tua-anak ini merupakan lintasan utama bagi orang tua untuk membantu anak-anak mereka mempelajari aturan-aturan dasar dalam berhubungan dengan orang lain---bagaimana memperhatikan orang lain, bagaimana memasuki suatu interaksi, bagaimana terlibat dalam percakapan, bagaimana merasakan perasaan orang lain, dan bagaimana mengelola perasan Anda ketika Anda terlibat dengan orang lain. Pelajaran-pelajaran esensial ini meletakan landasan bagi suatu kehidupan sosial yang mantap. 24

Bagaimana orang tua membangun kepribadian kita sangatlah penting, tapi selain itu keadaan rumah dan hubungan orang tua yang baik juga dapat membentuk kepribadian anak yang akan baik dalam kegiatannya secara sosial. Seorang anak yang memiliki pengalaman yang kurang baik dalam suasana

_

²⁴ Goleman, Daniel.Social Intelligence.Gramedia Pustaka Utama:Jakarta.2007.p.220

rumahnya memberikan dampak pada perkembangan tentunya akan kepribadiannya. Cerdas secara sosial juga berarti seorang anak tersebut memiliki kemampuan atau kompetensi dalam melakukan kegiatan sosial, seorang anak untuk dapat memiliki kompetensi sosial tentunya membutuhkan bantuan dari orang tuanya seperti yang dikatakan oleh Margot Sunderland bahwa, "There are three key areas of Social Intelligence: the art of relating; the capacity to negotiate, resolve and be a great team player; the capacity for compassion and concern. Good parenting can develop all three."25 Dalam Kecerdasan Sosial Terdapat tiga bidang utama: Seni dalam berhubungan dengan orang lain; Kapasitas untuk bernegosiasi, menyelesaikan dan menjadi pemain tim yang hebat; Kapasitas untuk kasih sayang dan perhatian. Pola asuh orang tua yang baik dapat mengembangkan ketiga aspek tersebut. Interaksi antar orang tua dan anak yang positif tentunya akan membentuk anak menjadi cerdas dalam mengendalikan dan mengelola emosi, begitupun sebaliknya, emosi yang terkendali dengan baik sangat penting bagi seseorang dalam melakukan proses komunikasi dan melakukan sosialisasi dengan orang lain. Kecerdasan sosial dikatakan dapat dipengaruhi secara genetik, tetapi faktor diluar genetik juga mempengaruhi tingkat kecerdasan sosial seseorang. Seperti yang dikatakan oleh Frank John Ninnivagi dalam bukunya, yaitu:

A great deal of Social Intelligence, including social communication, is based on the identification of emotions in others. Learning to use this knowledge contributes to governing social interactions. While studies demonstrate that the mastering of social communication has at least moderate genetic hereditability and is distributed in a continuous fashion in the general population, environmental role plays an outstanding role. For example, certain risk factors that affect the maternal fetal

²⁵ Sunderland, Margot. *The Science of Parenting*. DK Publishing: United States. 2006. h.219

environment. Another nongenetic factor is learning from experience and good parenting adds significant shaping to this endowment. ²⁶

Bagian terpenting dari *Social Intelligence*, termasuk komunikasi sosial, didasarkan pada bagaimana mengidentifikasi emosi orang lain. Mempelajari untuk menggunakan pengetahuan ini memberikan kontribusi untuk mengatur interaksi sosial. Sementara penelitian menunjukkan bahwa penguasaan komunikasi sosial ini setidaknya dipengaruhi oleh faktor genetik dan didistribusikan secara terus menerus. Peran lingkungan memainkan peran yang luar biasa. Misalnya, faktor-faktor risiko tertentu yang mempengaruhi lingkungan janin ibu. Selain faktor genetik, faktor nongenetik lainnya adalah belajar dari pengalaman dan pola asuh yang baik memiliki kontribusi yang signifikan. Dengan beberapa pendapat yang sudah ada dapat dikatakan bahwa orang tua memiliki peran dalam membantu seseorang agar dapat cerdas secara sosial, lebih lanjutnya lagi Elias mengatakan tentang peran orang tua yang memang harus membantu anaknya untuk dapat memiliki kecerdasan diluar intelektual "it is vital for parents to foster their childrens emotional and social intelligence in order to help them to improve their friendships, or to become more 'befriendable',"²⁷

Orang tua memiliki peran yang penting untuk membuat anaknya cerdas secara emosi dan cerdas secara sosial untuk dapat membantu mereka meningkatkan jalinan pertemanan atau membuatnya menjadi seseorang yang bisa diajak berteman.

Menjadi orang tua harus dapat menerapkan pola asuh yang baik dan menjadi orang tua yang dapat membimbing anaknya agar dapat cerdas secara sosial. Frank John Ninnivaggi lebih lanjut mengatakan;

_

Ninnivagi, Frank John. Biomental Child Development. Rownan & Littlefield:United Kingdom. 2013. h.155

²⁷ Bar On, Revvan. Maurice J.Lias. *Educating People To Be Emotianally Intelligent*. Henemann Publisher:United Kingdom. 2007.h.45

Parental self reflection is a most in order to allow for effective parenting to take place. Such methodolosy also provides children with a model of how to handle such situations in the future. Helping childrens to identify feelings within themselves and as they are expressed in others is essential in promoting healthy emotional development, intelligence and self management. It builds social intelligence, social skill and social competence²⁸

Introspeksi diri oleh orang tua adalah hal yang penting demi terciptanya pola asuh orang tua yang efektif. Beberapa metode yang diterapkan oleh orang tua akan membantu anak dalam mengatasi situasi yang terjadi pada masa mendatang. Orang tua membantu anaknya untuk dapat mengidentifikasikan perasaan yang mereka rasakan dan bagaimana mereka dapat mengekspresikannya kepada orang lain yang didalamnya mencakup perkembangan emosi, kecerdasan dan kontrol diri. Dimana itu semua dapat membangun kecerdasan sosial, kecakapan sosial dan kompetensi sosial. Para ahli diatas menguatkan pandangan bahwa pola asuh orang tua memegang peranan penting dalam pembentukan karakter seorang anak, dan peran orang tua pun menjadi sangat penting dalam mengarahkan anak untuk dapat cerdas secara sosial. Bagaimana pola asuh orang tua yang diberikan kepada anak pada akhirnya akan membentuk karakter anak menjadi karakter yang nantinya akan cerdas secara sosial atau tidak. Orang tua harus bisa mendidik, membimbing, memberi aturan, dan melakukan pendisiplinan pada anak, agar anak dapat belajar membentuk kepribadian yang baik karena keluarga membimbing anak secara terus-menerus agar seorang anak tersebut memiliki karakter atau kepribadian yang nantinya akan bisa diterima didalam lingkungan sosial.

²⁸ Frank John Ninnivaggi, op.cit., h.60

D. Perumusan Hipotesis Penelitian

Hipotesis merupakan jawaban yang bersifat sementara terhadap permasalahan penelitian, sampai terkumpul bukti melalui data yang terkumpul. Berdasarkan kerangka berpikir diatas maka hipotesis penelitian yang dapat dirumuskan adalah terdapat hubungan antara Pola Asuh Orang Tua dengan *Social Intelligece* (SI).

BAB III

METODOLOGI PENELITIAN

A. Tujuan Penelitian

Berdasarkan permasalahan yang telah dirumuskan, maka tujuan dari penelitian ini adalah memperoleh data yang valid dan reliabel tentang apakah terdapat hubungan antara Pola Asuh Orang Tua dengan *Social Intelligence*.

B. Tempat dan Waktu penelitian

Penelitian ini dilakukan di Sekolah Menengah Kejuruan (SMK) 22 Jakarta Jl. Raya Condet - Pasar Rebo, Jakarta Timur - DKI Jakarta Kode Pos 13760. Tempat ini dipilih karena dianggap sebagai tempat yang tepat untuk memperoleh data yang diperlukan, dan untuk menyebarkan kuesioner yang diperlukan untuk keperluan penelitian.

Waktu penelitian dilaksanakan pada bulan Januari 2014.

C. Metode Penelitian

Metode yang digunakan dalam penelitian ini adalah metode survey dengan menggunakan pendekatan korelasional untuk mencari hubungan antara dua variabel yaitu *Social Intelligence* atau Kecerdasan Sosial dengan Pola Asuh Orang Tua. Data yang digunakan adalah data yang dihasilkan dari penyebaran angket tentang Kecerdasan Sosial dan Pola Asuh Orang Tua kepada siswa kelas XI Jurusan Akuntansi SMK 22 Jakarta.

D. Populasi dan Sampling

"Populasi adalah wilayah generalisasi yang terdiri dari atas obyek/subyek yang mempunyai kualitas dan karakteristik tertentu yang diungkapkan oleh peneliti untuk dipelajari dan kemudian ditarik kesimpulan". Sampel adalah bagian dari jumlah dan karateristik yang dimiliki oleh populasi. Teknik yang digunakan dalam penelitian ini adalah sampel acak sederhana (simple random sampling). Dalam teknik ini pengambilan anggota sampel dari populasi dilakukan secara acak tanpa memperhatikan strata yang ada dalam populasi tersebut.

Populasi penelitian ini adalah siswa-siswa yang terdaftar di Sekolah Menengah Kejuruan (SMK) 22 Jakarta. Populasi terjangkaunya adalah Siswa yang terdaftar dengan kriteria sebagai berikut:

- 1. Siswa SMK 22 Jakarta yang mengambil jurusan Akuntansi
- 2. Siswa SMK 22 Jakarta yang duduk di kelas 2

Sampel dipilih dengan menggunakan *total sampling*, yaitu pengambilan sampel seluruh populasi. Populasi dalam penelitian ini adalah seluruh siswa SMK 22 Jakarta Jurusan Akuntansi. Sedangkan untuk populasi terjangkaunya adalah Siswa kelas XI jurusan Akuntansi SMK 22 Jakarta yang berjumlah 77 siswa yang terbagi dalam 2 kelas yakni kelas Akuntansi 1 dan Akuntansi 2 dengan distribusi sebagai berikut:

³⁰ Ibid., h. 62

²⁹ Sugiyono. Statistika untuk Penelitian. (Bandung: Alfabeta, 2007). h. 61

Tabel III. 1: Distribusi populasi Penelitian

	KELAS	Populasi
VI	Akuntansi 1	39
XI	Akuntansi 2	39

Dalam penelitian ini, pengambilan sampel dilakukan dengan teknik *proportional random sampling*. Sampel diambil dari populasi terjangkau yang terdiri dari 78 orang. Penentuan jumlah sampel sesuai tabel Isaac dan Michael dengan taraf signifikansi 95% (kesalahan 5%) sehingga diperoleh sebanyak 66 siswa sebagai sampel penelitian.

Tabel III. 2. Pengambilan Sampel Tiap Kelas

	Jun	nlah	samp	le yg	diambil	tiap	
	KELAS]	kelas		
	Akuntansi 1	<u>39</u> 78	X	65	=	32.6	33
A	Akuntansi 2	39 78	X	65	=	32.6	33

E. Teknik Pengumpulan Data

Data yang digunakan untuk mengukur variabel X (pola asuh orang tua) dan variabel Y (*Social Intelligence*) adalah data primer atau merupakan sumber data yang diperoleh langsung dari sumber asli (tidak melalui media perantara), dalam penelitian ini menggunakan kuesioner. Data primer dapat berupa opini subjek (orang) secara individual atau kelompok, hasil observasi terhadap suatu benda (fisik), kejadian atau kegiatan, dan hasil pengujian.

1. Pola Asuh Orang Tua (Variabel X)

a. Definisi Konseptual

Pola asuh orang tua merupakan segala pola interaksi yang dimiliki anak untuk tumbuh dan berkembang dengan arahan dan panduan yang diberikan oleh orang tua untuk dapat tercermin dalam pola tingkah laku dan pola interaksi anak.

b. Definisi Operasional

Pola asuh orang tua dapat diukur menggunakan angket (questioner) yang berisikan pernyataan untuk mengetahui tentang pola asuh yang diterapkan oleh orang tua mereka dan bagaimana orang tua mengasuh anaknya dirumah. Pola asuh mana yang diterapkan oleh orang tua pada masing-masing anak manakah yang akan membuat anaknya dapat cerdas secara sosial. Indikator dari pola asuh orang tua, yaitu bagaimana orang tua mendidik, membimbing, memberi aturan dan melakukan pendisiplinan terhadap anak.

c. Kisi-kisi Instrumen

Kisi-kisi instrumen merupakan gambaran dan soal yang akan diberikan kepada responden. Untuk variabel X yaitu Pola Asuh Orang Tua yang diuraikan menurut beberapa teori yang diungkap oleh para ahli. Berikut kisi-kisi instrument dari pola asuh orang tua:

Tabel III.3 Kisi-kisi Instrumen Pola Asuh Orang Tua

No	Indikator	Sub Indikator	Nomor 1	[tem	Nomor	Item
			(Uji Co	ba)	(Valid)	
			(+)	(-)	(+)	(-)
1	Mendidik	a. Menanamkan kebiasaan baik	5,6,12	35	5,6,11	-
		b. Memberi teladan perbuatan yang baik dan benar	18,21,32	15	12, 16, 19, 26	13
		c. Mengajarkan perbuatan yang baik dan benar	7,11	-	7	-
2	Membimbing	a. Memberi petunjuk kepada anak	9, 10, 16, 23, 27, 31,	34	9, 10, 14, 21, 23, 25, 28	34
		b. Membina anak menjadi lebih baik	4, 19, 20, 30, 37	-	4, 17, 18, 24, 30	-
		c. Berbicara dari hati ke hati	24, 33, 36	-	27, 29	-
3	Memberi Aturan	a. Menetapkan peraturan kepada anak	8, 22,	13,14	8, 12, 20	13
4	Pendisiplinan	a. Memberlakukan sikap disiplin kepada anak	25, 28	1, 39	1, 22, 31	1, 39
		b. Pemberian hukuman	17, 29,	38	15	-
		c. Pemberian tindakan tegas	40	2, 3,	2, 3, 32	2, 3

Jumlah keseluruhan dari peryataan penelitian adalah 40 item. Jawaban dari pernyataan dalam penelitian ini disajikan dalam bentuk skala *Likert* dengan lima kategori jawaban, yaitu ungkapan Selalu, Sering, Kadang-kadang, Jarang dan Tidak Pernah. Skor penilaian yang digunakan mengukur variabel dalam penelitian ini adalah 5-1 untuk butir pernyataan positif, dan 1-5 untuk butir pernyataan negatif. "Skala *Likert* digunakan untik mengukur sikap, pendapat, dan persepsi seseorang atau sekelompok orang tentang fenomena sosial". (Sugiyono, 2004: 86).

Tabel III. 4. Pilihan Jawaban Instrumen

Jawaban	Positif	Negatif
Selalu	5	1
Sering	4	2
Kadang-kadang	3	3
Jarang	2	4
Tidak Pernah	1	5

a. Kalibrasi Instrumen

Proses pengembangan instrumen Pola Asuh Orang Tua dimulai dengan menyusun instrumen berbentuk kuesioner model skala *Likert* sebanyak 40 butir pernyataan yang didasarkan pada indikator variabel Pola Asuh Orang Tua yang telah dijelaskan diatas. Setelah instrumen disetujui oleh dosen pembimbing, selanjutnya instrumen diujicoba kepada 30 responden. Proses kalibrasi dilakukan dengan menganalisa data hasil uji coba instrumen.

1. Validitas Instrumen

Validitas adalah suatu ukuran yang menunjukkan tingkat-tingkat kevalidan dan kesahihan suatu instrumen. Suatu instrumen yang valid atau sahih mempunyai validitas tinggi. "Valid berarti instrumen tersebut dapat digunakan untuk mengukur apa yang seharusnya diukur". Rumus yang digunakan untuk uji validitas adalah sebagai berikut:

$$\mathbf{r}_{it} = \frac{\sum \mathbf{x}_i \mathbf{x}_t}{\sqrt{\sum (\mathbf{x}_i^s)(\mathbf{x}_t^s)}}$$

Dimana:

r_{it} = Koefisien korelasi antara skor butir dengan skor total

 $X_i =$ Jumlah kuadrat deviasi skor dari X_i

 $X_t =$ Jumlah kuadrat skor dari X_t

Hasil perhitungan kemudian dikonsultasikan dengan r_{it} tabel dengan taraf kesalahan 5%. Jika r_{it} hitung $> r_{it}$ tabel maka butir pernyataan dinyatakan valid. Sebaliknya, jika r_{it} hitung $\le r_{it}$ tabel maka butir pernyataan dinyatakan tidak valid atau drop.

Dari hasil perhitungan yang dilakukan terhadap 40 butir pernyataan, dengan rtabel = 0,361 diperoleh 32 butir pernyataan valid dan 8 butir tidak valid atau drop. Kemudian butir pernyataan yang dinyatakan tidak valid (drop) tidak digunakan.

2. Reliabilitas Instrumen

Setelah didapat butir pernyataan yang valid, selanjutnya dilakukan uji reliabilitas. Reliabilitas menunjukkan pengertian bahwa suatu instrumen cukup dapat dipercaya untuk digunakan sebagai alat pengumpul data karena instrumen tersebut sudah baik. Reliabilitas dalam penelitian ini dihitung dengan menggunakan rumus koefisien alpha (α) sebagai berikut:

$$\mathbf{r}_{ii} = \left[\frac{\mathbf{n}}{\mathbf{n} - \mathbf{1}}\right] \left[1 - \frac{\sum \sigma_i^i}{\sigma_k^2}\right]$$

Dimana:

r_{ii} = Realibilitas instrumen

n = Banyaknya butir pernyataan yang valid

 σ_{i} = Jumlah varians skor tiap-tiap item

 $\sigma_{\mathbf{t}} = \text{Varians total}$

Dari hasil perhitungan yang dilakukan terhadap 32 butir pernyataan valid, diperoleh nilai rii = 0,913 Dengan nilai reliabilitas 0,913 maka instrumen memiliki reliabilitas yang sangat tinggi.

2. Social Intelligence (Variabel Y)

a. Definisi Konseptual

Kecerdasan sosial merupakan kemampuan untuk memahami dan mengelola hubungan antara individu untuk bertindak bijaksana dalam hubungan manusia dan bagaimana mereka akan bereaksi terhadap berbagai situasi sosial yang berbeda.

b. Definisi Operasional

Di ukur menggunakan angket (kuestioner) yang berisikan pernyataan untuk mengetahui individu tersebut memiliki *Social Intelligence* atau tidak. Yang akan diukur adalah *Social Sensitivity* yang berarti bagaimana seseorang dapat memahami orang dan keadaan sekitarnya, *Social Insight* yang berarti bagaimana seseorang menyelesaikan masalah sosial dan *Social Communication* yang berarti bagaimana seseorang dapat membangun, menciptakan dan menjaga relasi sosial.

c. Kisi-kisi Instrumen

Kisi-kisi instrumen merupakan gambaran dan soal yang akan diberikan kepada responden. Untuk variabel Y yaitu *Social Intelligence* (Kecerdasan Sosial) yang diuraikan menurut beberapa teori yang diungkap oleh para ahli. Berikut kisi-kisi instrument dari kecerdasan sosial atau *Social Intelligence*:

Tabel III.5
Kisi-kisi Instrumen Social Intelligence

No	Indikator	Sub Indikator	Nomor Item		Nomor Item	
			(Uji Coba) (Valid)		id)	
			(+)	(-)	(+)	(-)
1	Social Sensitivity	a. Merasakan respon orang lain	9, 10, 21,	-	9, 19, 20	-
		b. Mengamati respon orang lain	12, 13, 24	30	11	26

		c. Memahami	6, 14, 20,	1	6, 12, 18,	1
		orang lain	23	1	21	1
2	Social Insight	a. Mencari pemecahan masalah yang efektif	8, 19, 28	29	8, 17	25
		b. Mencari solusi agar tetap terjaga relasi sosial	agar tetap terjaga relasi		16, 22	23, 24
3	Social Communication	a. Menguasai komunikasi sosial	4	2	4	2
		b. Mampu menciptakan relasi sosial	7, 11	-	7, 10	-
		c. Mampu membangun relasi sosial	5, 17	3	5, 15	3
		d. Mampu mempertahanka n relasi yang telah dibangun	15, 16, 9	-	13, 14, 9	-

Jumlah keseluruhan dari peryataan penelitian adalah 30 item. Jawaban dari pernyataan dalam penelitian ini disajikan dalam bentuk skala Likert dengan lima kategori jawaban, yaitu ungkapan Selalu, Sering, Kadang-kadang, Jarang dan Tidak Pernah. Skor penilaian yang digunakan mengukur variabel dalam penelitian ini adalah 5-1 untuk butir pernyataan positif, dan 1-5 untuk butir pernyataan negatif.

"Skala Likert digunakan untik mengukur sikap, pendapat, dan persepsi seseorang atau sekelompok orang tentang fenomena sosial". (Sugiyono, 2004: 86).

Tabel III. 6. Pilihan Jawaban Instrumen

Jawaban	Positif	Negatif
Selalu	5	1
Sering	4	2
Kadang-kadang	3	3
Jarang	2	4
Tidak Pernah	1	5

a. Kalibrasi Instrumen

Proses pengembangan instrumen *Social Intelligence* dimulai dengan menyusun instrumen berbentuk kuesioner model skala *Likert* sebanyak 30 butir pernyataan yang didasarkan pada indikator variable Kecerdasan Sosial yang telah dijelaskan diatas. Setelah instrumen disetujui oleh dosen pembimbing, selanjutnya instrumen diujicoba kepada 30 responden. Proses kalibrasi dilakukan dengan menganalisa data hasil uji coba instrumen.

1. Validitas Instrumen

Validitas adalah suatu ukuran yang menunjukkan tingkat-tingkat kevalidan dan kesahihan suatu instrumen. Suatu instrumen yang valid atau sahih mempunyai validitas tinggi. "Valid berarti instrumen tersebut dapat digunakan untuk mengukur apa yang seharusnya

43

diukur". Rumus yang digunakan untuk uji validitas adalah sebagai berikut:

$$\mathbf{r}_{it} = \frac{\sum X_i X_t}{\sqrt{\sum (X_i^2)(X_t^2)}}$$

Dimana:

r_{it} = Koefisien korelasi antara skor butir dengan skor total

 $X_i =$ Jumlah kuadrat deviasi skor dari X_i

 $X_t =$ Jumlah kuadrat skor dari X_t

Hasil perhitungan kemudian dikonsultasikan dengan r_{it} tabel dengan taraf kesalahan 5%. Jika r_{it} hitung $> r_{it}$ tabel maka butir pernyataan dinyatakan valid. Sebaliknya, jika r_{it} hitung $\le r_{it}$ tabel maka butir pernyataan dinyatakan tidak valid atau drop.

Dari hasil perhitungan yang dilakukan terhadap 30 butir pernyataan, dengan rtabel = 0,361 diperoleh 26 butir pernyataan valid dan 4 butir tidak valid atau drop. Kemudian butir pernyataan yang dinyatakan tidak valid (drop) tidak digunakan.

2. Reliabilitas Instrumen

Setelah didapat butir pernyataan yang valid, selanjutnya dilakukan uji reliabilitas. Reliabilitas menunjukkan pengertian bahwa suatu instrumen cukup dapat dipercaya untuk digunakan sebagai alat pengumpul data karena instrumen tersebut sudah baik.

Reliabilitas dalam penelitian ini dihitung dengan menggunakan rumus koefisien alpha (α) sebagai berikut:

$$\mathbf{r}_{ii} = \left[\frac{\mathbf{n}}{\mathbf{n}-1}\right] \left[1 - \frac{\sum \sigma_i^t}{\sigma_i^2}\right]$$

Dimana:

 \mathbf{r}_{ii} = Realibilitas instrumen

n = Banyaknya butir pernyataan yang valid

 σ_{i} = Jumlah varians skor tiap-tiap item

 σ_{t} = Varians total

Dari hasil perhitungan yang dilakukan terhadap 26 butir pernyataan valid, diperoleh nilai rii = 0,879 Dengan nilai reliabilitas 0,879 maka instrumen memiliki reliabilitas yang sangat tinggi.

Sesuai dengan hipotesis penelitian yang diajukan bahwa terdapat hubungan antara variabel X (Pola Asuh Orang Tua) dengan variabel Y (Kecerdasan Sosial). Maka gambaran konstelasi yang menyatakan hubungan antara variabel X dan Y adalah sebagai berikut :

Variabel Bebas	Variabel Terikat		
X	Y		
Pola Asuh Orang tua -	Kecerdasan Sosial		

Keterangan:

X: Variabel bebas/independen, yaitu Pola Asuh Orang Tua

Y: Variabel terikat/dependen, yaitu Kecerdasan Sosial

→: Arah hubungan

45

Gambaran hubungan antar variabel di atas menunjukkan bahwa Pola Asuh Orang tua mempengaruhi Kecerdasan Sosial.

F. Teknik Analisis Data

Untuk menganalisis data, dilakukan dengan cara uji regresi dan korelasi.

Langkah-langkah perhitungan tersebut adalah:

1. Persamaan Regresi

Persamaan regresi yang digunakan adalah persamaan regresi linier sederhana untuk menyatakan bentuk hubungan fungsional antara kedua variabel (variabel X dan variabel Y) dengan menggunakan rumus persamaan regresi sebagai berikut:

$$\hat{\mathbf{Y}} = \mathbf{a} + \mathbf{b}(\mathbf{X})$$

Dimana:

 \hat{Y} = nilai variabel terikat yang diprediksikan

a = konstanta atau bila harga X = 0

b = koefisien regresi

X = nilai variabel bebas

Koefisien-koefisien regresi a dan b untuk regresi linier dapat dihitung dengan rumus:

$$a = \frac{(\Sigma Y)(\Sigma X^2) - (\Sigma X)(\Sigma XY)}{n\Sigma X^2 - (\Sigma X)^2}$$

$$b = \frac{n\Sigma XY - (\Sigma X)(\Sigma Y)}{n\Sigma X^2 - (\Sigma X)^2}$$

46

2. Uji Persyaratan Analisis

a. Uji Normalitas Galat Taksiran

Sebelum data yang diperoleh dipakai dalam perhitungan, terlebih dahulu data tersebut diuji untuk mengetahui apakah berdistribusi normal atau tidak dengan menggunakan uji Liliefors pada taraf signifikan 0,05 dengan rumus sebagai berikut:

$$Lo = F(Z_i) - S(Z_i)$$

Dimana:

Lo : L observasi (harga mutlak terbesar)

F(Zi) : Peluang angka baku

S(Zi) : Proporsi angka baku

Hipotesis statistik:

Ho = Galat taksiran regresi Y atas X berdistribusi normal

H_i = Galat taksiran regresi Y atas X tidak berdistribusikan normal

Kriteria pengujian:

Jika $L_{tabel} > L_{hitung}$ maka Ho diterima, berarti galat taksiran regresi Y atas X berdistribusi normal.

b. Uji Kelinieran Regresi

Uji linieritas dilakukan untuk mengetahui apakah persamaan regresi merupakan bentuk linear atau tidak. Rumus yang digunakan adalah sebagai berikut:

$$F_{\text{hitung}} = \frac{S^{z}_{TC}}{S^{z}_{a}}$$

Hipotesis Statistik:

Ho = Bentuk regresi linier

H_i = Bentuk regresi tidak linier

Kriteria pengujian:

Ho diterima jika F_{hitung} < F_{tabel} maka regresi linier

Ho ditolak jika F_{hitung} > F_{tabel} maka regresi tidak linier

3. Uji Hipotesis

a. Uji Keberartian Regresi

Uji keberartian regresi digunakan untuk mengetahui apakah persamaan regresi yang diperoleh berarti atau tidak (signifikan). Perhitungan F_{hitung} pada uji keberartian regresi sebagai berikut:

$$F_{hitung} = \frac{S_{reg}^{z}}{S_{res}^{z}}$$

Hipotesis Statistik:

 $H_o: \beta \leq 0$, regresi tidak berarti

 $H_i: \beta > 0$, regresi berarti

Kriteria pengujian:

Terima Ho jika F_{hitung} < F_{tabel}, yang berarti regresi tidak signifikan

Tolak Ho jika $F_{hitung} > F_{tabel}$, yang berarti regresi signifikan

Rumus perhitungan keberartian dan linieritas regresi dapat dilihat pada tabel ANAVA.

b. Uji Koefisien Korelasi

Dalam penelitian ini, uji koefisien korelasi digunakan untuk mengetahui apakah ada hubungan yang positif antara Pola Asuh Orang Tua (variabel bebas/X)

dengan Kecerdasan Sosial (variabel terikat/Y). Rumus yang digunakan untuk menghitung koefisien korelasi *product moment* adalah sebagai berikut:

$$\mathbf{r}_{xy} = \frac{\mathbf{N} \sum \mathbf{XY} - (\sum \mathbf{X})(\sum \mathbf{Y})}{\sqrt{\{\mathbf{N} \sum \mathbf{X}^z - (\sum \mathbf{X})^z\}\{\mathbf{N} \sum \mathbf{Y}^z - (\sum \mathbf{Y})^z\}}}$$

Dimana:

 r_{xy} = Koefisien korelasi X terhadap Y

N = Jumlah responden

 $\sum X$ = Jumlah skor item

 $\sum Y$ = Jumlah skor total

 $\sum X^2$ = Jumlah kuadrat skor item

 $\sum Y^2$ = Jumlah kuadrat skor total

 $\sum XY$ = Jumlah perkalian skor item dengan skor total r_{xy}

Hipotesis statistik:

Ho: p = 0, berarti tidak terdapat hubungan antara variabel X dan Y

Hi: p > 0, berarti terdapat hubungan positif antara variabel X dan Y

Kriteria Pengujian:

Ho diterima, jika $r_{xy} = 0$

Ho ditolak, jika $r_{xy} > 0$

Kesimpulan:

Jika $r_{xy} > 0$ maka Ho ditolak dan Hi diterima. Ini berarti bahwa terdapat hubungan yang positif antara variabel X dengan variabel Y.

c. Uji Keberartian Koefisien Korelasi (uji t)

Untuk melihat keberartian hubungan antara variabel X dan variabel Y, maka perlu dilakukan pengujian dengan menggunakan rumus uji t yaitu:

49

$$t_{hitung} = \frac{r\sqrt{n-2}}{\sqrt{1-(r)^2}}$$

Dimana:

t_{hitung}: Skor signifikansi koefisien korelasi

r : Koefisien korelasi product moment

n : Banyaknya sampel

Hipotesis statistik:

Ho : $\beta \le 0$, tidak terdapat hubungan yang signifikan

Hi : $\beta > 0$, terdapat hubungan yang signifikan

Kriteria pengujian:

Terima Ho bilaThitung < Ttabel

Tolak Ho bila Thitung > Ttabel

Jika Ho ditolak, maka koefisien korelasi signifikan, sehingga disimpulkan bahwa variabel X memiliki hubungan yang signifikan terhadap variabel Y. Akan tetapi bila Ho diterima maka tidak terdapat hubungan yang signifikan dari kedua variabel tersebut.

d. Uji Koefisien Determinasi

Uji koefisien determinasi digunakan untuk mengetahui besarnya kontribusi variabel X terhadap variabel Y, dengan menggunakan rumus sebagai berikut:

$$KD = r_{xy}^2$$

Dimana:

KD : Koefisien determinasi

r_{xy} : Koefisien korelasi *product moment*

BAB IV

HASIL PENELITIAN DAN PEMBAHASAN

A. Deskripsi Data

Deskripsi data hasil penelitian dimaksudkan untuk memberikan gambaran umum mengenai penyebaran distribusi data. Skor yang akan disajikan setelah diolah dari data mentah dengan menggunakan statistik deskriptif, yaitu skor ratarata, varians dan simpangan baku atau standar deviasi.

Terdapat dua variabel yang berperan dalam penelitian ini. Variabel pertama yaitu Pola Asuh Orang Tua sebagai variabel terikat dan variabel kedua yaitu *Social Intelligence* sebagai variabel bebas.

1. Variabel bebas (Pola Asuh Orang Tua)

Data untuk pola asuh orang tua merupakan data primer yang diperoleh melalui kuesioner skala likert dengan indikator mendidik, membimbing, memberi aturan dan melakukan pendisiplinan terhadap anak. Sub indikator mendidik antara lain menanamkan kebiasaan baik, memberi teladan perbuatan yang baik dan benar, mengajarkan perbuatan yang baik dan benar. Sub indikator membimbing antara lain, memberi petunjuk kepada anak, membina anak menjadi lebih baik dan berbicara dari hati ke hati. Sub indikator memberi aturan antara lain menetapkan peraturan kepada anak. Sub indikator pendisiplinan antara lain memberlakukan sikap disiplin kepada anak, pemberian hukuman, pemberian tindakan tegas. Jumlah butir instrumen yang digunakan adalah 40 butir dengan butir yang drop sebanyak 8 butir sehingga total butir pernyataan yang digunakan untuk mengukur

pola asuh orang tua dengan menggunakan kuesioner adalah sebanyak 32 butir pernyataan. Kuesioner untuk uji coba instrumen diisi oleh 66 siswa SMK 22 sebagai responden.

Tabel IV.1

Rata-Rata Hitung Skor Indikator Pada Variabel X

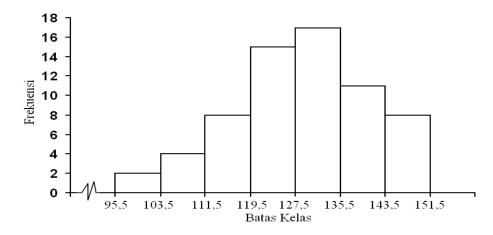
Indikator	Mendidik	Membimbing	Memberi Aturan	Pendisiplinan
Jumlah				
	8	14	3	7
Soal				
				. = 0.0
Skor	2373	3670	841	1788
Rata-rata	296,63	262,14	280,33	255,43
Presentase	27,4%	42,3%	9,7%	20,6%

Berdasarkan perhitungan tabel di atas, dapat dilihat bahwa indikator pola asuh orang tua yang paling tinggi adalah pada indikator membimbing sebesar 42,3%. Sedangkan indikator yang paling rendah adalah pada indikator memberi aturan yaitu sebesar 9,7%.

Hasil penelitian menunjukkan bahwa rentang nilai variabel Pola Asuh Orang Tua berada antara 96 (nilai terendah) sampai dengan 151 (nilai tertinggi), skor rata-rata (X) sebesar 128,68, varians (S²) sebesar 150,56 dan simpangan baku (S) sebesar 12,27 hasil perhitungan ini dapat dilihat pada lampiran 18.

Distribusi frekuensi data Pola Asuh Orang Tua siswa SMK dapat dilihat pada tabel IV.2 dimana rentang skor adalah 55, banyaknya kelas interval adalah 7,004 yang dibulatkan menjadi 7 dengan perhitungan 1 + 3,3 log 66, serta panjang

kelas interval adalah 7.86 yang dibulatkan menjadi 8 proses perhitungan ini dapat dilihat pada lampiran 14.


Tabel IV.2

Tabel Distribusi Frekuensi Pola Asuh Orang Tua

Kelas Interval		Batas Bawah	Batas Atas	Frek. Absolut	Frek. Relatif	
96	-	103	95,5	103,5	2	3,0%
104	-	111	103,5	111,5	4	6,1%
112	-	119	111,5	119,5	8	12,1%
120	-	127	119,5	127,5	15	22,7%
128	-	135	127,5	135,5	18	27,3%
136	-	143	135,5	143,5	11	16,7%
144	-	151	143,5	151,5	8	12,1%
	Jumlah				66	100%

Berdasarkan tabel distribusi frekuensi variabel X diatas dapat dilihat banyaknya kelas interval adalah 7 kelas dan panjang kelas adalah 8. Untuk batas kelas, batas bawah sama dengan ujung bawah dikurangi 0,5 dan batas atas sama dengan ujung atas ditambah 0,5. Frekuensi relatif terbesar berada pada kelas kelima yaitu pada rentang 128-135 sebesar 27,3%, sedangkan frekuensi relatif terendah berada pada kelas kesatu yaitu pada rentang 96-103 sebesar 3,0%. Dari data yang didapat, dapat dilihat bahwa skor Pola Asuh Orang Tua pada siswa jurusan Akuntansi SMKN 22 Jakarta Timur sebagian besar berada diatas skor 128. Siswa yang mendapatkan Pola Asuh Orang Tua yang baik dengan nilai diatas rata-arat sebesar 56,1% dan berjumlah 37 orang siswa, yang artinya siswa tersebut sudah cukup baik dibimbing oleh orang tua mereka. Sedangkan skor dibawah

rata-rata sebesar 43,9% dan berjumlah 29 orang siswa. Dari tabel distribusi variabel X diatas, maka dapat dilihat grafik histogram Pola Asuh Orang Tua berikut ini:

Gambar IV.I

Grafik Histogram Pola Asuh Orang Tua

Berdasarkan gambar histogram diatas terlihat bahwa frekuensi tertinggi berada pada kelas kelima dengan batas kelas 127,5-135,5. Sedangkan frekuensi terendah berada pada kelas kesatu dengan batas kelas 95,5-103,5.

2. Variabel Terikat (*Social Intelligence*)

Data untuk *Social Intelligence* merupakan data primer yang diperoleh melalui kuesioner skala likert dengan indikator *Social Sensitivity, Social Insight* dan *Social Communication*. Sub indikator *Social Sensitivity* antara lain merasakan respon orang lain, mengamati respon orang lain, memahami orang lain. Sub indikator *Social Insight* antara lain, mencari pemecahan masalah yang efektif dan mencari solusi agar tetap terjaga relasi sosial. Sub indikator *Social Communication* antara lain menguasai komunikasi sosial, mampu menciptakan relasi sosial, mampu membangun relasi sosial dan mampu mempertahankan relasi

yang telah dibangun. Jumlah butir instrumen yang digunakan adalah 30 butir dengan butir yang drop sebanyak 4 butir sehingga total butir pernyataan yang digunakan untuk mengukur *Social Intelligence* dengan menggunakan kuesioner adalah sebanyak 26 butir pernyataan. Kuesioner untuk uji coba instrumen diisi oleh 66 siswa SMK 22 sebagai responden.

Tabel IV.3

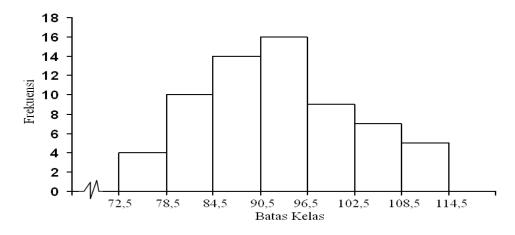
Rata-Rata Hitung Skor Indikator Pada Variabel Y

Indikator	Social Sensitivity	Social Insight	Social Communication
Jumlah Soal	10	6	10
Skor	2302	1641	2367
Rata-rata	230,2	273,5	236,7
Presentase	36,5%	26%	37,5%

Berdasarkan perhitungan tabel di atas, dapat dilihat bahwa indikator *Social Intelligence* yang paling tinggi adalah pada indikator *Social Communication* sebesar 37,5%. Sedangkan indikator yang paling rendah adalah pada indikator *Social Insight* yaitu sebesar 26%.

Hasil penelitian menunjukkan bahwa rentang nilai variabel *Social Intelligence* berada antara 73 (nilai terendah) sampai dengan 114 (nilai tertinggi), skor rata-rata (Y) sebesar 92,95, varians (S²) sebesar 100,75 dan simpangan baku (S) sebesar 10,04 seperti yang dapat dilihat pada lampiran 18.

Distribusi frekuensi data *Social Intelligence* mahasiswa dapat dilihat pada tabel IV.2 dimana rentang skor adalah 41, banyaknya kelas interval adalah 7,004 yang dibulatkan menjadi 7 dengan perhitungan 1 + 3,3 log 66, serta panjang kelas interval adalah 5,86 yang dibulatkan menjadi 6, yang dapat dilihat pada lampiran 15.


Tabel IV.4

Tabel Distribusi Frekuensi Social Intelligence

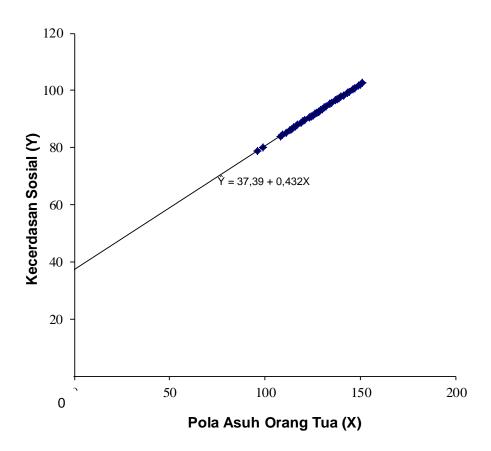
Ke	las Inter	val	Batas Bawah	Batas Atas	Frek. Absolut	Frek. Relatif
73	-	78	72,5	78,5	4	6,1%
79	-	84	78,5	84,5	10	15,2%
85	-	90	84,5	90,5	14	21,2%
91	-	96	90,5	96,5	16	24,2%
97	-	102	96,5	102,5	9	13,6%
103	-	108	102,5	108,5	7	10,6%
109	-	114	108,5	114,5	6	9,1%
	Jumlah				66	100%

Berdasarkan tabel distribusi frekuensi variabel X diatas dapat dilihat banyaknya kelas interval adalah 7 kelas dan panjang kelas adalah 6. Untuk batas kelas, batas bawah sama dengan ujung bawah dikurangi 0,5 dan batas atas sama dengan ujung atas ditambah 0,5. Frekuensi relatif terbesar berada pada kelas keempat yaitu pada rentang 91-96 sebesar 24,2%, sedangkan frekuensi relatif terendah berada pada kelas kesatu yaitu pada rentang 73-78 sebesar 6,1%. Dari data yang didapat, dapat dilihat bahwa skor *Social Intelligence* pada siswa jurusan Akuntansi SMKN 22 Jakarta Timur sebagian besar berada diatas skor 91. Siswa yang memiliki *Social Intelligence* yang baik dengan nilai diatas rata-arat sebesar 57,5% dan berjumlah 38 orang siswa, yang artinya siswa tersebut sudah dapat menerapkan indicator-indikator yang terdapat dalam *Social Intelligence* khususnya pada indikator *Social Communication* dengan lingkungannya. Sedangkan siswa yang berada dibawah skor rata-rata sebesar 42,5% dan

berjumlah 28 orang siswa. Dari tabel distribusi variabel Y diatas, maka dapat dilihat grafik histogram *Social Intelligence* berikut ini:

Gambar IV.2

Grafik Histogram Social Intelligence


Berdasarkan gambar histogram diatas terlihat bahwa frekuensi tertinggi berada pada kelas keempat dengan batas kelas 90,5-96,5. Sedangkan frekuensi terendah berada pada kelas kesatu dengan batas kelas 72,5-78,5.

B. Analisis Data

1. Uji Persamaan Regresi

Setelah dilakukan perhitungan dengan rumus $\hat{Y} = a + bX$ terhadap penelitian antara variabel X (Pola Asuh Orang Tua) dengan variabel Y (*Social Intelligence*), maka dihasilkan koefisien arah regresi 0,432 dan konstanta sebesar 37,39 perhitungannya terdapat pada lampiran 19.

Dengan demikian diperoleh persamaan regresi linier sederhana dari variabel Pola Asuh Orang Tua (Variabel X) dan variabel hasil *Social Intelligence* (Variabel Y) yaitu $\hat{Y}=37,39+0,432X$ artinya kenaikan 1 skor X akan diikuti oleh kenaikan 0,432 Y pada konstanta sebesar 37,39. Untuk lebih jelasnya dapat dilihat pada grafik di bawah ini:

Gambar IV.3 $\label{eq:Gambar} \text{Grafik Persamaan Regresi } \hat{Y} = 37,39 + 0,432X$

2. Uji Persyaratan Analisis

a. Uji Normalitas Galat Taksiran

Uji normalitas digunakan untuk menguji apakah galat taksiran regresi Y atas X berdistribusi normal atau tidak. Pengujian normalitas galat taksiran regresi Y atas X dilakukan dengan uji liliefors pada taraf signifikan ($\alpha=0.05$) dengan sampel sebanyak 66 orang. Kriteria pengujian berdistribusi normal apabila L_{hitung}

< L_{tabel} , dan jika L_{hitung} > L_{tabel} maka galat taksiran regresi Y atas X tidak berdistribusi normal.

Hasil perhitungan uji liliefors menyimpulkan bahwa galat taksiran regresi Y atas X adalah berdistribusi normal. Hasil tersebut dapat dibuktikan dengan hasil perhitungan yang diperoleh $L_{hitung}=0,70$ sedangkan $L_{tabel}=66$ (Lihat di Lampiran 21), ini membuktikan bahwa $L_{hitung} < L_{tabel}$ sehingga dapat disimpulkan bahwa galat taksiran Y atas X berdistribusi normal.

Uji Linieritas Regresi

Uji linieritas dilakukan untuk mengetahui hubungan linier antara variabel X dan variabel Y. Berdasarkan hasil perhitungan uji linieritas yang telah dilakukan diperoleh $F_{hitung}=1,002$, dan $F_{tabel}=1,87$ (Lampiran 28). Ini menunjukkan bahwa $F_{hitung}< F_{tabel}$ berarti Ho diterima, sehingga dapat disimpulkan bahwa persamaan regresi $\hat{Y}=37,39+0,432X$ dinyatakan linier. Dengan demikian berdasarkan hasil perhitungan di atas dapat disimpulkan bahwa bentuk hubungan antara Pola Asuh Orang Tua dengan *Social Intelligence* adalah linier.

3. Uji Hipotesis

a. Uji Keberartian Regresi

Uji keberartian regresi digunakan untuk mengetahui berarti atau tidaknya hubungan antara variabel X dengan variabel Y, yang dibentuk melalui uji persamaan regresi. Berdasarkan persamaan regresi $\hat{Y}=37,39+0,432X$ untuk uji keberartian regresi diperoleh nilai $F_{hitung}=24,72$ dan $F_{tabel}=3,99$ (Lampiran 28).

Ini menunjukkan bahwa $F_{hitung} > F_{tabel}$ berarti Ho ditolak, sehingga dapat disimpulkan bahwa persamaan regresi $\hat{Y} = 37,39 + 0,432X$ adalah berarti (signifikan).

b. Uji Koefisien Korelasi

Uji koefisien korelasi digunakan untuk mengetahui hubungan antara variabel X dengan variabel Y, maka digunakan rumus koefisien korelasi *Product Moment* dari Pearson. Hasil perhitungan koefisien korelasi diperoleh $r_{xy}=0.528$ dengan taraf signifikansi $\alpha=0.05$ dari sampel sebanyak 66 siswa sehingga dapat disimpulkan bahwa $r_{xy}=0.528>0$ (Lampiran 31). Hal ini menunjukkan terdapat hubungan positif antara variabel X (Pola Asuh Orang Tua) dengan variabel Y (*Social Intelligence*).

c. Uji Keberartian Koefisien Korelasi (uji t)

Untuk mengetahui apakah hubungan variabel X dengan Y berarti atau tidak, maka dilakukan uji keberartian koefisien korelasi dengan menggunakan ujit pada taraf signifikansi 0,05 dengan dk (n-2). Kriteria pengujian adalah dinyatakan signifikan jika $t_{hitung} > t_{tabel}$ dan dinyatakan tidak signifikan jika $t_{hitung} < t_{tabel}$. Berdasarkan hasil perhitungan menunjukkan bahwa $t_{hitung} = 4,97$ sedangkan $t_{tabel} = 1,68$ (Lampiran 32). Dengan demikian dapat disimpulkan bahwa $t_{hitung} > t_{tabel}$, maka disimpulkan Ho ditolak, sehingga terdapat hubungan yang signifikan antara variabel X (Pola Asuh Orang Tua) dengan variabel Y (*Social Intelligence*).

d. Uji Koefisien Determinasi

Uji koefisien determinasi dilakukan untuk mengetahui besarnya kontribusi variabel X (Pola Asuh Orang Tua) dengan variabel Y (*Social Intelligence*). Berdasarkan perhitungan, diperoleh nilai koefisien determinasi sebesar 0,2787.

Nilai tersebut kemudian dipersentasekan sehingga diperoleh nilai sebesar 27,87% (Lampiran 33). Dengan demikian dapat disimpulkan bahwa 27,87% *Social Intelligence* atau kecerdasan sosial ditentukan oleh Pola Asuh Orang Tua dan sisanya ditentukan oleh faktor lain.

C. Pembahasan Hasil Penelitian

Kemampuan untuk cerdas secara sosial merupakan kemampuan yang dapat dikatakan penting sekarang ini, bahkan untuk seorang akuntan. Journal of Instructional Pedagogies yang berjudul Professional Presence and Soft Skills: A Role for Accounting Education, penelitian yang dilakukan oleh George Kermis dan Marguerite Kermis dari Canisius College menyatakan bahwa: To succeed, a future accountant has to be prepared to deal with the challenges of establishing rapport and communicating effectively. Person with good social skills also demonstrate a high level os versatility – easilt adapting to system and policy changes, plans or new superiors. Seorang akuntan yang dibutuhkan dan akan sukses adalah seorang akuntan yang tidak hanya dapat membuat laporan yang dibutuhkan saja. Laporan yang sudah dibuat tentunya harus dikomunikasikan kepada pemegang kepentinga dimana untuk dapat melakukan komunikasi tersebut dengan baik dibutuhkan adanya kecakapan atau kecerdasan social. Seseorang dengan kecerdasan sosial juga sangat dibutuhkan karena mereka dianggap dapat menerima dengan baik perubahan kebijakan, rencana baru ataupun pimpinan mereka yang baru nantinya. Selain itu seseorang dengan kecerdasan sosial yang baik cenderung dapat beradaptasi dengan baik dan cepat terhadap sistem suatu perusahaan yang sering terjadi perubahan dalam dunia keuangan dan akuntansi yang harus selalu mengikuti perkembangan jaman yang sudah memasuki globalisasi seperti sekarang ini.

Robert Hal International Inc. (RHI) melakukan survey kepada 1400 Chief Financial Officer (CFO) yang berada di Amerika yang sepakat bahwa kemampuan untuk cerdas secara sosial adalah hal pertama yang penting dimiliki oleh staff keuangan mereka. Mereka berpendapat bahwa banyak karyawan meyakini cerdas secara kognitif adalah hal yang terpenting, tetapi bagi perusahaan keuangan kemampuan untuk membangun hubungan dengan orang lain dan cerdas secara sosial merupakan hal yang lebih penting dan dibutuhkan oleh perusahaan sekarang ini. Karena setiap pekerjaan seorang akuntan tidak lepas dari kerjasama secara tim, bukan hanya bekerja secara individual.

Social Intelligence harus diterapkan sejak dini karna sangat dibuthkan, maka dari itu Pola Asuh Orang Tua tentunya sangat berperan dalam membentuknya. Terdapat dua variabel yang berperan dalam penelitian ini. Variabel pertama yaitu Pola Asuh orang Tua sebagai variabel X bentuk data yang diperoleh adalah data primer dan variabel kedua yaitu Social Intelligence siswa SMK jurusan Akuntansi sebagai variabel Y bentuk data yang diperoleh adalah data primer.

Berdasarkan perhitungan yang telah dilakukan pada penelitian ini, dengan menggunakan uji normalitas liliefors galat taksiran pada sampel berjumlah 66 siswa didapatkan bahwa data berdistribusi Normal. Untuk persamaan regresi linier sederhana menghasilkan $\hat{Y}=37,39+0,432X$

menunjukkan bahwa setiap kenaikan 1 skor Pola Asuh Orang Tua (X) dapat menyebabkan kenaikan *Social Intelligence* (Y) sebesar 0,432 pada konstanta - 37,39. Pada variabel X (Pola Asuh Orang tua) dengan variabel Y (*Social Intelligence*). Dari uji koefisien determinasi diperoleh nilai koefisien determinasi sebesar 27,87%. Hal ini berarti bahwa 27,87% *Social Intelligence* ditentukan oleh Pola Asuh Orang tua dan sisanya dipengaruhi oleh faktor lain. Hasil perhitungan diatas tentunya memperkuat salah satu teori yang terdapat dalam penelitian ini, yaitu yang dikemukakan oleh Frank John Ninnivagi yang mengatakan bahwa:

A great deal of Social Intelligence, including social communication, is based on the identification of emotions in others. For example, certain risk factors that affect the maternal fetal environment. Another nongenetic factor is learning from experience and good parenting adds significant shaping to this endowment.

Faktor non genetik yang mempengaruhi seorang anak dapat cerdas secara sosial salah satunya adalah pola asuh orang tua yang diterapkan. Dari perhitungan yang telah dilakukan maka hasil penelitiannya dapat diinterpretasikan bahwa ada hubungan positif antara Pola Asuh Orang Tua dengan Social Intelligence. Pola Asuh Orang Tua mempengaruhi Social Intelligence siswa atau dapat dikatakan semakin baik Pola Asuh Orang Tua yang diterapkan, maka semakin tinggi Social Intelligence yang dimiliki siswa. Hal ini sejalan dengan beberapa penelitian relevan yang mendukung hipotesis ini. Yang pertama adalah hasil penelitian dari hasil penelitian terdahulu yang relevan dengan penelitian ini adalah berjudul Alfiasari, Melly Latifah dan Astuti Wulandari yang berjudul "Pengasuhan Otoriter Berpotensi

menurunkan Kecerdasan Sosial, Self Esteem dan Prestasi Akademik"³¹, dimana hasil penelitian ini mengemukakan bahwa pola asuh demokratis yaitu pola asuh dimana orang tua memberikan kasih sayang dan mengajarkan seorang anak berdiskusi dapat membantu anak dalam memiliki *Social Intelligence*, sedangkan pola asuh yang otoriter menurunkan kecerdasan sosial pada anak.

Hasil penelitian relevan kedua yang mendukung penelitian ini adalah "A Study of Himachal Pradesh: *Parenting Style and Social Intelligence of Adolescent*," oleh Ruchi Takur, Shubhangana Sharma dan Raj Pathania. Penelitian ini mengembangkan teori dari Gardner dan Steinbergs yang menyatakan bahwa kecerdasan sosial dan pola asuh orang tua adalah hal yang yang sangat berhubungan apalagi bagi kehidupan remaja. Hasil penelitian mereka mencapai kesimpulan bahwa "*Social Intelligence of adolescents wholly depends upon the parenting styles adopted by parents*", yang dapat diartikan sebagai kecerdasan sosial yang dimiliki remaja sepenuhnya bergantung kepada pola pengasuhan yang diterapkan oleh orang tua.

Hasil penelitian terdahulu yang relevan ketiga adalah yang berjudul "Pengaruh Lingkungan Keluarga dengan Kecerdasan Interpersonal Anak Usia 1-3 Tahun di Desa Badal Pandean Kecamatan Ngadiluwih Kabupaten Kediri," oleh Suwoyo, Siti Asiyah dan Luciana Sadayin dalam Jurnal

Thakur, Ruhi, et al. "A Study of Himachal Pradesh: Parenting Style and Social Intelligence of Adolescent". Indian Journal Of Applied Research. September 2012.vol.3, h.556-557

³¹ Alfiasari, et al. "Pengasuhan Otoriter Berpotensi menurunkan Kecerdasan Sosial, Self Esteem dan Prestasi Akademik". Jurnal Ilmu Keluarga dan Konsumen. Januari 2011. Vol. 4. No. 1. h. 45-56

³³ Suwoyo, et al. "Pengaruh Lingkungan Keluarga dengan Kecerdasan Interpersonal Anak Usia 1-3 Tahun di Desa Badal Pandean Kecamatan Ngadiluwih Kabupaten Kediri". Jurnal Penelitian Kesehatan Suara Forikes, Oktober 2012.vol.3.no.4, h.188-194

Penelitian Kesehatan Suara Forikes Volume 3 Nomor 4, Oktober 2012. Penelitian yang menggunakan teori dari Gardner tentang kecerdasan majemuk yang salah satunya adalah kecerdasan interpersonal. Kecerdasan sosial termasuk dalam kecerdasan majemuk oleh Gardner yaitu kecerdasan Interpersonal. Selain teori Gardner teori yang dikemukakan oleh Daniel Goleman juga dikembangkan dalam penelitian ini yaitu yang membagi kecerdasan sosial menjadi dua, yaitu kesadaran sosial dan fasilitas sosial. Penelitian yang mengembangkan teori dari Gardner dan Daniel Goleman ini menyatakan bahwa lingkungan keluarga adalah lingkungan pertama yang sangat berpengaruh bagi kecerdasan sosial anak dalam hal ini, adalah pola asuh yang diterapkan oleh orang tua.

Meskipun penelitian ini telah berhasil menguji hipotesis yang diajukan, tetapi belum sepenuhnya pada tingkat kebenaran mutlak, sehingga tidak menutup kemungkinan untuk dilakukan penelitian lanjutan. Hal tersebut disebabkan adanya beberapa keterbatasan dalam penelitian, antara lain:

- 1. Dalam menyusun item quesioner peneliti merujuk pada buku yang relevan yang telah dilakukan modifikasi serta di ujicoba kepada responden yang terbatas. Pelaksanaan modifikasi ini, peneliti mengurangi item yang dapat memungkinkan terdapat item yang justru memiliki pengaruh pada pengukuran *Social Intelligence* yang sebenarnya.
- Penelitian dilakukan pada objek yang terbatas yaitu siswa SMK 22 Jakarta kelas XI jurusan Akuntansi, sehingga hasil penelitian mungkin akan berbeda hasilnya bila dilakukan pada objek yang berbeda.

3. Tempat penelitian yang hanya satu Program Studi yaitu Jurusan Akuntansi SMK 22 Jakarta, sehingga hasil penelitian ini tidak bisa dijadikan kesimpulan yang mutlak yang dapat mewakili Program Studi yang lainya.

BAB V KESIMPULAN, IMPLIKASI, DAN SARAN

A. Kesimpulan

- 1. Pola Asuh Orang Tua adalah segala pola interaksi antara orang tua dengan anak untuk tumbuh dan berkembang dengan arahan dan panduan yang diberikan oleh orang tua untuk dapat tercermin dalam pola tingkah laku dan pola interaksi anak dikehidupannya. Sedangkan *Social Intelligence* adalah bagaimana kita dapat berinteraksi dengan orang lain yang didalamnya mencakup *Social Sensitivity* yang berarti bagaimana seseorang dapat memahami orang dan keadaan sekitarnya, *Social Insight* yang berarti bagaimana seseorang menyelesaikan masalah sosial dan *Social Communication* yang berarti bagaimana seseorang dapat membangun, menciptakan dan menjaga relasi sosial.
- 2. Penelitian ini berhasil menguji hipotesis penelitian yang diajukan. Karena hasil dari r hitung yang diperoleh adalh 0,528 , dengan demikian dapat disimpulkan bahwa kedua variabel memiliki tingkat korelasi sedang. Dengan demikian terdapat hubungan positif antara Pola Asuh Orang Tua (variabel X) dengan Social Intelligence (variabel Y).
- 3. Hasil penelitian ini menunjukkan bahwa terdapat hubungan antara Pola Asuh Orang Tua dengan *Social Intelligence*. Dapat dikatakan bahwa semakin baik Pola Asuh Orang Tua yang diterapkan maka semakin tinggi pula tingkat *Social Intelligence* siswa. Sebaliknya apabila Pola Asuh Orang Tua yang diterapkan kurang baik maka semakin rendah pula tingkat

Social Intelligence siswa. Dari hasil perhitungan diperoleh hasil yang menyatakan bahwa kecerdasan sosial ditentukan oleh pola asuh orang tua sebesar 27,87%.

B. Implikasi

Berdasarkan penelitian yang dilakukan oleh peneliti, Pola asuh orang tua memberikan kontribusi positif dalam meningkatkan kecerdasan sosial pada anak. Implikasi yang diperoleh dari hasil penelitian ini dapat peneliti kemukakan, sebagai berikut:

- Pola asuh orang tua harus diperbaiki dan diperhatikan terutama dalam hal membimbing anaknya. Membimbing berarti orang tua dapat member petunjuk kepada anak, membina anak kearah yang lebih baik dan dapat berbicara dari hati ke hati.
- 2. Orang tua harus mendidik dan membimbing anaknya agar mendapatkan contoh-contoh yang baik. Misalnya, orang tua mengajak anaknya berdiskusi untuk mencari solusi atas suatu masalah atau bila ada suatu masalah tentang pelanggaran peraturan orang tua dapat menjelaskan kalau hal tersebut tidak baik.
- 3. Orang tua harus dapat memberi aturan kepada anak sesuai kebutuhan agar anak dapat terbiasa hidup lebih disiplin. Misalnya, orang tua harus menerapkan peraturan mengerjakan pekerjaan rumah sebelum dapat bermain atau membuat peraturan tentang tidak boleh pulang malam dan memberitahukan bahayanya. Atau member aturan tentang bagaimana harus bersikap sopan kepada orang lain.

C. Saran

Berdasarkan implikasi penelitian yang telah dikemukakan, peneliti memberikan saran yang diharapkan dapat menjadi masukan yang bermanfaat, yaitu sebagai berikut :

- Orang tua diharapkan dapat menjadi orang tua yang cerdas dan tepat dalam memilih dan menerapkan pola asuh yang digunakan, karena pola asuh orang tua yang baik akan membuat anak memiliki kecerdasan sosial yang baik nantinya.
- 2. Bagi tenaga pendidik, agar mampu memberikan perhatian dan motivasi kepada siswa untuk bisa membantu meningkatkan kecerdasan sosial bagi siswa-siswa yang terlihat penyendiri dan terlihat anti sosial. Dan untuk yang memang sudah terlihat cerdas secara sosial agar dapat diarahkan terus-menerus agar kecerdasan sosialnya dapat bermanfaat dan dapat selalu mengarah kearah yang positif.
- 3. Bagi peneliti lain yang ingin lebih mengetahui lebih mendalam mengenai Social Intelligence agar dapat meneliti berbagai faktor lain yang mempengaruhi Social Intelligence sehingga dapat memberikan sumbangsihnya untuk meningkat mutu di dunia pendidikan.
- 4. Siswa diharapkan dapat memantapkan pandangan bahwa *Social Intelligence* merupakan kecerdasan yang diperlukan untuk dapat membantu seseorang dapat sukses dan dapat bekerja bersama dengan orang lain. Karena, di manapun kita selalu harus berinteraksi dengan orang lain dan bekerja sama dengan orang lain.

DAFTAR PUSTAKA

- Albrecht, Karl. Social Intelligence: The New Science of Success. Jossey-Bass: San Fransisco. 2006
- Alfiasari, et al. "Pengasuhan Otoriter Berpotensi menurunkan Kecerdasan Sosial, Self Esteem dan Prestasi Akademik". Jurnal Ilmu Keluarga dan Konsumen.Januari 2011. Vol.4.No.1.h.45-56
- B.Brooks, Jane." The Process Of Parenting", Mayfield: United States. 2004
- Bar On, Revvan. Maurice J.Lias. Educating People To Be Emotianally Intelligent. Henemann Publisher: United Kingdom. 2007
- Bunda Fathi. Mendidik Anak dengan Al-Quran Sejak Janin. Grasindo:Jakarta. 2011.
- Dr.Tony Setiabudhi Ph.D, Dr. Hardywinoto. SKM. "Anak Unggul Berotak Prima". PT. Gramedia: Jakarta. 2003
- Florensia Ghozaly, Laura, Diah Krisnatuti dan Alfiasari. "Hubungan Teman Sebaya yang Berkualitas dan Pemanfaatan Media Massa Meningkatkan Kecerdasan Sosial Atlet Muda". Jurnal Ilmu keluarga dan konseling. 2012, Vol 5, no.1.h.29-37
- Garliah, Lili dan Fatma Kartika Sary Nasution. "Peran Pola Asuh Orang Tua Dalam Motivasi Berprestasi", Psikologia. Juni 2005, 1, hal. 38-47
- Goleman, Daniel. Social Intelligence. Gramedia Pustaka Utama: Jakarta. 2007.
- H. Zastrow. Charles, Karen Kay Kirst-Ashman. *Understanding Human Behavior in the Social Environment*. Cangage Learning: Belmont. 2010
- Ismi Wahid. *Benarkah Kecerdasan Anak Warisan Dari Orang Tua*.17 Maret 2013 http://www.tempo.co/read/news/2013/03/17/061467497/Benarkah-Kecerdasan-Anak-Warisan-dari-Orang-Tua.h.1. (Diakses 16 Desember 2013).
- Juchniewicz. Jay Allen. The Influence of Social Intelligence on Effective Music Teaching. Proquest. 2009
- Kauffman, Scott Barry and Robert J. Stenberg. *The Camridge Handbook Of Intelligence*. Camridge University Press:2011.
- Kermis, George and Marguerite Kermis. Professional Presence and Soft Skills: A Role for Accounting Education. Canisius College. Journal of Instructional Pedagogies. 2011, p. 1-10

- Ninnivagi, Frank John. *Biomental Child Development*. Rownan & Littlefield:United Kingdom. 2013
- Pramawaty, Nisha dan Elis Hartati. "Hubungan Pola Asuh Orang Tua Dengan Konsep Diri Anak Usia Sekolah (10-12 Tahun)", Nursing Studies. 2012, 1, hal. 88
- Rahim, M. Afzalur. *Social Intelligence, Leadership, and Problem Solving*. Transaction Publisher:New Jersey.vol.16. 2013
- Rutter, Sir Michael, et al. Rutters Child and Adolescent Psychiatry. Library of Congress Cataloging:Massachusete. 2008
- S. Leidy, Melinda et.al. Positive Parenting, Family Cohesion, and Child Social Competence Among Immigrant Latino Families. American Phsychological Association:USA. 2010, vol.24, no.3. p.252-260
- Saptono, L dan F.X. Muhadi. "Pengaruh Keluarga dan Bakat Kewirausahaan Pada Hubungan Antara Pelaksanaan Pendidikan dan Pelatihan dengan Kecerdasan Emosional Siswa Berwirausaha", Widya Dharma. Oktober, 2006, 1
- Shochib, Moh. Pola Asuh Orang Tua.PT RINEKA CIPTA: Jakarta. 2000. h.15
- Sugiyono, Metode Penelitian Pendidikan. Bandung: Alfabeta, 2010
- Sunderland, Margot. *The Science of Parenting*. DK Publishing: United States. 2006. h.219
- Suresh, K. Social Intelligence of Student Teachers. Discovery Publishing House: New Delhi. 2009
- Suwoyo, et al. "Pengaruh Lingkungan Keluarga dengan Kecerdasan Interpersonal Anak Usia 1-3 Tahun di Desa Badal Pandean Kecamatan Ngadiluwih Kabupaten Kediri". Jurnal Penelitian Kesehatan Suara Forikes, Oktober 2012.vol.3.no.4, h.188-194
- T.Cacioppo, John et. al. *Foundation In Social Neuroscience*. Library Of Congress Cataloging:Massachussetts.2002
- Thakur, Ruhi, et al. "A Study of Himachal Pradesh: Parenting Style and Social Intelligence of Adolescent". Indian Journal Of Applied Research. September 2012.vol.3, h.556-557
- Winarno, Jacinta." EMOTIONAL INTELEGENCE SEBAGAI SALAH SATU FAKTOR PENUNJANG PRESTASI KERJA". Jurnal Manajemen, November 2008, Vol.8, No.1.h.12-19
- W.Santrock, John. Adolescene Perkembangan Remaja. Erlangga: Jakarta. 2003

- W. Sarwono, Sarlito. Pengantar Psikologi Umum. Raja
Grafindo persada: Jakarta. $2010\,$
- Yahyazadeh-Jeloudar, Soleiman and Fatemeh Lotfi-Goodarzi. *The Relationship between Social Intelligence and Job Satisfactionamong MA and BA Teachers*. Int J Edu Sci, 4(3): 209-213 (2012)

LAMPIRAN-LAMPIRAN

Surat Permohonan Izin Penelitian Di SMK N 22

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS NEGERI JAKARTA

Kampus Universitas Negeri Jakarta, Jalan Rawamangun Muka, Jakarta 13220 Telp./Fax. : Rektor : (021) 4893854, PR I: 4895130, PR II : 4893918, PR III : 4892926, PR IV : 4893982, BAUK : 4750930, BAAK : 4759081, BAPSI : 4752180 Bag. UHTP: Telp. 4893726, Bag. Keuangan: 4892414, Bag. Kepegawaian: 4890536, HUMAS: 4898486 Laman: www.unj.ac.id

Nomor

: 3106/UN39.12/LT/2013

16 Desember 2013

Lamp.

Hal Permohonan Izin Penelitian untuk Skripsi

Yth. Kepala SMK Negeri 22 Jakarta

Kami mohon kesediaan Saudara, untuk dapat menerima Mahasiswa Universitas Negeri Jakarta:

Nama

Astrid Tri Wahyuli

Nomor Registrasi Program Studi

8155078187 Pendidikan Akuntansi

Fakultas

Ekonomi

Untuk Mengadakan

Penelitian untuk Skripsi

SMK Negeri 22 Jakarta,

Jl. Raya Condet, Pasar Rebo, Jakarta Timur 13760

Guna mendapatkan data yang diperlukan dalam rangka Penulisan Skripsi dengan judul: "Hubungan Antara Pola Asuh Orang Tua Dengan Social Intelligence Siswa Kelas XI SMK Negeri 22 Jakarta Jurusan Akuntansi"

Atas perhatian dan kerjasama Saudara, kami sampaikan terima kasih.

Kepala Biro Administrasi Akademik dan Kemahasiswaan,

Tembusan:

1. Dekan Fakultas Ekonomi

2. Kaprog / Jurusan Ekonomi dan Administrasi

Syaifullah 195702161984031001

Surat Keterangan Melakukan Penelitian Di SMK N 22

PEMERINTAH PROVINSI DAERAH KHUSUS IBUKOTA JAKARTA

DINAS PENDIDIKAN MENENGAH

SMK NEGERI 22 JAKARTA

BIDANG KEAHLIAN BISNIS DAN MANAJEMEN & TEKNOLOGI INFORMASI DAN KOMUNIKASI
JI, Raya Condet, Pasar Rebo, Jakarta Timur 13760 Telp. 8400901 Fax. 8416003

http://www.smkn22-jkt.sch.id email: info@smkn22-jkt.sch.id

SURAT KETERANGAN

No: 012/I.851.7

Yang bertanda tangan di bawah ini Kepala SMK Negeri 22 Jakarta, menerangkan bahwa :

Nama Mahasiswa : ASTRID TRI WAHYULI

Nomor Registrasi

Program Studi

: 8155078187 : Pendidikan Akuntansi

Fakultas

Jenjang

Perguruan Tinggi

: (S1) Strata Satu : Universitas Negeri Jakarta

adalah benar bahwa yang namanya tersebut di atas telah mengadakan penelitian di SMK Negeri 22 Jakarta untuk menyusun skripsi dengan judul "Hubungan Antara Pola Asuh Orang Tua dengan Social Intellegence Siswa Kelas XI SMK Negeri 22 Jakarta Jurusan Akuntansi".

Demikian surat keterangan ini dibuat dengan sebenarnya agar dapat dipergunakan sebagaimana mestinya.

Jakarta, 21 Januari 2014

Repala Sekolah

Eko Wahyu Wibowo NIP. 19700109 199502 1 001

ISOQAR Certificate No. 9434 ISO 9001-2008

Kuesioner Pola Asuh Orang Tua Sebelum Uji Coba

•	\mathbf{n}	1 4	T	
•	K16	งสถา	Pan	MICI
1.	DК	odata		וכוצו
			. –	

Nama :	
Jenis kelamin:	

Kelas:

II. Petunjuk Pengisian

- 1. Sebelum mengisi pernyataan di kuesioner, saya mohon kesediaan para siswa untuk membaca terlebih dahulu petunjuk pengisian
- 2. Mengisi biodata responden kuesioner dengan lengkap
- 3. Pilih salah satu jawaban yang paling sesuai dengan keadaan yang sebenarnya pada diri Anda untuk setiap pernyataan di kuesioner, kemudian beri tanda ceklist (v) pada kolom pilihan yang tersedia
- 4. KeteranganPilihan

Selalu

Sering

Kadang-kadang

Jarang

No.	Pernyataan	Selalu	Sering	Jarang	kadang- kadang	Tidak pernah
1	Jika saya mengecewakan orang tua, mereka mengeluarkan kata- kata yang menyakitkan hati					
2	Jika nilai di sekolah menurun, orang tua mengancam tidak					

	memberikan uang saku			
3	Jika saya melakukan kesalahan orang tua saya langsung memarahi saya tanpa mau tahu permasalahan sebenarnya			
4	Orang tua menasehati saya apabila saya melakukan pelanggaran			
5	Apabila saya berprestasi, orang tua saya memberikan pujian atau hadiah			
6	Orang tua saya menghargai pendapat saya			
7	Jika saya bersalah, orang tua saya mengajarkan saya untuk meminta maaf			
8	Orang tua tidak melarang saya untuk berteman dengan siapa saja selama masih dalam batas yang wajar			
9	Orang tua saya memberi saya kepercayaan untuk menentukan sendiri cita-cita saya dengan memberi beberapa masukan			

10	Apabila ada masalah, orang tua saya akan mengajak saya berdiskusi dan orang tua saya membantu mencari solusinya			
11	Orang tua saya mengajarkan saya untuk taat beribadah			
12	Orang tua saya selalu mengusahakan meluangkan waktu untuk berkumpul dan makan bersama			
13	Orang tua saya tidak pernah mengajarkan atau menyuruh saya mengerjakan pekerjaan rumah			
14	Orang tua saya tidak marah apabila saya pulang malam dan tidak pernah menanyakan alasannya			
15	Orang tua saya selalu memenuhi kebutuhan saya dan apa yang saya inginkan tanpa melihat dampak dari pemenuhan kebutuhan tersebut			
16	Orang tua saya memberikan penjelasan kepada saya, apabila saya dilarang melakukan sesuatu			

17	Orang tua saya tidak memberikan waktu untuk bermain jika saya belum selesai mengerjakan PR			
18	Saya selalu mendapat dukungan dalam setiap kegiatan positif yang saya lakukan			
19	Orangtua memberikan penjelasan kepada saya tentang efek dari melakukan hal yang tidak baik			
20	Orangtua memberi pengertian kepada saya jika teman-teman yang main ke rumah bersikap tidak sopan			
21	Orang tua saya mencontohkan perbuatan-perbuatan yang baik kepada saya			
22	Orang tua saya memberikan peraturan pada saya dan memberikan alasan mengapa saya harus mematuhinya			
23	Ketika saya melakukan kesalahan, orang tua saya memberitahu saya kalau itu hal yang salah			
24	Jika saya tidak mengerjakan tugas sekolah, maka orang tua saya akan			

	menanyakannya terlebih dulu sebelum			
	memberi hukuman			
25	Orang tua saya mendisiplinkan dalam segala hal			
26	Orang tua saya memberitahu perbuatan yang tidak boleh dilakukan tanpa memberikan alasannya			
27	Orang tua saya memberikan bimbingan dengan penuh perhatian			
28	Bila saya melanggar peraturan dirumah, orang tua saya memberikan hukuman yang sesuai agar saya tidak mengulanginya lagi			
29	Orang tua saya tidak pernah menghukum saya dengan menggunakan kata- kata kasar			
30	Orang tua saya mengetahui pelajaran yang kurang dimengerti oleh saya, karena orang tua saya selalu membimbing saya			

31	Bila ada seseorang yang melanggar aturan, orang tua saya menjelaskan kalau hal tersebut perbuatan yang salah kepada saya			
32	Masalah di dalam keluarga saya diselesaikan bersama semua anggota keluarga			
33	Orang tua saya berbicara dulu dari hati ke hati sebelum memberikan saya kebebasan untuk memilih apa yang saya inginkan			
34	Orang tua saya tidak pernah membimbing saya apabila saya kesulitan dengan tugas sekolah			
35	Orang tua saya selalu menuntut dan memaksakan kehendaknya kepada saya			
36	Saya senang orang tua saya biasanya mengajak saya bertukar pikiran bila ada masalah yang sedang saya hadapi			
37	Orang tua saya tidak menuntut hal-hal yang berlebihan, mereka bisa memahami apa			

	yang saya inginkan			
38	Orang tua saya tidak pernah menghukum saya apabila saya berbuat salah			
39	Orang tua saya tidak peduli tentang masalah yang sedang saya hadapi			
40	Orang tua saya selalu memberikan peringatan apabila saya berbuat salah			

Kuesioner Social Intelligence Sebelum Uji Coba

Nama :
Jenis kelamin :

Kelas:

II. Petunjuk Pengisian

- 1. Sebelum mengisi pernyataan di kuesioner, saya mohon kesediaan para siswa untuk membaca terlebih dahulu petunjuk pengisian
- 2. Mengisi biodata responden kuesioner dengan lengkap
- 3. Pilih salah satu jawaban yang paling sesuai dengan keadaan yang sebenarnya pada diri Anda untuk setiap pernyataan di kuesioner, kemudian beri tanda ceklist (v) pada kolom pilihan yang tersedia
- 4. KeteranganPilihan

Selalu

Sering

Kadang-kadang

Jarang

No	Pertanyaan	Selalu	Sering	Jarang	Kadang -kadang	Tidak Pernah
1	Saya kurang bisa memahami teman- teman saya					
2	Saya agak sulit menyesuaikan diri dengan lingkungan sosial					
3	Saya merasa sungkan untuk					

	berada di lingkungan baru			
4	Saya senang berinteraksi dengan orang banyak			
5	Saya merasa memiliki kemampuan untuk berhubungan dengan orang-orang			
6	Saya mudah memahami perasaan orang-orang			
7	Saya bisa berhubungan sosial dengan orang lain secara baik			
8	Saya mampu menangani konflik yang terjadi dalam kehidupan sosial saya			
9	Saya memiliki teman-teman yang mendukung saya			
10	Saya sering menjadi tempat berkeluh kesah (curhat) bagi teman-teman saya			
11	Saya memahami bagaimana cara menciptakan dan menjalin hubungan sosial			
12	Saya berusaha bersifat asertif untuk			

	mengungkapkan pendapat saya			
13	Saya sungkan untuk mengatakan "tidak" pada orang lain jika mereka meminta sesuatu yang sebenanrnya sulit bagi saya			
14	Saya berusaha melihat perspektif orang lain berdasarkan sudut pandang orang tersebut			
15	Saya merasa teman- teman banyak yang membutuhkan saya			
16	Jika saya tidak ada, teman-teman banyak yang mencari tahu keadaan saya			
17	Saya suka berada dalam lingkungan sosial yang baru			
18	Saya jarang terlibat konflik dengan teman-teman / orang-orang di dalam lingkungan sosial			
19	Jika berhadapan dengan konflik interpersonal, maka saya berusaha memahaminya dari perspektif orang			

	tersebut			
20	Saya mampu mencairkan suasana yang kaku dalam pergaulan sosial			
	yang saya temui			
21	Menurut teman- teman, saya orang yang menyenangkan			
22	Menurut teman- teman, saya merupakan orang yang memiliki sikap empati terhadap orang lain			
23	Menurut teman- teman, saya adalah orang yang memahami penderitaan orang lain			
24	Menurut teman- teman saya, saya adalah seorang pendengar yang efektif			
25	Menurut teman- teman, saya adalah orang yang mampu memotivasi orang lain			
26	Saya banyak mengalami konflik dengan orang lain			

27	Saya selalu berusaha untuk memperoleh keuntungan pribadi dalam setiap situasi interpersonal			
28	Saya selalu berusaha mempengaruhi pendapat orang lain			
29	Saya suka mengkritik pendapat orang lain untuk kepuasan hati			
30	Saya tidak yakin apakah orang-orang menyukai saya			

Kuesioner Pola Asuh Orang Tua Setelah Uji Coba

•	ъ.	1 4	T.	
١.	Kıa	odata	Pen	gisi
		,		

Nama:	
Jenis kelamin:	
Kelas:	

II. Petunjuk Pengisian

- 1. Sebelum mengisi pernyataan di kuesioner, saya mohon kesediaan para siswa untuk membaca terlebih dahulu petunjuk pengisian
- 2. Mengisi biodata responden kuesioner dengan lengkap
- 3. Pilih salah satu jawaban yang paling sesuai dengan keadaan yang sebenarnya pada diri Anda untuk setiap pernyataan di kuesioner, kemudian beri tanda ceklist (v) pada kolom pilihan yang tersedia
- 4. KeteranganPilihan

Selalu

Sering

Kadang-kadang

Jarang

No.	Pernyataan	Selalu	Sering	Jaran g	kadang- kadang	Tidak pernah
1	Jika saya mengecewakan orang tua, mereka mengeluarkan kata- kata yang menyakitkan hati					
2	Jika nilai di sekolah menurun, orang tua mengancam tidak					

			I	I	ı
	memberikan uang				
	saku				
	Jika saya melakukan				
	kesalahan orang tua				
	saya langsung				
3	memarahi saya tanpa				
	mau tahu				
	permasalahan				
	sebenarnya				
	seconarya				
	Orang tua menasehati				
4	saya apabila saya				
4	melakukan				
	pelanggaran				
	Apabila saya				
5	berprestasi, orang tua				
	saya memberikan				
	pujian atau hadiah				
	Owen a true corre				
	Orang tua saya				
6	menghargai pendapat				
	saya				
	Jika saya bersalah,				
_	orang tua saya				
7	mengajarkan saya				
	untuk meminta maaf				
	Orang tua tidak				
	melarang saya untuk				
8	berteman dengan siapa				
O	saja selama masih				
	dalam batas yang				
	wajar				
	Orang tua saya				
	memberi saya				
9	kepercayaan untuk				
	menentukan sendiri				
	cita-cita saya dengan				
	memberi beberapa				

	masukan.			
10	Apabila ada masalah, orang tua saya akan mengajak saya berdiskusi dan orang tua saya membantu mencari solusinya			
11	Orang tua saya selalu mengusahakan meluangkan waktu untuk berkumpul dan makan bersama			
12	Orang tua saya tidak pernah mengajarkan atau menyuruh saya mengerjakan pekerjaan rumah			
13	Orang tua saya selalu memenuhi kebutuhan saya dan apa yang saya inginkan tanpa melihat dampak dari pemenuhan kebutuhan tersebut			
14	Orang tua saya memberikan penjelasan kepada saya, apabila saya dilarang melakukansesuatu			
15	Orang tua saya tidak memberikan waktu untuk bermain jika saya belum selesai mengerjakan PR			

16	Saya selalu mendapat dukungan dalam setiap kegiatan positif yang saya lakukan			
17	Orangtua memberikan penjelasan kepada saya tentang efek dari melakukan hal yang tidak baik			
18	Orangtua memberi pengertian kepada saya jika teman- teman yang main ke rumah bersikap tidak sopan			
19	Orang tua saya mencontohkan perbuatan-perbuatan yang baik kepada saya			
20	Orang tua saya memberikan peraturan pada saya dan memberikan alasan mengapa saya harus mematuhinya			
21	Ketika saya melakukan kesalahan, orang tua saya memberitahu saya kalau itu hal yang salah			
22	Orang tua saya mendisiplinkan dalam segala hal			
23	Orang tua saya memberikan bimbingan dengan			

	penuh perhatian			
24	Orang tua saya mengetahui pelajaran yang kurang dimengerti oleh saya, karena orang tua saya selalu membimbing saya			
25	Bila ada seseorang yang melanggar aturan, orang tua saya menjelaskan kalau hal tersebut perbuatan yang salah kepada saya			
26	Masalah di dalam keluarga saya diselesaikan bersama semua anggota keluarga			
27	Orang tua saya berbicara dulu dari hati ke hati sebelum memberikan saya kebebasan untuk memilih apa yang saya inginkan			
28	Orang tua saya tidak pernah membimbing saya apabila saya kesulitan dengan tugas sekolah			
29	Saya senang orang tua saya biasanya mengajak saya bertukar pikiran bila ada masalah yang			

	sedang saya hadapi			
30	Orang tua saya tidak menuntut hal-hal yang berlebihan, mereka bisa memahami apa yang saya inginkan			
31	Orang tua saya tidak peduli tentang masalah yang sedang saya hadapi			
32	Orang tua saya selalu memberikan peringatan apabila saya berbuat salah			

Kuesioner Social Intelligence Setelah Uji Coba

I. Biodata Pengis	i
-------------------	---

Nama:	
Jenis kelamin:	
Kelas:	

II. Petunjuk Pengisian

- 1. Sebelum mengisi pernyataan di kuesioner, saya mohon kesediaan para siswa untuk membaca terlebih dahulu petunjuk pengisian
- 2. Mengisi biodata responden kuesioner dengan lengkap
- 3. Pilih salah satu jawaban yang paling sesuai dengan keadaan yang sebenarnya pada diri Anda untuk setiap pernyataan di kuesioner, kemudian beri tanda ceklist (v) pada kolom pilihan yang tersedia
- 4. KeteranganPilihan

Selalu

Sering

Kadang-kadang

Jarang

No	Pertanyaan	Selalu	Sering	Jarang	Kadang -kadang	Tidak Pernah
1	Saya kurang bisa memahami teman- teman saya					
2	Saya agak sulit menyesuaikan diri dengan lingkungan sosial					
3	Saya merasa sungkan untuk					

	berada di lingkungan baru			
4	Saya senang berinteraksi dengan orang banyak			
5	Saya merasa memiliki kemampuan untuk berhubungan dengan orang-orang			
6	Saya mudah memahami perasaan orang-orang			
7	Saya bisa berhubungan sosial dengan orang lain secara baik			
8	Saya mampu menangani konflik yang terjadi dalam kehidupan sosial saya			
9	Saya memiliki teman-teman yang mendukung saya			
10	Saya memahami bagaimana cara menciptakan dan menjalin hubungan sosial			
11	Saya berusaha bersifat asertif untuk mengungkapkan pendapat saya			

12	Saya berusaha melihat perspektif orang lain berdasarkan sudut pandang orang tersebut Saya merasa teman-				
	teman banyak yang membutuhkan saya				
14	Jika saya tidak ada, teman-teman banyak yang mencari tahu keadaan saya				
15	Saya suka berada dalam lingkungan sosial yang baru				
16	Saya jarang terlibat konflik dengan teman-teman / orang-orang di dalam lingkungan sosial				
17	Jika berhadapan dengan konflik interpersonal, maka saya berusaha memahaminya dari perspektif orang tersebut				
18	Saya mampu mencairkan suasana yang kaku dalam pergaulan sosial yang saya temui		_	_	
19	Menurut teman- teman, saya orang yang menyenangkan				

	T = -	1	T		T
20	Menurut teman- teman, saya merupakan orang yang memiliki sikap empati terhadap orang lain				
21	Menurut teman- teman, saya adalah orang yang memahami penderitaan orang lain				
22	Menurut teman- teman, saya adalah orang yang mampu memotivasi orang lain				
23	Saya banyak mengalami konflik dengan orang lain				
24	Saya selalu berusaha untuk memperoleh keuntungan pribadi dalam setiap situasi interpersonal				
25	Saya suka mengkritik pendapat orang lain untuk kepuasan hati				
26	Saya tidak yakin apakah orang-orang menyukai saya				

Lampiran 7 Uji Validitas Untuk Variabel Pola Asuh Orang Tua (X)

																			Uji	Coba	Inst	rume	n Va	riabe	X																	
																				Pola	Asu	h Or	ang '	Tua																		
No.																			But	ir Pe	rnya	taan																			X total	X total ²
Resp.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40		
1	5	5	5	5	5	5	5	5	5	5	5	4	3	5	5	5	2	5	5	5	5	5	5	3	5	3	4	4	5	3	5	5	5	5	5	4	5	3	5	5	183	33489
2	2	5	2	4	5	2	4	4	4	2	5	5	5	5	1	5	1	5	5	5	5	5	5	1	5	4	4	3	5	3	5	5	2	3	5	3	5	5	4	5	158	24964
3	4	5	3	5	2	5	5	4	5	2	2	2	5	5	3	5	5	5	5	5	4	5	5	4	2	4	4	5	3	2	5	5	4	2	5	2	5	5	4	5	162	26244
4	3	5	3	4	2	5	3	4	4	2	5	3	3	5	4	2	3	5	4	3	4	1	3	3	1	3	4	3	3	2	3	1	3	3	3	3	3	4	5	3	130	16900
5	2	3	2	5	3	3	5	5	5	3	5	1	2	5	1	5	1	5	3	3	5	3	3	3	5	2	2	3	4	3	5	2	5	3	5	3	2	5	3	3	136	18496
6	4	2	5	5	5	3	5	5	5	5	5	3	4	4	4	5	2	5	5	5	5	5	5	3	5	1	5	2	3	3	5	5	5	4	4	5	5	4	3	5	168	28224
7	5	5	5	5	3	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	3	5	1	5	4	2	5	5	5	5	2	5	5	5	3	5	5	183	33489
8	3	2	3	5	3	3	5	5	5	5	5	3	5	5	3	5	3	5	5	5	5	5	4	5	5	3	2	2	3	3	5	3	5	3	3	3	3	5	3	3	156	24336
9	1	5	3	5	3	3	5	5	3	3	5	5	3	5	3	5	3	5	5	3	5	5	5	3	5	3	5	1	1	5	3	3	3	5	3	3	3	5	5	5	154	23716
10	4	3	2	4	2	2	5	5	4	4	5	2	5	3	3	5	1	5	5	5	4	4	5	1	2	3	2	1	5	5	3	2	5	5	3	3	4	3	5	5	144	20736
11	5	3	5	5	5	4	5	5	5	5	5	4	5	4	4	4	5	5	5	5	5	4	5	2	5	5	5	5	2	2	4	2	5	3	5	4	5	4	5	5	175	30625
12	4	4	4	5	4	2	4	5	5	4	4	5	4	4	4	4	4	4	4	4	5	4	5	4	4	4	1	4	4	2	4	4	2	4	4	2	4	4	4	4	155	24025
13	2	5	3	5	5	5	5	5	5	4	5	4	3	5	5	5	4	5	5	5	5	5	5	4	5	3	5	4	3	4	5	4	5	5	5	3	5	5	5	5	180	32400
14	3	5	4	5	2	3	5	3	3	4	5	4	2	5	4	5	4	5	5	3	5	4	5	3	4	3	4	4	3	2	5	5	5	5	3	4	3	4	5	4	159	25281
15	3	5	5	5	5	4	5	5	5	3	5	2	5	5	3	5	3	5	5	4	5	5	4	2	5	5	5	3	5	3	4	2	4	5	3	4	2	5	3	2	163	26569
16	3	4	3	3	3	2	5	5	5	2	5	3	3	5	2	4	3	5	5	4	5	5	5	2	5	4	3	2	3	3	4	4	3	3	3	1	3	4	3	4	143	20449
17	4	3	4	5	2	4	5	5	5	2	5	3	3	4	4	4	3	5	3	4	5	1	4	1	4	1	5	3	1	5	4	2	4	4	5	2	5	4	4	3	144	20736
18	4	5	4	5	2	4	4	4	5	3	4	4	2	3	4	5	1	2	4	2	4	2	5	3	2	4	2	3	3	3	2	2	3	3	5	1	5	4	3	4	134	17956
19	5	5	5	5	5	4	5	5	5	5	5	2	5	3	5	5	5	5	5	5	5	5	5	1	5	5	5	1	5	3	5	4	5	5	5	5	5	5	5	5	183	33489
20	2	3	1	3	1	1	4	3	1	1	4	1	2	5	3	2	2	1	4	4	3	2	4	2	4	2	1	4	5	1	1	4	3	2	5	1	3	5	1	3	104	10816
21	3	2	1	4	2	2	4	4	2	1	5	1	3	5	4	4	2	4	5	5	5	5	2	4	4	2	5	2	4	2	4	3	4	3	2	1	2	5	1	3	126	15876
22	3	5	4	5	5	2	5	5	5	3	5	5	5	5	4	5	5	5	5	5	5	5	5	5	5	4	5	5	4	4	5	5	5	5	5	2	4	5	5	5	184	33856
23	5	5	5	5	2	5	5	5	5	5	5	2	5	3	5	5	4	5	5	2	5	3	5	2	5	5	5	4	1	4	5	2	5	5	5	4	5	5	5	5	173	29929
24	3	5	3	5	2	5	5	5	5	2	5	2	3	3	3	5	3	5	5	5	5	5	5	2	2	2	2	2	1	2	4	4	2	2	4	2	5	4	4	4	142	20164
25	3	3	2	5	5	3	5	5	5	3	5	5	5	5	3	3	3	5	5	5	5	5	5	3	5	3	5	5	3	3	3	5	3	5	3	3	3	5	5	5	165	27225
26	3	5	3	4	2	5	5	5	5	3	5	2	5	5	5	4	5	5	5	5	4	5	4	5	4	3	3	3	3	3	5	5	4	5	3	4	3	4	5	4	165	27225
27	2	4	5	4	5	2	5	5	5	4	5	5	5	4	2	4	4	5	5	4	5	5	5	4	4	4	5	4	4	4	2	4	4	2	3	3	4	3	3	5	161	25921
28	2	5	3	5	4	3	5	5	5	4	5	4	5	4	4	4	5	5	5	4	5	2	5	2	4	4	5	4	5	4	2	4	4	2	3	5	2	3	3	5	159	25281
29	5	5	3	5	2	4	5	4	5	3	5	4	5	5	5	5	3	2	5	5	5	5	5	5	5	3	5	5	1	5	5	3	4	5	3	3	4	3	4	5	168	28224
30	3	3	4	4	4	4	5	5	5	5	5	3	5	3	5	4	2	4	4	3	3	4	5	2	5	2	4	3	4	2	4	3	4	5	5	5	2	3	5	4	154	23716
ΣΧ	100	124	104	139	100	104	143	140	136	102	144	98	120	132	110	133	96	137	141	127	141	124	138	87	126	95	117	98	98	95	121	107	120	113	120	93	114	126	120	128	4711	750357
ΣX^2	370	548	404	655	388	404	689	664	646	394	702	372	520	600	442	611	360	657	673	565	673	562	652	297	570	341	511	364	374	337	527	427	510	469	510	335	472	548	520	570		
r _{hitung}	0.419	0.375	0.659	0.574	0.635	0.412	0.581	0.495	0.621	0.686	0.187	0.483	0.592	0.010	0.437	0.538	0.574	0.494	0.534	0.364	0.492	0.540	0.568	0.189	0.502	0.317	0.589	0.311	-0.096	0.399	0.604	0.408	0.504	0.435	0.238	0.626	0.430	-0.113	0.649	0.640		
r _{tabel}	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361	0.361		
Ket.	Valid	Drop	Valid	Valid	Drop	Valid	Drop	Valid	Drop	Valid	Drop	Drop	Valid	Valid	Valid	Valid	Valid	Drop	Valid	Valid	Drop	Valid	Valid		, 7																	

]	Langkah-langkah Perhitungan Uji Validitas Disertai Contoh untuk Nomor Butir 1	
		Variabel X (Pola Asuh Orang Tua)	
l.	$Kolom \Sigma X_t$	= Jumlah skor total = 4711	
2.	$Kolom \Sigma X_t^2$	= Jumlah kuadrat skor total = 750357	
	2	$(\Sigma X)^2$ 4711 ²	
3.	Kolom Σx_t^2	$= \sum X_t^2 - \frac{(\sum X_t)^2}{n} = 750357 - \frac{4711^2}{30} = 10572.97$	
	KolomΣX	= Jumlah skor tiap butir = 100	
٠.	KOIOIII ZA	- Julian skol tap butil - 100	
_	TT 1 2	Turnish love dust shouting hostin	
).	$Kolom \Sigma X^2$	= Jumlah kuadrat skor tiap butir	
		$= 5^2 + 2^2 + 4^2 + \dots + 3^2$	
		= 370	
	2	$(\Sigma X)^2$ 270 100^2 26.67	
Э.	$Kolom \Sigma x^2$	$= \Sigma X^2 - \frac{(\Sigma X)^2}{n} = 370 - \frac{100^2}{30} = 36.67$	
7	Kolom VV V	= Jumlah hasil kali skor tiap butir dengan skor total yang	
•	KOOM 27.74		
		berpasangan (5 – 192) + (2 – 152) + (4 – 162) + (4 – 154)	
		$= (5 \times 183) + (2 \times 158) + (4 \times 162) + \dots + (4 \times 154)$	
		= 15964	
		777 777	
3.	Kolom Σx.x _t	$= \sum X.X_{t} - \frac{(\sum X)(\sum X_{t})}{n} = 15964 - \frac{100 \times 4711}{30}$	
	·		
		= 260.67	
		$\Sigma x.x_t$ 260.67	
).	Kolom r _{hitung}	$=\sqrt{\sum x^2 \cdot \sum xt^2} = \sqrt{36.67 \cdot 10572.97} = 0.419$	
		$\sqrt{\Sigma x^2.\Sigma xt^2} \sqrt{36.67.10572.97}$	
		dalah 0,361 atau lebih, kurang dari 0,361 dinyatakan drop.	_

Lampiran 8 Uji Validitas Untuk Variabel Social Intelligence (Y)

													Uji C		nstrı erda			iabel 1	Y													
														IXC	CI GG	San C	0314															
No.														But	ir Pe	rnya	taan														Y total	Y total ²
Resp.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30		
1	2	2	1	2	3	1	3	2	3	3	1	2	3	2	2	2	1	1	2	2	3	2	1	3	2	4	4	1	2	2	64	4096
2	3	3	3	4	3	1	4	2	2	4	3	0	4	1	1	3	1	2	3	1	2	1	3	3	3	3	0	0	4	4	71	5041
3	2	4	4	3	4	2	3	2	3	1	4	2	2	0	2	2	2	1	2	2	3	2	2	3	3	3	2	1	3	2	71	5041
4	1	0	0	1	1	1	3	3	1	3	1	3	3	3	1	2	2	1	1	2	2	1	1	1	2	1	2	2	2	0	47	2209
5	3	2	3	2	2	1	4	3	2	4	1	2	1	1	3	4	2	1	2	4	4	2	4	4	3	3	4	0	4	2	77	5929
6	2	2	2	3	1	3	2	2	3	3	1	2	2	2	2	3	2	2	2	1	3	2	2	3	2	2	0	2	2	2	62	3844
7	4	2	4	4	4	3	3	3	4	3	4	3	2	3	2	1	4	1	3	4	2	2	1	3	2	2	2	3	2	1	81	6561
8	4	2	2	4	4	3	3	4	4	3	3	4	2	4	4	4	4	4	4	3	4	3	3	3	3	4	4	0	4	2	99	9801
9	3	3	2	3	1	1	4	3	4	3	4	1	4	3	3	1	1	1	3	1	4	4	3	4	1	3	3	0	4	4	79	6241
10	4	4	4	4	4	4	4	4	2	4	4	4	1	4	4	4	4	4	4	4	4	1	4	4	3	4	2	0	4	4	105	11025
11	2	4	3	4	4	3	4	4	4	3	4	3	4	2	4	4	4	4	3	2	4	4	4	3	4	4	4	2	4	4	106	11236
12	2	2	2	4	2	2	2	1	4	4	4	4	4	2	1	4	4	2	2	3	2	2	4	4	2	2	2	0	4	2	79	6241
13	3	2	2	4	2	3	3	3	4	4	3	2	2	2	2	4	2	4	4	4	3	4	2	4	4	0	2	2	2	2	84	7056
14	2	2	2	4	3	4	4	2	2	4	3	3	2	2	2	2	2	2	3	3	4	3	4	4	3	2	2	2	2	2	81	6561
15	2	4	2	1	2	2	3	3	4	3	3	4	2	2	3	3	2	4	4	4	4	3	3	4	4	2	0	4	2	2	85	7225
16	3	2	2	4	3	3	3	3	4	3	3	3	3	3	1	3	3	3	3	4	3	3	3	1	3	3	3	1	3	1	83	6889
17	1	2	2	4	3	3	3	2	4	4	4	4	3	3	3	4	2	3	3	3	3	3	3	3	3	4	4	0	4	3	90	8100
18	2	3	2	4	2	1	3	2	4	3	2	1	2	3	2	4	3	2	1	4	2	4	4	3	4	2	3	1	2	2	77	5929
19	2	2	2	2	4	4	3	3	4	3	3	3	2	3	2	4	1	1	4	3	3	3	3	4	3	3	2	3	1	2	82	6724
20	2	4	2	3	3	2	3	2	4	4	3	2	2	0	3	4	1	1	1	3	4	4	3	2	3	3	4	1	2	2	77	5929
21	3	2	2	4	3	1	2	1	4	2	2	2	3	4	3	2	1	0	3	2	4	3	3	2	3	3	2	2	4	2	74	5476
22	3	3	2	4	4	3	4	3	4	3	3	3	3	4	3	3	3	1	1	3	4	3	3	3	3	3	3	1	4	3	90	8100
23	2	2	2	4	4	4	4	4	4	4	4	3	2	4	3	4	4	1	2	3	4	4	4	3	3	4	4	0	4	4	98	9604
24	3	2	2	1	3	2	3	1	4	4	1	3	4	1	2	1	1	3	3	2	1	2	4	4	2	3	2	0	4	2	70	4900
25	2	3	1	3	3	4	3	1	2	1	1	3	3	1	1	2	4	3	1	3	4	4	4	4	4	4	3	0	2	2	76	5776
26	3	2	1	3	1	3	3	1	4	4	1	3	1	1	3	4	2	2	3	1	3	3	1	3	1	2	2	0	4	2	67	4489
27	2	4	4	4	4	2	4	4	4	4	1	2	2	3	2	1	4	1	3	3	1	1	2	3	3	0	2	2	2	0	74	5476
28	2	2	2	3	2	2	0	4	3	2	1	1	2	2	2	1	2	2	2	1	3	1	3	2	1	3	3	2	2	2	60	3600
29	2	4	4	4	2	2	2	2	4	4	2	4	2	3	2	2	4	2	2	2	2	2	2	2	1	4	4	0	2	4	78	6084
30	1	1	0	3	3	1	3	1	3	3	1	1	3	1	2	2	2	2	1	1	3	1	1	3	1	2	1	1	2	2	52	2704
ΣYi	72	76	66	97	84	71	92	75	102		75	77	75	69	70	84	74	61	75	78		77	84	92	79	82	75	33	87	68	2339	187887
ΣYi ²	192	222	178		-			_	_	335		231		199		274	222			236				304	235	260	231	73	283	188		
r _{hitung}	0.431	0.475		0.490	-	0.580	0.438				0.717	0.507	-0.090	0.450	0.626	0.514	0.500	0.455							0.546	0.422	0.378	-0.120	0.430	0.519		
r _{tabel}	0.361 Valid	0.361	0.361 Valid	0.361	-	-	0.361 Valid		-		0.361	0.361 Volid	0.361	0.361	0.361	0.361 Volid		0.361						0.361	0.361 Volid	0.361	0.361	0.361 Drop	0.361 Valid			
Ket.	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Drop	Valid	Valid	₽rop	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	Valid	⊔rop	Valid	Valid	Valid	₽rop	Valid	Valid		

	I	Langkah-langkah Perhitungan Uji Validitas
		Disertai Contoh untuk Nomor Butir 1 Variabel Y (Kecerdasan Sosial)
		Variable 1 (Receivalum 505am)
1.	$Kolom \Sigma Y_t$	= Jumlah skor total = 2339
2.	$Kolom \Sigma Y_t^2$	= Jumlah kuadrat skor total = 187887
3.	$Kolom \Sigma y_t^2$	$= \sum Y_t^2 - \frac{(\sum Y_t)^2}{n} = 187887 - \frac{2339^2}{30} = 5522.97$
4.	KolomΣY	= Jumlah skor tiap butir = 72
5.	$Kolom \Sigma Y^2$	= Jumlah kuadrat skor tiap butir
		$= 2^2 + 3^2 + 2^2 + \dots + 1^2$
		= 192
6.	$Kolom \Sigma y^2$	$= \Sigma Y^2 - \frac{(\Sigma Y)^2}{n} = 192 - \frac{72^2}{30} = 19.20$
7.	$Kolom \Sigma Y. Y_t$	= Jumlah hasil kali skor tiap butir dengan skor total yang
		berpasangan
		$= (2 \times 64) + (3 \times 71) + (2 \times 71) + \dots + (1 \times 52)$ $= 5754$
8.	$Kolom \Sigma y.y_t$	$= \sum Y.Y_{t} - \frac{(\sum Y)(\sum Yt)}{n} = 5754 - \frac{72 \times 2339}{30}$
		= 140.40
9.	Kolom r _{hitung}	$=\frac{\Sigma y.y_t}{\sqrt{\Sigma y^2.\Sigma yt^2}} = \frac{140.40}{\sqrt{19.20.5522.97}} = 0.431$
10	. Kriteria valid ad	dalah 0,361 atau lebih, kurang dari 0,361 dinyatakan drop.

Uji Realibilitas Untuk Variabel Pola Asuh Orang Tua (X)

	Data	a Hasil Uji Reliabilitas Variabel X
		Pola Asuh Orang Tua
No.	Varians	
1	1.22	1. Menghitung Varians tiap butir dengan rumus
2	1.18	contoh butir ke 1
3	1.45	
4	0.37	$\Sigma Xi^2 - \frac{(\Sigma Xi)^2}{}$
5	1.82	$\Sigma Xi^{2} - \frac{(\Sigma Xi)^{2}}{n}$ $Si^{2} = \frac{n}{n}$
6	1.45	100
7	0.25	$= 370 - \frac{100}{30}$ = 1.22
8	0.36	30
9	0.98	2. Menghitung varians total
10	1.57	
11	1.73	$\Sigma Xt^2 - \frac{(\Delta Xt)}{2}$
12	1.33	$\operatorname{St}^2 = \frac{\operatorname{II}}{\operatorname{II}}$
13	1.29	$St^{2} = \frac{\sum Xt^{2} - \frac{(\sum Xt)^{2}}{n}}{n}$ $= \frac{493753 - \frac{3811}{30}}{30}$
14	0.71	= 493753 + 30
15	1.76	30 320.97
16	1.05	
17	0.34	3. Menghitung Reliabilitas
18	0.91	
19	0.34	$\mathbf{r}_{11} = \frac{\mathbf{k}}{\mathbf{k} - 1} \left(1 - \frac{\sum \mathbf{si}^2}{\mathbf{st}^2} \right)$
20	1.65	K I (St)
21	0.57	$=$ 32 $\left(\begin{array}{c} 36.96 \end{array}\right)$
22	1.36	32 321.0
23	1.82	
24	1.21	= 0.913
25	1.30	
26	1.51	Kesimpulan
27	1.00	Dari perhitungan di atas menunjukkan bahwa r _{ii}
28	1.45	termasuk dalam kategori (0,800 - 1,000). Maka
29	1.56	instrumen memiliki reliabilitas yang sangat tinggi
30	1.29	,,,,,,,,,,
31	1.33	
32	0.80	
Σ	36.96	

Uji Realibilitas Untuk Variabel Social Intelligence (Y)

	Data H	Iasil Uji Coba Reliabilitas Variabel Y	
		Kecerdasan Sosial	
No.	Varians		
1	0.64	1. Menghitung Varians tiap butir dengan rumus	
2	0.98	contoh butir ke 1	
3	1.09	()2	
4	0.98	$\Sigma Yi^2 - \frac{(\Sigma Yi)^2}{}$	
5	1.03	$Si^2 = \frac{n}{}$	
6	1.10	n 72	
7	0.73	$=$ $\frac{192}{30}$ ${0.64}$	
8	1.05	$Si^{2} = \frac{\sum Yi^{2} - \frac{(\sum Yi)^{2}}{n}}{n}$ $= \frac{192 - \frac{72}{30}}{30} = 0.64$	
9	0.77	2. Menghitung varians total	
10	1.45		
11	1.11	$\Sigma Yt^2 - \frac{(\Sigma Tt)}{n}$	
12	1.34	$St^2 = \frac{n}{n}$	
13	0.76	$St^{2} = \frac{\sum Yt^{2} - \frac{(\sum Yt)^{2}}{n}}{n}$ $= \frac{144384 - \frac{2042}{30}}{179.73}$	
14	1.29	= \frac{144384}{30}	
15	1.32	30 179.73	
16	1.30		
17	0.98	3. Menghitung Reliabilitas	
18	1.11	$k \left(\sum_{i} \Sigma_{i}^{2} \right)$	
19	0.86	$\mathbf{r}_{11} = \frac{\mathbf{k}}{\mathbf{k} - 1} \left(1 - \frac{\sum \mathbf{si}^2}{\mathbf{st}^2} \right)$	
20	1.11	n 1 (5)	
21	1.09	= 26 27.80	
22	0.90	26 179.7	
23	1.20		
24	1.45	= 0.879	
25	1.02		
26	1.13	Kesimpulan	
Σ	27.80	Dari perhitungan di atas menunjukkan bahwa r _{ii}	
		termasuk dalam kategori (0,800 - 1,000). Maka	
		instrumen memiliki reliabilitas yang sangat tinggi	

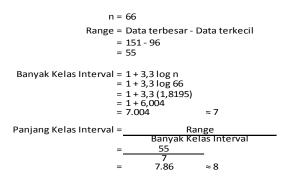
Daftar Nama Responden Penelitian

DATA AWAL POLA ASUH ORANG TUA (X) DAN *SOCIAL INTELLIGENCE* (Y) SISWA-SISWI KELAS XI JURUSAN AKUNTANSI SMK N 22 JAKARTA

			3/0	DIAREI
NO	NAMA RESPONDEN	KELAS	PAOT (X)	RIABEL SI (Y)
1	Ely Ermawati	XI AK 1	116	73
2	Asnahniar	XI AK 1	138	104
3	Anggun Kurnia	XI AK 1	126	75
4	Mitta Deviana	XI AK 1	111	95
5	Santi Giyatri Rahayu	XI AK 1	117	97
6	Romi Permana	XI AK 1	128	83
- 7 - 8	Farah Wijaya	XI AK 1	126	100
9	Dewi Mulyani Eka Darnita	XI AK 1 XI AK 1	146 134	105 93
10	Fadel Busthomy	XI AK 1	113	92
11	Kartini Megawati	XI AK 1	96	83
12	Muhammad Saefudin	XI AK 1	151	90
13	Cerah Sri Irnanti	XI AK 1	124	90
14	Dara Anggraini	XI AK 1	115	74
15	Anisa Rahmatilah	XI AK 1	127	81
16	Putri Debiyanti Ambarningrum	XI AK 1	123	98
17	Ramadhan Boedi Prasetyo	XI AK 1	116	87
18	Qonita Lutviya	XI AK 1	131	84 94
19 20	Sri Lestari Yukas Meilina	XI AK 1 XI AK 1	127 127	88
21	Meidy Ayu Nadia	XI AK 1	131	88
22	Tyas Nurmalita	XI AK 1	141	110
23	Heri Sukmawati	XI AK 1	99	85
24	Fabiel Robby	XI AK 1	151	111
25	Ika Yunita Aryati	XI AK 1	139	97
26	Filzah Almas	XI AK 1	134	94
27	Aisyah Setiani	XI AK 1	135	106
28	Handika Handayani	XI AK 1	129	86
29	Rizky Annisa	XI AK 1	125	101
30 31	Vania Widyasari	XI AK 1	150 147	109 98
32	Dian Sulistyo Wati Windy Ayu Lestari	XI AK 1 XI AK 1	128	98 85
33	Tia Dwi Pasa	XI AK 1	108	77
34	Depita Sari	XI AK 2	129	91
35	Caslin Heryani	XI AK 2	138	92
36	Muhammad Hasyim	XI AK 2	128	90
37	Nuraini Trihastuti	XI AK 2	124	95
38	Puspita Dewani Maulida	XI AK 2	140	112
39	Roqoyyah	XI AK 2	130	91
40	Wiranty Wilda Ningrum	XI AK 2	114	82
41	Dwi Ayu Saputri	XI AK 2 XI AK 2	144 149	92 100
43	Afifah Wahyu Saputri Imam	XI AK 2	121	89
44	Maisarah	XI AK 2	119	80
45	Muhammad Rizky Saputra	XI AK 2	137	102
46	Ela Afriyanti	XI AK 2	134	98
47	Anisa Aprilia Dewi	XI AK 2	124	79
48	Mega Suryani Marifah	XI AK 2	109	95
49	Risa Syaputriani	XI AK 2	109	90
50	Vika Yulianti	XI AK 2	120	86
51	Novita Retno Wulan	XI AK 2	132	104
52 53	Savira Nianta Risti Widayanti	XI AK 2 XI AK 2	139 140	92 108
54	Syarah Sadra	XI AK 2	143	84
55	Tasya Frabella Aritonang	XI AK 2	143	87
56	Fajria Sabila	XI AK 2	128	89
57	Dian Citra Utami	XI AK 2	115	92
58	Agnes Cahya Agustiani	XI AK 2	126	81
59	Thelia Korimti Saputri	XI AK 2	146	114
60	Vina Olivia Tupamahu	XI AK 2	130	105
61	Epi Sapitri	XI AK 2	123	96
62 63	Aulia Hanni Falaha Faqih Shofifatur Rohmah	XI AK 2 XI AK 2	128 141	96 103
64	Sisilia Kristiani	XI AK 2	128	82
65	Elza Viana Nabilla	XI AK 2	125	91
66	Saras Kusumawati	XI AK 2	128	114
	Jumlah		8493	6135

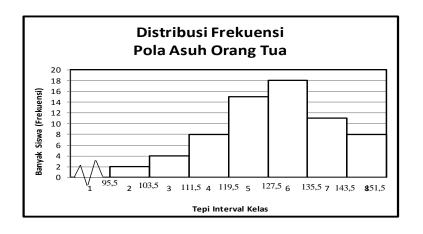
Lampiran 12 Perhitungan Kuesioner Final Untuk Variabel Pola Asuh Orang Tua (X)

															Dat	a Pe	neli	tian															
												V	aria		X (P					Tua	a)												
No.															Buti	r Pe	rnva	taa	n														Skor
Resp.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	Total
2	3	5	5	5	5	4	5	5	5	5	2	3	5 4	5	1	5	5	4	5	5	5	2	5	3	3	<u>5</u>	5	5 3	5	5	5	5	116 138
3	3	5	3	4	3	3	5	5	5	3	5	3	5	4	2	5	5	4	4	3	4	4	4	5	4	2	3	5	2	4	5	5	126
5	4	5	3	4	5	5	2	5 4	5 4	5	4	3	5 4	4	2	4	5	2	4	2	4	3	4	5	5	2	2	5	2	5	5	2	111
7	4	3	3	5	5 5	4	5	5 4	5	4	4	5 5	2	5 4	4	5 5	4	5	4	1	4	4 5	4	2	2	4	4	<u>4</u> 5	4	4	5 3	5	128 126
8	5	5	3	5	2	5	5	5	5	4	5	5	2	5	4	5	5	4	5	5	5	5	5	4	5	5	5	5	4	4	5	5	146
10	5	5	3	5 4	4	5 4	5	5	5	4	4	5	5 4	5 4	3	5	5	2	5 4	5	4	2	5	3	4	2	4	5	5	2	5	2	134
11	5	5	3	3	3	3	5	5	5	1	1	4	3	3	1	5	4	3	2	1	4	1	1	1	2	2	3	3	3	5	3	3	96
12 13	5 4	5	5	5	5	5	5 4	5 4	5	5 4	5 3	3 5	5	5	5	5 4	5 4	4	5 4	5 4	5	5	5	2	4	5 4	5 4	5	5 5	5 4	<u>5</u>	3	151 124
14 15	3	5	3 5	5	5 3	4	5	5 5	4 5	3	4 5	5	4 5	4 5	3	5	4 5	1 5	5	4	3 5	3	4	2	2	4 5	5	3	1 5	3 5	3	4 5	115 127
16	5	5	5	4	3	4	4	4	3	2	4	3	3	4	3	4	5	3	5	4	4	3	4	4	4	3	2	4	4	4	5	5	123
17 18	<u>3</u>	5	<u>3</u>	5 4	5	5	5	5	5	4	4	5	3	4	3	5	5	4	5	5	5 4	5 4	4	4	4	4	2	3	4	5	3	<u>5</u>	116 131
19	3	5	3	5	2	5	2	5	4	4	5	5	2	4	3	4	4	4	4	5	4	2	5	3	4	5	5	3	4	4	5	5	127
20 21	2	5	3	5	4	5	5	5	4	4	3	5 4	2	4	3	5	5	5 4	5	4	5 4	4	4	4	4	4	5	3	4	4	5 4	5 4	127 131
22	3	5	5	5	4	5	5	5	5 4	5	5	5	4	5 4	2	5 4	5	5	5	2	5	3	5	2	2	2	3	5 3	2	5	5 3	2	141 99
24	5	5	3	5	5	5	5	5	5	5	5	3	3	5	3	5	5	5	5	5	5	4	5	5	5	5	5	5	5	5	5	5	151
25 26	5	5	3	5	2	5 4	5	5	5	4	5	<u>5</u>	3	5	3	5	5	5	5	5	5	<u>5</u>	4	4	4	4	4	5 3	5 3	5 4	5	5	139 134
27 28	5	5	5	5	3	5	5	5	5	3	3 5	3	3	5	2	5 4	4 5	5	5	3	5	5	4	3	5	5 4	3	3	5	3	5	5 3	135 129
29	3	5	3	5	3	3	5	5	5	4	5	4	3	5	3	5	5	5	5	2	5	4	4	2	5	5	2	3	1	3	3	5	125
30	4	5	5	5	5	5	5	5	5	5	5	5 4	3	5	1	5	5	4	5	5	5	5 4	5	4	5	5	5	5	5	5 3	5	5	150 147
32	3	5	4	4	4	2	2	5	5	3	4	5	5	5	3	4	4	4	4	5	5	5	5	4	5	2	5	3	3	2	4	5	128
34	3	5 3	4	4	4	4	5	5	5	5	3	5	5	4	1 2	4	4	3	3	4	5	5	4	4	4	3	4	5	5	2	5	4	108 129
35	5	5	3	5	4	3	5	5	5	3	4	5	<u>5</u>	5 4	<u>3</u>	5	5	<u>5</u>	5	5	5	5 4	5	<u>5</u>	5	<u>3</u>	4	5	3	2	3	5	138 128
37	3	5	4	4	4	2	4	5	5	2	5	5	3	5	3	5	5	3	5	1	5	3	5	3	4	2	5	3	3	5	3	5	124
38	2	4	2	5	5 4	5 4	5	5	5	4	4	5 4	3	5	2	5	5	5 4	5	5 4	5	5	3	4	5 4	3	5 4	5	4	5	3	5 4	140
40	3	5	3	5	5	4	<u>4</u>	5	5	5	3	5	5	5	3 5	5	5	5	4	5	5	5	4	5	5	5	3	5	2	5	3	5	114 144
42	3	5	3	5	4	5	5	5	5	5	5	5	3	5	5	5	5	5	5	5	5	4	5	4	5	4	4	5	5	5	5	5	149
43	3	3	4	<u>5</u>	<u>5</u>	3	<u>5</u>	5	5	3	3	5 4	3	<u>5</u>	3	4	5	5	5	5	5	4	3	3	<u>3</u>	3	2	3	<u>5</u>	<u>5</u>	<u>5</u>	5	121 119
45	3	5	3	5	4	4	5	5	5	4	3	5	3	4	4	5	5	4	5	5	5	5	5	4	4	3	4	3	4	4	5	5	137
46 47	3	5	5	5 4	3	5 4	3	5	5	4	4	5	4	5 4	3	5	4	5	5 4	5 4	5 4	3	5 4	3	5 4	5	4	3	3	4	5	5	134 124
48	<u>3</u>	5	3	3	3	3	3	4	2	3	3	3 5	3	3	3	4	2	3	5	3	4	3	5	2	4	3	2	2	2	3	3	5	109 109
50	3	5	3	5	1	5	4	5	5	3	2	5	3	5	2	5	2	3	5	5	5	4	3	3	2	2	4	3	3	5	5	5	120
51 52	5	5	5	5	5	3	5	5	5	5 4	2	5	3	5	2	5	5	2	5	5	5	5	5	3	4	4	4	5	3	5	5	5	132
53 54	3 5	5	3	5	5	3				3	4 5	5	3	<u>4</u>	3	5	5	2	5	4 5	5	5	5	5	<u>4</u>	5	5	5 4	5	5	3 5	5	140 143
55	5	5	3	5	4	4	5	5	5	5	4	5	4	5	2	5	5	2	5	5	5	5	5	2	5	5	5	4	4	5	5	5	143
56 57	5	5	3 5	5	5	5	5			5	3 5	5	3	5 4	5	5	5	1	5	2	5	5	5		3	2	5	5	5	5	5	3 5	
58	3	5	3	5	4	4	5	5	5	2	1	5	3	4	3	5	5	5	5	5	5	4	5	1	5	3	4	2	2	4	4	5	126
59 60	5 1	5 5	<u>3</u>	5	5	5 3	4	5	5	4	3	5	5 3	5	3	5 4	5 4	5	5	5 4	5 4	5 4			5 4	5 5	5 4	5	5 3	3	5 3	5 4	146 130
61 62	<u>4</u> 5	1 5	5 3	5 4	5 3	5 3	5	2	4	4	4	5 5	4	5	5 4	5 4	5 4	2	2	4	5 5	3 5	3	3	3	5 4	2	5 5	3	4	5	5	123 128
63	3	5	5	5	5	5	5	5	5	4	4	5	3	5	4	5	5	5	5	5	4	4	4	3	5	4	3	5	3	4	5	4	141
64	5	5	3	5 4	5 4	5 4				2	3	5 3	3	5	3	5 3	5	5	5	3	4	5			3	3	4	5 3	2	3 5	3	4	128 125
66	4	4	3	4	4	3	5	4	3	4	4	4	4	4	5	5	5	3	4	4	3	4	5	5	3	5	4	3	4	4	3	5	128
Σ	242	312	242	304	247	263	296	314	306	238	246	288	235	291	187	287	288	233	299	251	299	260	278	210	248	250	247	257	237	265	276	297	8493


Lampiran 13
Perhitungan Kuesioner Final Untuk Variabel Social Intelligence (Y)

												Dat	a Pe	neli	tian												
									,	Vari	abe	l Y (Kec	e rda	asar	So	sial)										
No.]	Buti	r Pe	rnya	taai	n											Skor
Resp.	4	2	2	4	<u>5</u>	6	7	8	9	10	11	12	13	14 2	15	16	17 2	18	19	20	21	22	23	24	25	26	Total 73
2	4	3	3	5	5	4	4	4	5	4	5	2	3	5	4	5	4	4	4	4	3	5	4	4	5	4	104
3	3	3	3	2	3	2	2	2	4	3	2	3	3	3	3	3 5	2	3	3	2	2	3	5	3	5	5 3	75 95
5	2	3	3	5	5	4	4	3	5	5	4	2	3	5	4	2	4	4	4	4	4	3	4	4	4	3	97
7	3	5	3	4	5	3	5	5 3	5	5	5	3	3	3	3	2	3	3	5	5	4	2	3	3	3 5	5	83 100
8	3	2	4	5	5	5	5	3	5	4	5	5	3	2	3	5	5	3	5	4	4	3	4	5	5	3	105
9 10	3	3	3 5	<u>5</u>	4	3	4	3	5 4	3	5 4	3	3	3	3	3	<u>5</u>	4	4	4	4	4	3	2	4	3	93
11	3	2	3	2	3	4	4	3	4	3	3	2	3	4	3	3	3	2	3	4	3	3	5	3	5	3	83
12	3	2	3	4	4	2	4	4	5	2	2	5 4	2	3	2	4	4	2	3	3	3	2	4	3	4	3	90 90
14	4	3	3	4	2	4	4	2	4	2	2	2	2	3	1	2	3	2	4	4	2	2	3	3	3	4	74
15 16	3	4	4	4	3	2	3	3	5	3	5 4	2	3	3	2	4	3	3	4	3	2	3	5	5	5	3	81 98
17	3	3	4	4	4	4	2	4	5	4	2	3	2	4	4	2	5	4	2	2	2	4	3	4	3	4	87
18 19	4	4	2	4	4	3	4	3	5	3	3	3	3	3	3	2	3	3 5	5	5	4	4	3	5 3	5	2	84 94
20 21	3	4 5	5	5 5	4	3	5 4	3	5 5	1	3	1	4	3	3	5 4	2	3	3	2	5	4	5 3	2	3	5 4	88 88
22	3	3	4	5	4	4	5	4	5	5	4	4	3	4	4	4	5	5	4	5	5	4	5	4	5	3	110
23	3	5	3 5	5	5	5	5	4	5	5	5	5 4	4	4	2	1	4	<u>2</u>	4	5	5	5	5	<u>5</u>	5	4	85 111
25	3	3	5	5	4	5	4	4	5	4	2	2	4	4	2	2	2	4	4	4	4	4	5	4	5	3	97
26 27	3	3	<u>3</u>	<u>5</u>	4	5	5	5	4	5 4	4	2	4	4	4	2	4	4	4	5	5	5	5 4	5	5 4	5	94 106
28	3	3	2	3	3	3	3	3	4	3	4	4	4	3	3	3	3	4	4	4	3	3	4	3	4	3	86
30	3	<u>3</u>	5	5	4	4	4	4	5	4	2	3	2	5	5	4	5	5 4	5 4	4	5 4	5	5	5	4	5	101 109
31	5	5	5	4	5	5	5	2	5	5	5	2	5	5	2	5	4	2	1	3	4	2	2	4	1	5	98
32	3	3	3	5 4	2	3	4	3	5	3	2	3	2	3	3	2	2	4	4	2	3	3	4	5 3	4	2	85 77
34	3	3	3	5	3	3	4	4	5	<u>5</u>	3	2	2	<u>3</u>	3	3	3	3	4	4	4	3	5	3	4	2	91 92
36	3	4	4	3	5	2	5	3	4	3	2	2	5	3	2	3	5	5	5	2	5	2	3	3	4	3	90
37	3	3	3 5	5	1	5	4	5	5	5	4	4	4	4	5	3	4	2 4	5	5	4	5	5	5	<u>3</u>	3	95 112
39	3	3	4	4	4	3	4	4	2	4	4	4	2	3	4	3	5	3	4	4	4	3	2	4	4	3	91
40	3	3	4	4	3	3	4	3	<u>5</u>	3	4	4	3	3	3	3	4	<u>2</u>	<u>3</u>	3	3	3	5 3	<u>5</u>	5	5 3	82 92
42	3	3	3	4	5	4	5	3	5	4	3	4	3	5	2	2	3	2	5	5	5	4	5	4	5	4	100
43	3	<u>3</u>	5 4	5 3	4	4	2	4	5 4	2	2	2	4	3	3	4	4	3	2	2	5	2	5 3	5 4	5 3	3	89 80
45 46	3	3	5 3	4 5	4	4 5	4	4	5 5	4	4	3	4 5	4 5	3	4	3	2	4	4 5	4 5	4	5	5 3	5	4	102 98
47	3	3	3	2	3	3	2	2	5	4	2	2	3	3	1	4	3	4	4	3	3	3	4	4	3	3	79
48	3	3	3 5	5	5	3	5 4	3	5 4	5 4	2	5	5	2	5 4	2	2	3	3	3	3	2	<u>5</u>	<u>5</u>	5 4	3	95 90
50	4	4	4	5	4	4	4	4	4	4	4	2	3	3	4	2	2	2	3	2	3	3	4	3	3	2	86
51 52	3	3	3	5	5	2	5	5	<u>5</u>	5	3	3	3	5	5 3	2	5 4	3	4	2	5 4	3	5 4	5 1	3	5 3	104 92
53	3	4	4	5	5	4	5	4	4	5	2	2	3	3	5	5	4	4	5	4	4	5	5	5	5	4	108
54 55	3	2	2	4	2	3	3	3	5 4	2	4	2	3	3	2	2	4	2	4	3	3	4	5	5	5	5	84 87
56 57	3	2	2	2	2	4	4	2	4	4	4	4	2	2	4	4	4	3	4	<u>4</u> 5	4	4	5	<u>4</u> 5	4	4	89 92
58	4	3	2	2	2	2	3	2	4	2	2	2	4	2	3	4	5	4	4	5	4	3	5	3	5	3	81
59 60	3	5 3	3	5	5 4	4	5 4	5 4	5	5	4	5 4	3	<u>3</u>	5 3	<u>3</u>	5	5	5	5	5	5	5	5	3	5	114 105
61	3	5	5	5	5	3	5	3	5	3	3	3	3	4	4	2	3	5	5	3	3	4	4	3	2	3	96
62	3	5 4	5 4	5 4	5 4	2	5	2	4	4	5	3	3	2	5	5	4	5 3	3	3	3	3	5	3	3	4	96 103
64	3	3	2	4	3	2	2	3	4	3	3	3	3	3	3	2	4	3	3	4	4	4	4	4	3	3	82
65	4	3	4	5	4	4	5	5	4	4	4	4	5	4	4	5	4	5	5	5	5	5	5 4	5	5	4	91 114
Σ			233				258	-			_		206						253		247		274			225	6135

Proses Perhitungan Menggambar Grafik Histogram Pola Asuh Orang Tua

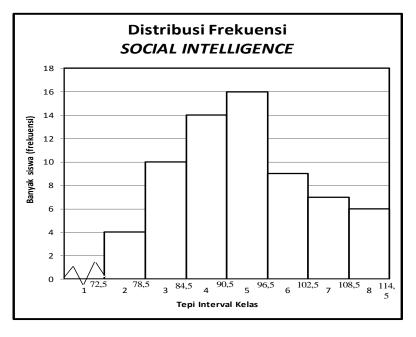

(X)

DISTRIBIUSI FREKUENSI DAN HISTOGRAM POLA ASUH ORANG TUA (VARIABEL X)

DISTRIBUSI FREKUENSI POLA ASUH ORANG TUA

		Bat	as	Fre	kuensi
No	Interval	Bawah	Atas	Absolut	Relatif
1	116 - 103	95.5	103.5	2	3.03 %
2	104 - 111	103.5	111.5	4	6.06 %
3	112 - 119	111.5	119.5	8	12.12 %
4	120 - 127	119.5	127.5	15	22.73 %
5	128 - 135	127.5	135.5	18	27.27 %
6	136 - 143	135.5	143.5	11	16.67 %
7	144 - 151	143.5	151.5	8	12.12 %
		Jumlah		66	100.00 %

(\mathbf{A})	
	х
n	
1	96
2	99
3	108
4	109
5	109 111
6 7	111
8	114
9	115
10	115
11	116
12	116
13	117 119
15	120
16	121
17	123
18	123
19	124
20	124
21	124
22	
23	125 125
24	125
25	126
26	126
27	127
28	127
29	127
30	127
31	128
32	128
33	128
34	128
35	128
36	128
37	129
38	129 130
40	130
41	131
42	131
43	132
44	134
45	134


Proses Perhitungan Menggambar Grafik Histogram Social Intelligence (Y)

DISTRIBIUSI FREKUENSI DAN HISTOGRAM SOCIAL INTELLIGENCE (VARIABEL Y)

n	Y	n = 66
1	73	Range = Data terbesar - Data terkecil
2	74	= 114 - 73
3	75	= 41
4	77	
5	79	Banyak Kelas Interval = 1 + 3,3 log n
6	80	$= 1 + 3,3 \log 66$
7	81	= 1 + 3,3 (1,8195)
8	81	= 1 + 6,004
9	82	= 7,004 ≈ 7
10	82	
11	83	Panjang Kelas Interval = Range
12	83	Banyak Kelas Interval
13	84	= 41
14	84	7
15	85	= 5.86 ≈ 6
16	85	
17	86	DISTRIBIUSI FREKUENSI SOCIAL INTELL

ITELLIGENCE

No	Interval			Bata	as	Frekuensi		
NO		iter	/ai	Bawah Atas		Absolut	Relatif	
1	73	1	78	72.5	78.5	4	6.06 %	
2	79	79 - 84		78.5	84.5	10	15.15 %	
3	85	5 - 90		84.5	90.5	14	21.21 %	
4	91	91 - 96		90.5	96.5	16	24.24 %	
5	97	-	102	96.5 102.5		9	13.64 %	
6	103	-	108	102.5	108.5	7	10.61 %	
7	109	-	114	108.5	114,5	6	9.09 %	
Jumlah	1	66	100.00 %					

1	,
2	74
3	75
4	77
5	79
6	80
7	81
8	81
9	82
10	82
11	83
12	83
13	84
14	84
15	85
16	85
17	86
18	86
	87
19	87
20	87
21	88
22	88
\vdash	
23	89
24	89
25	90
26	90
27	90
28	90
29	91
	91
30	
31	91
32	92
33	92
34	92
35	92
36	92
37	93
38	94
39	94
40	95
41	95
42	95
43	96
44	96
45	97 97
46	
47	98
48	98
49	98
50	100
51	
	100
52	101
53	102
54	103
55	104
56	104
57	104
58	105
59	106
60	108
61	109
62	110
63	111
64	112
65	114
66	114
_	C425
Σ	6135

Lampiran 16

Data Berpasangan Variabel X dan Variabel Y

	Data B	erpasan	gan Vari	abel X	dan Vari	abel Y	
No. Resp	К	n	X	Y	\mathbf{X}^2	\mathbf{Y}^2	XY
1	1	1	96	83	9216	6889	7968
2	2	1	99	85	9801	7225	8415
3	3	1	108	77	11664	5929	8316
4	4	2	109	95	11881	9025	10355
5		-	109	90	11881	8100	9810
<u>6</u> 7	<i>5</i>	1	111 113	95 92	12321 12769	9025 8464	10545 10396
8	7	1	114	82	12996	6724	9348
9	8	2	115	74	13225	5476	8510
10			115	92	13225	8464	10580
11	9	2	116	73	13456	5329	8468
12			116	87	13456	7569	10092
13	10	1	117	97	13689	9409	11349
14 15	11	1	119 120	80 86	14161 14400	6400 7396	9520 10320
16	13	1	121	89	14641	7921	10769
17	14	2	123	98	15129	9604	12054
18			123	96	15129	9216	11808
19	15	3	124	90	15376	8100	11160
20			124	95	15376	9025	11780
21			124	79	15376	6241	9796
22	16	2	125	101	15625 15625	10201	12625
23 24	17	3	125 126	91 75	15825	8281 5625	11375 9450
25	17		126	100	15876	10000	12600
26			126	81	15876	6561	10206
27	18	3	127	81	16129	6561	10287
28			127	94	16129	8836	11938
29			127	88	16129	7744	11176
30	19	7	128	83	16384	6889	10624
31 32			128 128	85 90	16384 16384	7225 8100	10880 11520
33			128	89	16384	7921	11320
34			128	96	16384	9216	12288
35			128	82	16384	6724	10496
36			128	114	16384	12996	14592
37	20	2	129	86	16641	7396	11094
38		_	129	91	16641	8281	11739
39 40	21	2	130	91 105	16900	8281 11025	11830
41	22	2	130 131	84	16900 17161	7056	13650 11004
42	22		131	88	17161	7744	11528
43	23	1	132	104	17424	10816	13728
44	24	3	134	93	17956	8649	12462
45			134	94	17956	8836	12596
46			134	98	17956	9604	13132
47	25	1	135	106	18225	11236 10404	14310
48 49	26 27	2	137 138	102 104	18769 19044	10404	13974 14352
50	-/		138	92	19044	8464	12696
51	28	2	139	97	19321	9409	13483
52			139	92	19321	8464	12788
53	29	2	140	112	19600	12544	15680
54			140	108	19600	11664	15120
<u>55</u>	30	2	141	110	19881	12100	15510
56 57	31	-	141	103	19881	7056	14523
58	31	2	143 143	84 87	20449	7056 7569	12012 12441
59	32	1	144	92	20736	8464	13248
60	33	2	146	105	21316	11025	15330
61			146	114	21316	12996	16644
62	34	1	147	98	21609	9604	14406
63	35	1	149	100	22201	10000	14900
64	36	1	150	109	22500	11881	16350
65 66	37	2	151 151	90 111	22801 22801	8100 12321	13590 16761
Jumlah	37	66	8493	6135	1102681	576825	793689
	- ·			0100	-102001	- , 0020	

Tabel Perhitungan Rata-rata, Varians dan Simpangan Baku Variabel X dan

 \mathbf{Y}

PERHITUNGAN RATA-RATA, VARIANS, DAN STANDAR DEVIASI POLA ASUH ORANG TUA (VARIABEL X)

		POL	A ASUH ORA
n	x	X - Ÿ	(X - Ẍ)²
1	96	-32.68	1,068.10
2	99	-29.68	881.01
3	108	-20.68	427.74
4	109	-19.68	387.37
5	109	-19.68	387.37
6	111	-17.68	312.65
7	113	-15.68	245.92
8	114	-14.68	215.56
9	115	-13.68	187.19
10	115	-13.68	187.19
11	116	-12.68	160.83
12	116	-12.68	160.83
13	117	-11.68	136.46
14	119	-9.68	93.74
15	120	-8.68	75.37
16	121	-7.68	59.01
17	123	-5.68	32.28
18	123	-5.68	32.28
19	124	-4.68	21.92
	124		
20		-4.68	21.92
21	124 125	-4.68 -3.68	21.92 13.56
23	125 126	-3.68 -2.68	13.56 7.19
25	126	-2.68	7.19
26	126	-2.68	7.19
27	127	-1.68	2.83
28	127	-1.68	2.83
29	127	-1.68	2.83
30	128	-0.68	0.46
31	128	-0.68	0.46
32	128	-0.68	0.46
33	128	-0.68	0.46
34	128	-0.68	0.46
35	128	-0.68	0.46
36	128	-0.68	0.46
37 38	129 129	0.32 0.32	0.10 0.10
39	130	1.32	1.74
40	130	1.32	1.74
41	131	2.32	5.37
42	131	2.32	5.37
43	132	3.32	11.01
44	134	5.32	28.28
45	134	5.32	28.28
46	134	5.32	28.28
47	135	6.32	39.92
48	137	8.32	69.19
49	138	9.32	86.83
50	138	9.32	86.83
51	139	10.32	106.46
52	139	10.32	106.46
53	140	11.32	128.10
54 55	140 141	11.32 12.32	128.10 151.74
56	141	12.32	151.74
57	143	14.32	205.01
58	143	14.32	205.01
59	144	15.32	234.65
60	146	17.32	299.92
61	146	17.32	299.92
62	147	18.32	335.56
63	149	20.32	412.83
- 03	173		
64	150	21.32	454.46
		21.32 22.32	498.10
64	150		

$$\overline{Y} = \frac{\sum Y}{n}$$

$$= \frac{8493}{66}$$

$$= 128.68$$

R Varians

$$S^{2} = \frac{\sum (Y - \overline{Y})^{2}}{n - 1}$$
$$= \frac{9786.32}{65}$$
$$= 150.56$$

C. Standar Deviasi

$$S = \sqrt{\frac{\sum (Y - \overline{Y})^2}{n - 1}}$$

$$S = \sqrt{S^2}$$

$$= 12.27$$

D. Median

Me =
$$\frac{X_{n+1}}{2}$$
Me = $\frac{X_{3}}{2}$
Me = $\frac{128}{2}$

PERHITUNGAN RATA-RATA, VARIANS, DAN STANDAR DEVIASI SOCIAL INTELLIGENCE (VARIABEL Y)

			SOCIALIN
n	Υ	Υ-Ϋ	(Y - Ÿ)²
			, ,
1	73	-19.95	398.18
2	74	-18.95	359.27
3	75	-17.95	322.37
4	77	-15.95	254.55
5	79	-13.95	194.73
6	80	-12.95	167.82
7	81	-11.95	142.91
8	81	-11.95	142.91
0			
9	82	-10.95	120.00
10	82	-10.95	120.00
11	83	-9.95	99.09
12	83	-9.95	99.09
13	84	-8.95	80.18
14	84	-8.95	80.18
14	64	-0.53	80.18
15	85	-7.95	63.27
16	85	-7.95	63.27
17	86	-6.95	48.37
18	86	-6.95	48.37
19	87	-5.95	35.46
20	87	-5.95	35.46
21	88	-4.95	24.55
22	88	-4.95	24.55
23	89	-3.95	15.64
24	89	-3.95	15.64
25	90	-2.95	
	90	-2.95	8.73
26			8.73
27	90	-2.95	8.73
28	90	-2.95	8.73
20			
29	91	-1.95	3.82
30	91	-1.95	3.82
31	91	-1.95	3.82
32	92	-0.95	0.91
33	92	-0.95	0.91
34	92	-0.95	0.91
35	92	-0.95	0.91
36	92	-0.95	0.91
37	93	0.05	0.00
38	94	1.05	1.09
39	94	1.05	1.09
40	95	2.05	4.18
41	95	2.05	4.18
42	95	2.05	4.18
43	96	3.05	9.27
44	96	3.05	9.27
45	97	4.05	16.37
46	97	4.05	16.37
47	98	5.05	25.46
48	98	5.05	25.46
48 49		5.05 5.05	
	98		25.46
49	98 98 100	5.05 7.05	25.46 25.46 49.64
49 50 51	98 98 100 100	5.05 7.05 7.05	25.46 25.46 49.64 49.64
49 50 51 52	98 98 100 100	5.05 7.05 7.05 8.05	25.46 25.46 49.64 49.64 64.73
49 50 51 52 53	98 98 100 100 101 101	5.05 7.05 7.05 8.05 9.05	25.46 25.46 49.64 49.64 64.73 81.82
49 50 51 52 53 54	98 98 100 100 101 102 103	5.05 7.05 7.05 8.05 9.05 10.05	25.46 25.46 49.64 49.64 64.73 81.82 100.91
49 50 51 52 53	98 98 100 100 101 101	5.05 7.05 7.05 8.05 9.05	25.46 25.46 49.64 49.64 64.73 81.82
49 50 51 52 53 54	98 98 100 100 101 102 103	5.05 7.05 7.05 8.05 9.05 10.05	25.46 25.46 49.64 49.64 64.73 81.82 100.91
49 50 51 52 53 54 55	98 98 100 100 101 102 103 104	5.05 7.05 7.05 8.05 9.05 10.05 11.05	25.46 25.46 49.64 49.64 64.73 81.82 100.91 122.00
49 50 51 52 53 54 55 56 57	98 98 100 100 101 101 102 103 104 104	5.05 7.05 7.05 8.05 9.05 10.05 11.05 11.05	25.46 25.46 49.64 49.64 64.73 81.82 100.91 122.00 122.00 145.09
49 50 51 52 53 54 55 56 57 58	98 98 100 100 101 102 103 104 104 105	5.05 7.05 7.05 8.05 9.05 10.05 11.05 11.05 12.05	25.46 25.46 49.64 49.64 64.73 81.82 100.91 122.00 145.09 145.09
49 50 51 52 53 54 55 56 57 58 59	98 98 100 100 101 102 103 104 104 105 105	5.05 7.05 7.05 8.05 9.05 10.05 11.05 11.05 12.05 12.05 13.05	25.46 25.46 49.64 49.64 64.73 81.82 100.91 122.00 145.09 145.09 170.18
49 50 51 52 53 54 55 56 57 58	98 98 100 100 101 102 103 104 104 105	5.05 7.05 7.05 8.05 9.05 10.05 11.05 11.05 12.05	25.46 25.46 49.64 49.64 64.73 81.82 100.91 122.00 145.09 145.09
49 50 51 52 53 54 55 56 57 58 59	98 98 100 100 101 102 103 104 104 105 105	5.05 7.05 7.05 8.05 9.05 10.05 11.05 11.05 12.05 12.05 13.05	25.46 25.46 49.64 49.64 64.73 81.82 100.91 122.00 145.09 145.09 170.18
49 50 51 52 53 54 55 56 57 58 59 60	98 98 100 100 101 102 103 104 104 105 105 106	5.05 7.05 7.05 8.05 9.05 10.05 11.05 12.05 12.05 13.05 15.05	25.46 25.46 49.64 49.64 64.73 81.82 100.91 122.00 145.09 145.09 170.18 226.37
49 50 51 52 53 54 55 56 57 58 59 60 61 62	98 98 100 100 101 101 102 103 104 105 105 106 108 109	5.05 7.05 7.05 8.05 9.05 10.05 11.05 12.05 12.05 13.05 15.05 16.05 17.05	25.46 25.46 49.64 49.64 49.64 64.73 81.82 100.91 122.00 145.09 145.09 170.18 226.37 257.46 290.55
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	98 98 100 100 101 101 102 103 104 105 105 106 108 109 110	5.05 7.05 7.05 7.05 8.05 9.05 10.05 11.05 12.05 12.05 13.05 15.05 16.05 17.05 18.05	25.46 25.46 49.64 49.64 49.64 64.73 81.82 100.91 122.00 145.09 145.09 170.18 226.37 257.46 290.55 325.64
49 50 51 52 53 54 55 56 57 58 59 60 61 62	98 98 100 100 101 101 102 103 104 105 105 106 108 109	5.05 7.05 7.05 8.05 9.05 10.05 11.05 12.05 12.05 13.05 15.05 16.05 17.05	25.46 25.46 49.64 49.64 49.64 64.73 81.82 100.91 122.00 145.09 145.09 170.18 226.37 257.46 290.55
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63	98 98 100 100 101 101 102 103 104 105 105 106 108 109 110	5.05 7.05 7.05 7.05 8.05 9.05 10.05 11.05 12.05 12.05 13.05 15.05 16.05 17.05 18.05	25.46 25.46 49.64 49.64 49.64 64.73 81.82 100.91 122.00 145.09 145.09 170.18 226.37 257.46 290.55 325.64
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64	98 98 100 100 101 102 103 104 104 105 105 106 108 109 110 111	5.05 7.05 7.05 7.05 8.05 9.05 10.05 11.05 12.05 12.05 12.05 15.05 16.05 17.05 18.05	25.46 25.46 49.64 49.64 64.73 81.82 100.91 122.00 145.09 145.09 170.18 226.37 257.46 290.55 325.64 362.73
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	98 98 100 100 100 101 102 103 104 105 105 106 108 109 110 111 111	5.05 7.05 7.05 7.05 8.05 9.05 10.05 11.05 12.05 12.05 12.05 15.05 16.05 17.05 18.05 19.05	25.46 25.46 49.64 49.64 49.64 64.73 81.82 100.91 122.00 145.09 145.09 170.18 226.37 257.46 290.55 325.64 362.73 442.91

$$\overline{Y} = \frac{\sum_{n} Y}{n}$$

$$= \frac{6135}{66}$$

$$= 92.95$$

B. Varians

$$S^{2} = \frac{\sum (Y - \overline{Y})^{2}}{n - 1}$$

$$= \frac{6548.86}{65}$$

$$= 100.75$$

C. Standar Deviasi

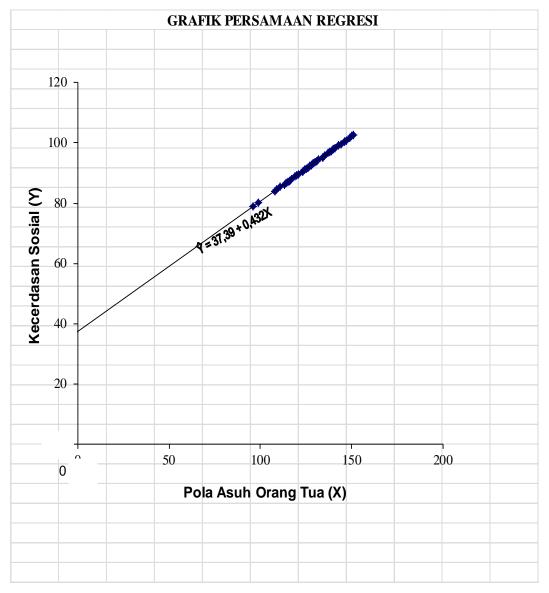
$$S = \sqrt{\frac{\sum (Y - \overline{Y})^2}{n - 1}}$$

$$S = \sqrt{S^2}$$

$$= 10.04$$

D. Median

Me =
$$\frac{Y_{n+1}}{2}$$
Me = $\frac{Y_{n+1}}{2}$
Me = $\frac{Y_{n+1}}{2}$


Lampiran 18 Perhitungan Uji Linieritas dengan Persamaan Regresi Linier

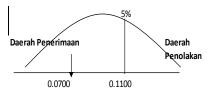
Perhi	itur	ngan Uji L	inieritas d	lengan Per	samaan I	Regresi I	Linier
Diketahui						_	
n	=	66					
ΣX	=	8493					
ΣX^2	=	1102681					
ΣY	=	6135					
ΣY^2	=	576825					
ΣΧΥ	=	793689					
Dimasukk	an	ke dalam r	iimiis .				
	_			EXY)			
а	ı =	$\frac{(\Sigma Y)(\Sigma X^2)}{n \Sigma X}$	$\frac{1}{r^2} \frac{(\Delta r \mathbf{v})^2}{(\nabla \mathbf{v})^2}$	2			
	=	6135	1102681	- 8493 - 8493 ²	793689		
	_	66	1102681	- 8493 ²	2		
		67649	47935	- 67408	00677		
	=		6946	7213			
		2414	7258				
	=	645	897				
	=	37.3856					
		n ΣXV-	ΣΧ) (ΣΥ				
t) =	$\frac{n \Sigma XY - n \Sigma X^2}{n \Sigma X^2}$	$-(\Sigma \mathbf{X})^2$	<u>)</u>			
		11 2/X	$-(2\Lambda)$				
		66	793689	- 8493	6135		
	=	66	1102681	-8493 -8493^2	!		
		5238	3474 -	- 5210	<u>4555</u>		
	=	7277	6946 -	- 7213	1049		
		270	010				
	=	278					
		645	071				
	=	0.43183					
	Ja	di persama	anya adala	ıh:			
		$\hat{\mathbf{Y}} =$	27.20	. 0.420**			
		Υ =	37.39	+ 0.432X			

Lampiran 19 Tabel Perhitungan Persamaan Regresi

	Tabel Un	tuk Menghitung $\hat{\mathbf{Y}} = \mathbf{a} + \mathbf{b}$	X
n	x	$\hat{\mathbf{Y}} = 37,39 + 0,432\mathbf{X}$	Ŷ
1	96	37.39 + 0.432 . 96	78.841
2	99	37.39 + 0.432 . 99	80.137
3	108	37.39 + 0.432 . 108	84.023
4	109	37.39 + 0.432 . 109	84.455
<u>5</u>	109 111	37.39 + 0.432 . 109 37.39 + 0.432 . 111	84.455 85.319
7	113	37.39 + 0.432 . 111	86.183
8	114	37.39 + 0.432 . 114	86.614
9	115	37.39 + 0.432 . 115	87.046
10	115	37.39 + 0.432 . 115	87.046
11	116	37.39 + 0.432 . 116	87.478
12	116	37.39 + 0.432 . 116	87.478
13	117	37.39 + 0.432 . 117	87.910
14	119	37.39 + 0.432 . 119	88.774
15 16	120 121	37.39 + 0.432 . 120 37.39 + 0.432 . 121	89.205 89.637
17	123	37.39 + 0.432 . 121	90.501
18	123	37.39 + 0.432 . 123	90.501
19	124	37.39 + 0.432 . 124	90.933
20	124	37.39 + 0.432 . 124	90.933
21	124	37.39 + 0.432 . 124	90.933
22	125	37.39 + 0.432 . 125	91.365
23	125	37.39 + 0.432 . 125	91.365
24	126	37.39 + 0.432 . 126	91.796
25	126	37.39 + 0.432 . 126	91.796
26	126	37.39 + 0.432 . 126	91.796
27	127	37.39 + 0.432 . 127	92.228 92.228
28 29	127 127	37.39 + 0.432 . 127 37.39 + 0.432 . 127	92.228
30	128	37.39 + 0.432 . 127	92.660
31	128	37.39 + 0.432 . 128	92.660
32	128	37.39 + 0.432 . 128	92.660
33	128	37.39 + 0.432 . 128	92.660
34	128	37.39 + 0.432 . 128	92.660
35	128	37.39 + 0.432 . 128	92.660
36	128	37.39 + 0.432 . 128	92.660
37	129	37.39 + 0.432 . 129	93.092
38 39	129	37.39 + 0.432 . 129 37.39 + 0.432 . 130	93.092 93.524
40	130 130	37.39 + 0.432 . 130 37.39 + 0.432 . 130	93.524
41	131	37.39 + 0.432 . 131	93.956
42	131	37.39 + 0.432 . 131	93.956
43	132	37.39 + 0.432 . 132	94.387
44	134	37.39 + 0.432 . 134	95.251
45	134	37.39 + 0.432 . 134	95.251
46	134	37.39 + 0.432 . 134	95.251
47	135	37.39 + 0.432 . 135	95.683
48	137	37.39 + 0.432 . 137	96.547
<u>49</u> 50	138 138	37.39 + 0.432 . 138 37.39 + 0.432 . 138	96.978 96.978
51	139	37.39 + 0.432 . 139	97.410
52	139	37.39 + 0.432 . 139	97.410
53	140	37.39 + 0.432 . 140	97.842
54	140	37.39 + 0.432 . 140	97.842
55	141	37.39 + 0.432 . 141	98.274
56	141	37.39 + 0.432 . 141	98.274
57	143	37.39 + 0.432 . 143	99.138
58	143	37.39 + 0.432 . 143	99.138
59	144	37.39 + 0.432 . 144	99.569
60 61	146 146	37.39 + 0.432 . 146 37.39 + 0.432 . 146	100.433 100.433
62	147	37.39 + 0.432 . 146 37.39 + 0.432 . 147	100.433
63	149	37.39 + 0.432 . 149	101.729
64	150	37.39 + 0.432 . 150	102.160
	150 151	37.39 + 0.432 . 150 37.39 + 0.432 . 151	102.160

Lampiran 20 Grafik Persamaan Regresi

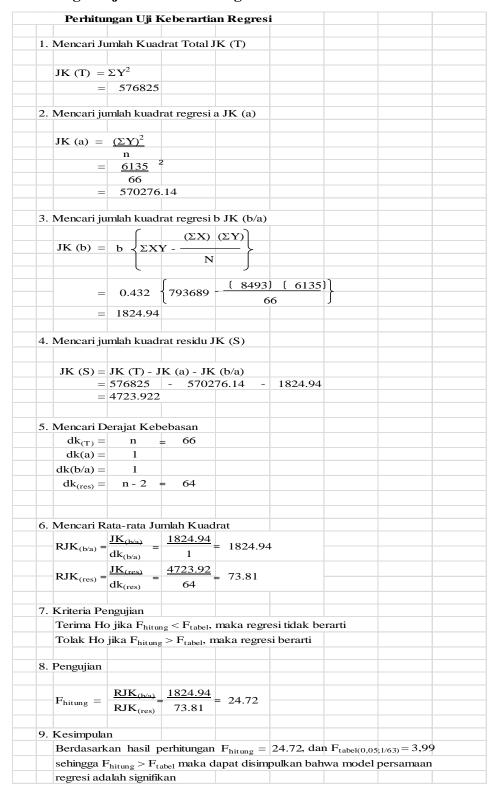
Lampiran 21 Tabel Perhitungan Rata-rata, Varians dan Simpangan Baku Regresi


Tabel Perhitungan Rata-rata, Varians dan Simpangan Baku $\hat{\mathbf{Y}} = 37,39 + 0,432 \mathbf{X}$										
	77	*7	Ŷ	av vo	av 20 av 20	107 \$0 07 \$01				
No.	X 96	Y 83	78.84	(Y - Ŷ) 4.1585	4.1131	$[(Y - \hat{Y}) - (Y - \hat{Y})]$ 16.9172				
2	99	85	80.14	4.1383	4.8176	23.2089				
3	108	77	84.02	-7.0235	-7.0689	49.9698				
4	109	95	84.46	10.5447	10.4992	110.2340				
5	109	90	84.46	5.5447	5.4992	30.2416				
6	111	95	85.32	9.6810	9.6356	92.8443				
7	113	92	86.18	5.8174	5.7719	33.3150				
8	114	82	86.61	-4.6145	-4.6599	21.7149				
9	115	74	87.05	-13.0463	-13.0918	171.3940				
10	115	92	87.05	4.9537	4.9082	24.0909				
11	116	73	87.48	-14.4781	-14.5236	210.9345				
12	116	87	87.48	-0.4781	-0.5236	0.2741				
13	117	97	87.91	9.0900	9.0446	81.8045				
14	119	80	88.77	-8.7736	-8.8191	77.7762				
15	120	86	89.21	-3.2055	-3.2509	10.5684				
16	121	89	89.64	-0.6373	-0.6827	0.4661				
17	123	98	90.50	7.4990	7.4536	55.5560				
18	123	96	90.50	5.4990	5.4536	29.7417				
19	124	90	90.93	-0.9328	-0.9782	0.9570				
20	124	95	90.93	4.0672	4.0218	16.1745				
21	124	79	90.93	-11.9328	-11.9782	143.4783				
22	125	101	91.36	9.6354	9.5899	91.9667				
23	125	91	91.36	-0.3646	-0.4101	0.1682				
24	126	75	91.80	-16.7965	-16.8419	283.6498				
25	126	100	91.80	8.2035	8.1581	66.5545				
26	126	81	91.80	-10.7965	-10.8419	117.5469				
27	127	81	92.23	-11.2283	-11.2737	127.0971				
28	127	94	92.23	1.7717	1.7263	2.9800				
29	127	88	92.23	-4.2283	-4.2737	18.2648				
30	128	83	92.66	-9.6601	-9.7056	94.1981				
31	128	85	92.66	-7.6601	-7.7056	59.3758				
32	128	90	92.66	-2.6601	-2.7056	7.3201				
33	128	89	92.66	-3.6601	-3.7056	13.7312				
34	128	96	92.66	3.3399	3.2944	10.8533				
35	128	85	92.66	-7.6601	-7.7056	59.3758				
36 37	128 129	114	92.66	21.3399	21.2944	453.4528 50.9425				
38	129	86 91	93.09 93.09	-7.0919 -2.0919	-7.1374 -2.1374	4.5685				
39	130	91	93.52	-2.5238	-2.5692	6.6010				
40	130	105	93.52	11.4762	11.4308	130.6624				
41	131	84	93.96	-9.9556	-10.0011	100.0213				
42	131	88	93.96	-5.9556	-6.0011	36.0128				
43	132	104	94.39	9.6126	9.5671	91.5295				
44	134	93	95.25	-2.2511	-2.2966	5.2742				
45	134	94	95.25	-1.2511	-1.2966	1.6811				
46	134	98	95.25	2.7489	2.7034	7.3086				
47	135	106	95.68	10.3171	10.2716	105.5059				
48	137	102	96.55	5.4534	5.4079	29.2458				
49	138	104	96.98	7.0216	6.9761	48.6661				
50	138	92	96.98	-4.9784	-5.0239	25.2395				
51	139	97	97.41	-0.4103	-0.4557	0.2077				
52	139	92	97.41	-5.4103	-5.4557	29.7649				
53	140	112	97.84	14.1579	14.1124	199.1612				
54	140	108	97.84	10.1579	10.1124	102.2616				
55	141	110	98.27	11.7261	11.6806	136.4368				
56	141	103	98.27	4.7261	4.6806	21.9082				
57	143	84	99.14	-15.1376	-15.1830	230.5250				
58	143	87	99.14	-12.1376	-12.1830	148.4267				
59	144	92	99.57	-7.5694	-7.6149	57.9864				
60	146	105	100.43	4.5669	4.5215	20.4436				
61	146	114	100.43	13.5669	13.5215	182.8297				
62	147	98	100.86	-2.8649	-2.9104	8.4703				
63	149	100	101.73	-1.7286	-1.7740	3.1472				
64	150	109	102.16	6.8396	6.7941	46.1602				
65	151	90	102.59	-12.5923	-12.6377	159.7116				
66	151	111	102.59	8.4077	8.3623	69.9280				
mlah				3.00		4668.82				

Lampiran 22 Perhitungan Rata-rata, Varians dan Simpangan Baku

]	Perhitunga	n Rat	ta-rata, Varians dan Simpangan Baku
		Reg	gresi $\hat{Y} = 37,39 + 0,432X$
	^ ^		
1. Rata-rata =	Y - Y	=	$\Sigma(Y-Y)$
			n
		=	3.00
			66
		=	0.0455
2. Varians =	S^2	=	$\Sigma \{(Y-Y)-(Y-Y)\}^2$
			n - 1
		=	4668.825
			65
		=	71.828
		-	
3. Simpangan B	aku = S	=	$\sqrt{S^2}$
			·
		=	√71.828
		=	8.4751

Lampiran 23 Langkah Perhitungan Uji Normalitas Galat Taksiran Regresi


No. $(Y - \hat{Y})$ $(Y - \hat{Y}) - (\overline{Y - \hat{Y}})$ Zi Zt $F(zi)$ $S(zi)$ $[F(zi) - S(zi)]$											
No.	(Y - Y) (Xi)	$(\mathbf{Y} - \mathbf{Y}) - (\mathbf{Y} - \mathbf{Y})$ $(\mathbf{X}\mathbf{i} - \overline{\mathbf{X}}\mathbf{i})$	Zi	Zt	F(zi)	S(zi)	[F(zi) - S(zi)				
1	-16.7965	-16.8419	-1.9872	0.4761	0.0239	0.0154	0.009				
2	-15.1376	-15.1830	-1.7915	0.4633	0.0367	0.0308	0.006				
4	-14.4781 -13.0463	-14.5236 -13.0918	-1.7137 -1.5447	0.4564 0.4382	0.0436	0.0462	0.003				
5	-12.5923	-12.6377	-1.4911	0.4319	0.0681	0.0769	0.009				
6	-12.1376	-12.1830	-1.4375	0.4236	0.0764	0.0923	0.016				
7	-11.9328	-11.9782	-1.4133	0.4207	0.0793	0.1077	0.028				
9	-11.2283 -10.7965	-11.2737 -10.8419	-1.3302 -1.2793	0.4082	0.0918	0.1231	0.031				
10	-7.6601	-7.7056	-0.9092	0.3159	0.1841	0.1538	0.030				
11	-9.9556	-10.0011	-1.1800	0.3810	0.1190	0.1692	0.050				
12	-9.6601	-9.7056	-1.1452	0.3729	0.1271	0.1846	0.058				
13 14	-8.7736	-8.8191	-1.0406 -0.9092	0.3508	0.1492 0.1841	0.2000	0.051				
15	-7.6601 -7.5694	-7.7056 -7.6149	-0.8985	0.3133	0.1841	0.2134	0.031				
16	-7.0919	-7.1374	-0.8422	0.2996	0.2004	0.2462	0.046				
17	-7.0235	-7.0689	-0.8341	0.2967	0.2033	0.2615	0.058				
18	-5.9556	-6.0011	-0.7081	0.2580	0.2420	0.2769	0.035				
20	-5.4103 -4.9784	-5.4557 -5.0239	-0.6437 -0.5928	0.2389	0.2611	0.2923	0.031				
21	-4.6145	-4.6599	-0.5498	0.2054	0.2946	0.3231	0.028				
22	-4.2283	-4.2737	-0.5043	0.1915	0.3085	0.3385	0.030				
23	-3.6601	-3.7056	-0.4372	0.1664	0.3336	0.3538	0.020				
24	-3.2055	-3.2509	-0.3836	0.1480	0.3520	0.3692	0.017				
25 26	-2.8649 -2.6601	-2.9104 -2.7056	-0.3434 -0.3192	0.1331	0.3669	0.3846	0.018 0.022				
27	-2.5238	-2.5692	-0.3031	0.1179	0.3821	0.4154	0.033				
28	-2.2511	-2.2966	-0.2710	0.1064	0.3936	0.4308	0.037				
29	-2.0919	-2.1374	-0.2522	0.0987	0.4013	0.4462	0.045				
30	-1.7286	-1.7740	-0.2093	0.0793	0.4207	0.4615	0.041				
31	-1.2511 -0.9328	-1.2966 -0.9782	-0.1530 -0.1154	0.0596 0.0438	0.4404 0.4562	0.4769 0.4923	0.037 0.036				
33	-0.6373	-0.6827	-0.0806	0.0319	0.4681	0.5077	0.040				
34	-0.4781	-0.5236	-0.0618	0.0239	0.4761	0.5231	0.047				
35	-0.4103	-0.4557	-0.0538	0.0199	0.4801	0.5385	0.058				
36	-0.3646	-0.4101	-0.0484	0.0160	0.4840	0.5538	0.070				
37 38	1.7717 2.7489	1.7263 2.7034	0.2037	0.0793 0.1217	0.5793 0.6217	0.5692 0.5846	0.010 0.037				
39	3.3399	3.2944	0.3887	0.1480	0.6480	0.6000	0.048				
40	4.0672	4.0218	0.4745	0.1808	0.6808	0.6154	0.065				
41	4.1585	4.1131	0.4853	0.1844	0.6844	0.6308	0.054				
42	4.5669	4.5215	0.5335	0.2019	0.7019	0.6462	0.056				
44	4.7261 4.8630	4.6806 4.8176	0.5523 0.5684	0.2088	0.7088 0.7123	0.6615 0.6769	0.047 0.035				
45	4.9537	4.9082	0.5791	0.2157	0.7157	0.6923	0.023				
46	5.4534	5.4079	0.6381	0.2357	0.7357	0.7077	0.028				
47	5.4990	5.4536	0.6435	0.2389	0.7389	0.7231	0.016				
48	5.5447	5.4992	0.6489	0.2389	0.7389	0.7385	0.000				
<u>49</u> 50	5.8174 6.8396	5.7719 6.7941	0.6810 0.8017	0.2518	0.7518 0.7881	0.7538 0.7692	0.002				
51	7.0216	6.9761	0.8231	0.2939	0.7939	0.7846	0.009				
52	7.4990	7.4536	0.8795	0.3078	0.8078	0.8000	0.008				
53	8.2035	8.1581	0.9626	0.3315	0.8315	0.8154	0.016				
54 55	8.4077 9.0900	8.3623 9.0446	0.9867 1.0672	0.3365	0.8365 0.8554	0.8308 0.8462	0.006				
56	9.6126	9.5671	1.1288	0.3534	0.8534	0.8462	0.009				
57	9.6354	9.5899	1.1315	0.3708	0.8708	0.8769	0.006				
58	9.6810	9.6356	1.1369	0.3708	0.8708	0.8923	0.022				
59	10.1579	10.1124	1.1932	0.3830	0.8830	0.9077	0.025				
60	10.3171	10.2716 10.4992	1.2120	0.3869	0.8869 0.8907	0.9231 0.9385	0.036 0.048				
62	11.4762	11.4308	1.3487	0.4099	0.8907	0.9538	0.044				
63	11.7261	11.6806	1.3782	0.4147	0.9147	0.9692	0.055				
64	13.5669	13.5215	1.5954	0.4441	0.9441	0.9846	0.041				
65	14.1579	14.1124	1.6652	0.4515	0.9515	1.0000	0.049				
66	21.3399	21.2944	2.5126	0.4940	0.9940	0.0000	0.021				
						0.0000					
		apat nilai L _{hitung} t									

Lampiran 24 Perhitungan Normalitas Galat Taksiran Y atas X Regresi

		Lang	kah Perl	hitungan	Uji N	ormal	litas Ga	alat Taks	iran		
			I	Regresi Y	$\hat{Y} = 3'$	7,39 +	0,432X				
1.	Kolom Ŷ										
	$\hat{\mathbf{Y}} =$	37.39									
	=	37.39	+0.432	[96]	=	78.84					
2.	Kolom Y										
	Y - Ŷ =	83 -	78.84	= 4.1	6						
3.	Kolom (Y	- Ŷ) - (Y	- Ŷ)								
	(Y - Ŷ) - ($(\mathbf{\hat{Y}} - \hat{\mathbf{\hat{Y}}}) =$	4 16	- 0.0455	i = 4	1 1 1					
	(1 1)	1 1)	4.10	0.0432		r•11					
4.	Kolom [()		$(-\hat{\mathbf{y}})^2$								
7.	Kolom [(Y	=	4.11	= 16.9	2						
5.	Kolom Y	- Ŷ atau (∑	Ki) yang s	sudah diu	utkar	dari d	ata terk	ecil			
6.	Kolom (Y	- Ŷ) - (Y	- Ŷ) ata	u (Xi-Xi)	yang	sudah	diurutka	n dari dat	a terkecil		
7.	Kolom Zi	_									
	$Zi = \frac{(Xi)}{}$	$\frac{(-Xi)}{S} =$	<u>-16.84</u>	=-1.987							
	\$	S	8.48								
0	IZ - 1 74										
8.	Kolom Zt	n 7i Irannu	lion dilso:	naultaailea	n tobe	1 diatri	busi 7 a	ontoh . O	0.01.		
		Dari kolom Zi kemudian dikonsultasikan tabel distribusi Z contoh :- 2,01; pada sumbu menurun cari angka 2,0; lalu pada sumbu mendatar									
	angka 1 D			0.4761	ши ра	ada sui		Ratai			
	g 1 D	Totolonin		3,31							
9.	Kolom F(z	zi)									
	F(zi) = 0.5	+ Zt, jika	Zi (+) &	= 0.5 - 2	Zt, Jik	a Zi (-))				
	Zi = -2,01	, maka 0,5	$5-\mathbf{Z}\mathbf{t}=0,3$	5 - 0,477	8-0.0	239					
10.	Kolom S(z										
	Nomor Re		_	1	= 0.0	15					
	Jumlah Re	sponden		66							
11	Kolom FE	(zi) C (7:)	1								
11.	Kolom [Fo			i)							
		[0.024			Q						
		L 0.024	0.013	j= 0.00	<i>)</i>						

Perhitungan Uji Keberartian Regresi

Perhitungan Uji Kelinieran Regresi

		Pe	rhitunga	n Uji Kelini	eran Reg	resi		
1.	Mencari Ju	ımlah Kuad	rat Kekeli	ruan JK (G)				
	JK (G) =	$\sum \left\{ \sum Y_k^2 - \frac{1}{2138.262} \right\}$	$\frac{\Sigma Y_k^2}{n_k}$	}				
2	Mencari Ju	ımlah Kuad	rat Tuna c	ocok JK (T	(C)			
-			100 10110 0	00011011 (1				
	JK (TC) =	JK (S) - J	K(G)					
		4723.922						
	=	2585.660						
3.		erajat Kebe	ebasan					
	k =							
	$dk_{(TC)} =$	k - 2 = n - k =	35					
	$dk_{(G)} =$	n - k =	29					
4.	Mencari ra	ta-rata jum	lah kuadra	t				
	$RJK_{(G)} =$	2585.66 35 2138.26 29	= 73.73					
5.	Kriteria Pe	nguiian						
			> F _{tabel} , n	naka regresi	tidak linier			
				maka regres				
6	Pengujian							
0.		$\frac{RJK_{(TC)}}{RJK_{(G)}} =$	73.88 73.73	= 1.00				
7	Kesimpula							
Ė			rhitungan F	F _{hitung} =1.00	. dan F	al(0.05:25/29)	1.87	
				apat disimp				
	regresi ad		bel maka u	арас авшр	anxan banv	a model p	CI Sairkail	
	regresi ad	aian iiner						

Perhitungan JK (G)

						Perhit	ungan J	K (G)				
											(22
No.	K	n _i	X	Y	\mathbf{Y}^2	XY	ΣYk ²	(SYk) ² n		(ΣYk) ² n	ΣYk ² -	$\frac{(\Sigma Yk)^2}{n}$
2	2	1	96 99	83 85	6889 7225	7968 8415						
3	3	1	108	77	5929	8316						
4	4	2	109	95	9025	10355	17125	185	34225	17112.50		12.50
5	-		109	90	8100	9810						
7	5 6	1	111 113	95 92	9025 8464	10545 10396						
8	7	1	114	82	6724	9348						
9	8	2	115	74	5476	8510	13940	166	27556	13778.00		162.00
10 11	9	2	115 116	92 73	8464 5329	10580 8468	12898	160	25600	12800.00		98.00
12	,		116	87	7569	10092	12898	100	23000	12800.00		98.00
13	10	1	117	97	9409	11349						
14	11	1	119	80	6400	9520						
15 16	12 13	1	120 121	86 89	7396 7921	10320 10769						
17	14	2	123	98	9604	12054	18820	194	37636	18818.00		2.00
18			123	96	9216	11808						
19	15	3	124	90	8100	11160	23366	264	69696	23232.00		134.00
20 21			124 124	95 79	9025 6241	11780 9796			1			
22	16	2	125	101	10201	12625	18482	192	36864	18432.00		50.00
23			125	91	8281	11375						
24	17	3	126	75	5625	9450	22186	256	65536	21845.33		340.67
25 26			126 126	100 81	10000 6561	12600 10206						
27	18	3	127	81	6561	10287	23141	263	69169	23056.33		84.67
28			127	94	8836	11938						
29	10	_	127	88	7744	11176	50054	<20	100001	#0004 ##		#20.42
30	19	7	128 128	83 85	6889 7225	10624 10880	59071	639	408321	58331.57		739.43
32			128	90	8100	11520						
33			128	89	7921	11392						
34			128	96	9216	12288						
35 36			128 128	82 114	6724 12996	10496 14592						
37	20	2	129	86	7396	11094	15677	177	31329	15664.50		12.50
38			129	91	8281	11739						
39 40	21	2	130	91 105	8281	11830	19306	196	38416	19208.00		98.00
41	22	2	130	84	11025 7056	13650 11004	14800	172	29584	14792.00		8.00
42			131	88	7744	11528	- 1000					
43	23	1	132	104	10816	13728						
44 45	24	3	134 134	93 94	8649 8836	12462 12596	27089	285	81225	27075.00		14.00
46			134	98	9604	13132						
47	25	1	135	106	11236	14310						
48	26 27	2	137	102	10404	13974	10200	100	20417	10209.00		72.00
50	27	2	138 138	104 92	10816 8464	14352 12696	19280	196	38416	19208.00		72.00
51	28	2	139	97	9409		17873	189	35721	17860.50		12.50
52			139	92	8464	12788						
53 54	29	2	140 140	112 108	12544 11664	15680 15120	24208	220	48400	24200.00		8.00
55	30	2	140	110	12100		22709	213	45369	22684.50		24.50
56			141	103	10609	14523						
57	31	2	143	84	7056		14625	171	29241	14620.50		4.50
58 59	32	1	143 144	87 92	7569 8464	12441 13248						
60	33	2	146	105	11025		24021	219	47961	23980.50		40.50
61			146	114	12996	16644						
62	34	1	147	98	9604	14406						
63 64	35 36	1	149 150	100	10000 11881	14900 16350		1				
65	37	2	151	90	8100		20421	201	40401	20200.50		220.50
66			151	111	12321	16761						
Σ	37	66	8493	6135	576825	793689				l	21	38.26

Lampiran 28 Tabel Anava untuk Uji Keberartian dan Uji Kelinieran Regresi

Sumber	dk	Jumlah	Rata-rata Jumlah	$\mathbf{F}_{\mathbf{hitung}}$	$\mathbf{F_{tabel}}$
Varians		Kuadrat (JK)	Kuadrat (RJK)		
Total	n	ΣY^2		-	
Regresi (a)	1	$(\Sigma Y)^2$			
		n			Fo > Ft
Regresi (b/a)	1	$b\left\{ \Sigma XY - \frac{\left(\Sigma X\right)\left(\Sigma Y\right)}{N}\right\}$	JK(b)	$\underline{S}^2 reg$	Maka
		(N)	1	S^2 res	regresi
Residu	n - 2	Jk (S)	JK(S)		Berarti
			n-2		
Tuna Cocok	k - 2	JK (TC)	JK (TC)		Fo < Ft
Tuna Cocok	K - Z	JK (IC)	k-2	S ² TC	Maka
Galat Kekeliruan	n - k	JK (G)	JK (G)	$\frac{S \cdot IC}{S^2G}$	Regresi
Galat Rekemuan	11 - K	JK (G)	n - k	3 U	Linier
					_
Sumber Varians	dk	Jumlah Kuadrat (JK)	Rata-rata Jumlah Kuadrat (RJK)	F _{hitung}	F _{tabel}
Varians	dk 66	Jumlah Kuadrat (JK) 576825.00	Kuadrat (RJK)	F _{hitung}	Ftabel
Varians Total		Kuadrat (JK)	Kuadrat (RJK)	F _{hitung}	Ftabel
Varians	66	Kuadrat (JK) 576825.00	Kuadrat (RJK)		
Varians Total Regresi (a)	66	Kuadrat (JK) 576825.00 570276.14	1824.94	Fhitung	
Varians Total Regresi (a) Regresi (b/a)	66	Kuadrat (JK) 576825.00 570276.14 1824.94	1824.94 73.81		3.99

Lampiran 29 Perhitungan Koefisien Korelasi Product Moment

		Perhi	itunga	an Ko	oefis	ien K	orela	si						
			Pr	oduct	Mo	ment								
D1 . 1 .														
Diketahui														
n	=	66												
ΣΧ	=	8493												
ΣX^2	=	1102681												
ΣΥ	=	6135												
ΣY^2	=	576825												
ΣΧΥ	=	793689												
Dimasukk	an	ke dalam rı	umus	:										
r _{XY}	=	$\int_{\sqrt{n \Sigma X^2}} $	ΣΧΥ - (ΣΧ)	$\frac{-\left(\Sigma\Sigma\right)^{2}}{\left(1-\left(\Sigma\Sigma\right)^{2}\right)^{2}}$	<u>Χ) (Σ</u> . ΣΥ	Y)	ΣΥ)2	<u> </u>						
	=	66· 793 /{ 66·1102	689 2681 -	<u>-(84</u> - 84	93] 93 ² }	· [61 ·{66	35 <u>]</u> · 576	5825 ·	- 613	5 ²	2 }			
		523834	74 -	- 52	1045	55								
	=	$\sqrt{\frac{523834}{64589}}$	7 -	4	3222	5								
	=	278919												
		320300.0	303											
	=	0.528												
Kesimpula	an :													
Pada perh	itu	ngan produ	et mo	ment	di ata	s dipe	eroleh	$\mathbf{r}_{ ext{hitun}}$	$_{\rm g}(\rho_{\rm xv})$) =	0.528	karer	naρ>	0,
		kian dapat												
_		el X terhada					- aapu			, ,	-5 POB			
amara var	ıaυ	CIA (CIIIdu)	ap va	iauei	1.									

Perhitungan Uji Signifikansi

			Perhitu	ıngan Uji S	Signifikan	si			
Meng	hitung Uji S	Signifikansi	Koefisien K	Corelasi me	nggunakan	Uji-t, yaitu	dengan ru	imus :	
$t_h =$	$\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$	_							
	V1 - I								
=	$\begin{array}{c c} 0.528 \sqrt{6} \\ \hline \sqrt{1} & 0.2 \end{array}$	54							
	γ1 0.2	219							
=	0.528	8							
	$\sqrt{0.721}$								
	4.223								
=	0.85								
=	4.97								
Kesin	npulan :								
	•	ignifikansi 0	,05 dengan	dk (n-2) =	(66 - 2) =	= 64 sebesa	ır 1,68		
Kriter	ia pengujia	n :							
Ho : d	litolak jika	$t_{\rm hitung} > t_{\rm tab}$	el.						
		a $t_{\text{hitung}} < t_{\text{ta}}$							
Dari h	nasil penguj	ian :							
t _{hitung}	(4.97)>1	t _{tabel} (1,68),	maka terda	apat hubung	gan yang si	gnifikan an	ara		
variab	el X denga	ın variabel Y	Y						

Perhitungan Uji Koefisien Determinasi

				Perh	itunga	an Uji	Koefi	sien l	Detern	ninasi				
[]ntu	k n	nencari se	he	erana hes	ar var	iaci va	riahel \	V vano	ditent	ukan ol	eh varis	hel X	maka	
		an Uji Ko		-					5 anom	ukun oi	cii vari	ioci 7 1 ,	maka	
KD	=	r _{XY} ²	x	100%										
		-7/1												
	=	0.528 2	X	100%										
	=	0.2787	X	100%										
	=	27.87%												
		il tersebu								an Sosi	al			
diten	tuk	an oleh P	ola	a Asuh O	rang T	ua se	besar 2	27,879	%.					
			L											
			L											

Lampiran 32 Tabel Penentuan Jumlah Sampel Dari Popoulasi Tertentu Dengan Taraf Kesalahan 1%, 5% dan 10%

N		S		N		S		N	S			
N	1%	5%	10%	IN	1%	5%	10%	IN	1%	5%	10%	
10	10	10	10	280	197	115	138	2800	537	310	247	
15	15	14	14	290	202	158	140	3000	543	312	248	
20	19	19	19	300	207	161	143	3500	558	317	251	
25	24	23	23	320	216	167	147	4000	569	320	254	
30	29	28	27	340	225	172	151	4500	578	323	255	
35	33	32	31	360	234	177	155	5000	586	326	257	
40	38	36	35	380	242	182	158	6000	598	329	259	
45	42	40	39	400	250	186	162	7000	606	332	261	
50	47	44	42	420	257	191	165	8000	613	334	263	
55	51	48	46	440	265	195	168	9000	618	335	263	
60	55	51	49	460	272	198	171	10000	622	336	263	
65	59	55	53	480	279	202	173	15000	635	340	266	
70	63	58	56	500	285	205	176	20000	642	342	267	
80	71	65	62	600	315	221	187	40000	563	345	269	
35	75	68	65	650	329	227	191	50000	655	346	269	
90	79	72	68	700	341	233	195	75000	658	346	270	
95	83	75	71	750	352	238	199	100000	659	347	270	
100	87	78	73	800	363	243	202	150000	661	347	270	
110	94	84	78	850	373	247	205	200000	661	347	270	
120	102	89	83	900	382	251	208	250000	662	348	270	
130	109	95	88	950	391	255	211	300000	662	348	270	
140	116	100	92	1000	399	258	213	350000	662	348	270	
150	122	105	97	1050	414	265	217	400000	662	348	270	
160	129	110	101	1100	427	270	221	450000	663	348	270	
170	135	114	105	1200	440	275	224	500000	663	348	270	
180	142	119	108	1300	450	279	227	550000	663	348	270	
190	148	123	112	1400	460	283	229	600000	663	348	270	
200	154	127	115	1500	469	286	232	650000	663	348	270	
210	160	131	118	1600	477	289	234	700000	663	348	270	
220	165	135	122	1700	485	292	235	750000	663	348	271	
230	171	139	125	1800	492	294	237	800000	663	348	271	
240	176	142	127	1900	498	297	238	850000	663	348	271	
250	182	146	130	2000	510	301	241	900000	663	348	271	
260	187	149	133	2200	520	304	243	950000	663	348	271	
270	192	152	135	2600	529	307	245	1000000	664	349	272	

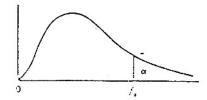
Lampiran 33 Table Nilai-Nilai r Product Moment dari Pearson

	Taraf Sig	gnifikan		Taraf Sig	gnifikan		Taraf Sign	nifikan
n	5%	1%	n	5%	1%	n	5%	1%
3	0,997	0,999	27	0,381	0,487	55	0,266	0,345
4	0,950	0,990	28	0,374	0,478	60	0,254	0,330
5	0,878	0,959	29	0,367	0,470	65	0,244	0,317
6	0,811	0,917	30	0,361	0,463	70	0,235	0,306
7	0,754	0,874	31	0,355	0,456	75	0,227	0,296
8	0,707	0,834	32	0,349	0,449	80	0,220	0,286
9	0,666	0,798	33	0,344	0,442	85	0,213	0,278
10	0,632	0,765	34	0,339	0,436	90	0,207	0,270
11	0,602	0,735	35	0,334	0,430	95	0,202	0,263
12	0,576	0,708	36	0,329	0,424	10	0,195	0,256
13	0,553	0,684	37	0,325	0,418	12	0,176	0,230
14	0,532	0,661	38	0,320	0,413	15	0,159	0,210
15	0,514	0,641	39	0,316	0,408	17	0,148	0,194
16	0,497	0,623	40	0,312	0,403	20	0,138	0,181
17	0,482	0,606	41	0,308	0,398	30	0,113	0,148
18	0,468	0,590	42	0,304	0,393	40	0,098	0,128
19	0,456	0,575	43	0,301	0,389	50	0,088	0,115
20	0,444	0,561	44	0,297	0,384	60	0,080	0,105
						1		
21	0,433	0,549	45	0,294	0,380	700	1	0,097
22	0,423	0,537	46	0,291	0,376	800		0,091
23	0,413	0,526	47	0,288	0,372	900	_	0,086
24	0,404	0,515	48	0,284	0,368	000	0,062	0,081
25	0,396	0,505	49	0,281	0,364			
26	0,388	0,496	50	0,279	0,361	<u></u>		

Tabel L

Ukuran		Ta	raf Nyata (c	d	
Sampel Inl	0,01	0,05	0.10	0,15	0,20
4	0,417	0,381	0,352	0,319	0,300
5	0,405	0,337	0,315	0,299	0,285
6	0,364	0,319	0,294	0,277	0,265
7	0,348	0,300	0,276	0,258	0,247
8	0,331	0,285	0,261	0,244	0,233
9	0,311	0,271	0,249	0,233	0,223
10	0,294	0,258	0,239	0,224	0,215
- 11	0,284	0,249	0,230	0,217	0,206
12	0,275	0,242	0,223	0,212	0,199
13	0,268	0,234	0,214	0,202	0,190
14	0,261	0,227	0,207	0,194	0,183
15	0,257	0,220	0,201	0,187	0,177
16	0,250	0,213	0,195	0,182	0,173
17	0,245	0,206	0,189	0,177	0,169
18	0,239	0,200	0,184	0,173	0,166
19	0,235	0,195	0,179	0.169	0,163
20	0,231	0,190	0,174	0,166	0,160
25	0,200	0,173	0,158	0,147	0,142
30	0,187	0,161	0,144	0,136	0,131
. 20	1,031	0,886	0,805	0,768	0,736
> 30	\sqrt{n}	\sqrt{n}	\sqrt{n}	\sqrt{n}	\sqrt{n}

Tabel T


Sebaran t-Student

Nilai persentil untuk distribusi t v = dk (Bilangan dalam badan tabel menyatakan tp)

٧							t			11/2			
	0.9995	0.995	0.99	0.975	0.95	0.9	0.8	0.75	0.7	0.75	0.6	0.55	0.
1	636.619	63.657	31.821	12.706	6.314	3.078	1.376	1.000	0.727	1.000	0.325	0.158	0.00
2	31.599	9.925	6.965	4.303	2.920	1.886	1.061	0.816	0.617	0.816	0.289	0.142	0.00
3	12.924	5.841	4.541	3.182	2.353	1.638	0.978	0.765	0.584	0.765	0.277	0.137	0.00
4	8.610	4.604	3.747	2.776	2.132	1.533	0.941	0.741	0.569	0.741	0.271	0.134	0.00
5	6.869	4.032	3.365	2.571	2.015	1.476	0.920	0.727	0.559	0.727	0.267	0.132	0.00
6	5.959	3.707	3.143	2.447	1.943	1.440	0.906	0.718	0.553	0.718	0.265	0.131	0.00
7	5.408	3.499	2.998	2.365	1.895	1.415	0.896	0.711	0.549	0.711	0.263	0.130	0.00
8	5.041	3.355	2.896	2.306	1.860	1.397	0.889	0.706	0.546	0.706	0.262	0.130	0.00
9	4.781	3.250	2.821	2.262	1.833	1.383	0.883	0.703	0.543	0.703	0.261	0.129	0.00
10	4.587	3.169	2.764	2.228	1.812	1.372	0.879	0.700	0.542	0.700	0.260	0.129	0.00
11	4.437	3.106	2.718	2.201	1.796	1.363	0.876	0.697	0.540	0.697	0.260	0.129	0.00
12	4.318	3.055	2.681	2.179	1.782	1.356	0.873	0.695	0.539	0.695	0.259	0.128	0.00
13	4.221	3.012	2.650	2.160	1.771	1.350	0.870	0.694	0.538	0.694	0.259	0.128	0.00
14	4.140	2.977	2.624	2.145	1.761	1.345	0.868	0.692	0.537	0.692	0.258	0.128	0.00
15	4.073	2.947	2.602	2.131	1.753	1.341	0.866	0.691	0.536	0.691	0.258	0.128	0.00
16	4.015	2.921	2.583	2.120	1.746	1.337	0.865	0.690	0.535	0.690	0.258	0.128	0.00
17	3.965	2.898	2.567	2.110	1.740	1.333	0.863	0.689	0.534	0.689	0.257	0.128	0.00
18	3.922	2.878	2.552	2.101	1.734	1.330	0.862	0.688	0.534	0.688	0.257	0.127	0.00
19	3.883	2.861	2.539	2.093	1.729	1.328	0.861	0.688	0.533	0.688	0.257	0.127	0.00
20	3.850	2.845	2.528	2.086	1.725	1.325	0.860	0.687	0.533	0.687	0.257	0.127	0.00
21	3.819	2.831	2.518	2.080	1.721	1.323	0.859	0.686	0.532	0.686	0.257	0.127	0.00
22	3.792	2.819	2.508	2.074	1.717	1.321	0.858	0.686	0.532	0.686	0.256	0.127	0.00
23	3.768	2.807	2.500	2.069	1.714	1.319	0.858	0.685	0.532	0.685	0.256	0.127	0.00
24	3.745	2.797	2.492	2.064	1.711	1.318	0.857	0.685	0.531	0.685	0.256	0.127	0.00
25	3.725	2.787	2.485	2.060	1.708	1.316	0.856	0.684	0.531	0.684	0.256	0.127	0.00
26	3.707	2.779	2.479	2.056	1.706	1.315	0.856	0.684	0.531	0.684	0.256	0.127	0.00
27	3.690	2.771	2.473	2.052	1.703	1.314	0.855	0.684	0.531	0.684	0.256	0.127	0.00
28	3.674	2.763	2.467	2.048	1.701	1.313	0.855	0.683	0.530	0.683	0.256	0.127	0.00
29	3.659	2.756	2.462	2.045	1.699	1.311	0.854	0.683	0.530	0.683	0.256	0.127	0.00
30	3.646	2.750	2.457	2.042	1.697	1.310	0.854	0.683	0.530	0.683	0.256	0.127	0.00
40	3.551	2.704	2.423	2.021	1.684	1.303	0.851	0.681	0.529	0.681	0.255	0.126	0.00
60	3.460	2.660	2.390	2.000	1.671	1.296	0.848	0.679	0.527	0.679	0.254	0.126	0.00
20	3.373	2.617	2.358	1.980	1.658	1.289	0.845	0.677	0.526	0.677	0.254	0.126	0.00
8	2.581	2.330	1.962	1.646	1.282	1.282	1.282	1.282	0.842	0.675	0.525	0.253	0.12

Tabel F

Tabel 7 Nilai kritis distribusi F

				f0.95	(v1. v2)				
					, د				,
۲2	1	2	3.	4	5	6	7	3	9
1	161,4	199,5	215.7	224,6	230.2	234,0	236.8	238.9	2403
2	18,51	19,00	19,16		. 19,30	19.33	19,35	19.37	19.38
3	10,13	9.55	9.28	9,12	9,01	3,94	3,39	3,35	3.31
7	7,71	5,94	6.59	6,39	6.26	6,16	6,09	6.04	6,00
5	16,6	5.79	5,41	5,19	5,05	4,95	4,88	4.82	4.77
6	5,99	5,14	4,75	4.53	4.39	4,28	4.21	4,15	4,10
7	5,59	4,74	4,35	4,12	. 3,97	3,37	3,79	3,73	3,68
8	5,32	4,46	4,07	3,34	3,69	3,58	3,50	3,44	3,39
9	5,12	4,26	3,36	3,63	3.48	3,37	3,29	3,23	3,18
10	4.96	4.10	3.71	3,48	3.33	3.27	3.14	3.07	3.02
11	4,84	3,98	3,59	3,36	3,20	3.09	3,01	2,95	2,90
12	4.75	3,39.	3,49	3,26	3,11	3,00	2,91	2,35	2,80
13	4,57	. 3,31	1,41	3,13	3.03	2,92	2,83	2,77	2,71
14	4,60	3,74	3,34	3,11	2,96	7,35	2,76	2,70	2,65
15	± 54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59
16	4,49	3,63	3,24	3.01	2,35	2,74	2,56	2,59	2,54
17	1,45	3,59	3,20	2,96	2,31	2,70	2,61	2,55	2,49
13	4,41	3.55	3,16	2,93	2,77	2.66	2,58	2.51	2,46
19	4,38	3,52	3.13	2,90	2.74	2.63	2,54	2,48	2,42
20	-4,35	7,49	3.10	2.37	2,71	2,60	2.51	2.45	2,39
21	4,32	3,47	3,07	2,34	2,68	2.57	2,49	2,42	2,37
22	4,30	3,44	3.05	2,32	2.66	2,55	2,46	2,40	2,34
23	4,28	3,42	3,03	2,30	2,64	2,53	2,44	2,37	2,32
24	4,26	3,40	3,01	2,78	2,62	2.51	2,42	2,36	2,30
25	4.24	3.39	2.99	2.76	2,60	2,49	2.40	2.34	2.28
25 25 27	4,23	3,37	2.98	2,74	2,59	2,47	2,39	2,32	2.27
27	±.21	3.35	2,96	2.73	2.57	2,46	2.37	2,31	2,25
23	4.20	3,34	2.95 ;	2,71	2,56	25	2,36	2.29	2,24
29	4,18	3,33	2,93	2,70	2.55	2,43	2,35	2,28	2,22
30	4.17	זנגנ	2.92	2.69	2.53	2,42	2,53	2,27	2.21
÷0 i			2,34 i	2,61	2,45	2.34 !	2.25	2.18 ;	
60 ;	4,00	3.15	2,76	2,53	2,37	2.25	2,17	2,10	2,04
120 :	3,92	3.07	2,68	2,45	2,29	2,17	2.09	2,02	1,96
20 ;	3,84	5,00	2,60	2.37	2,21	2.10	2.01;	1,94	1.38

[†] Disalin dari Tabel 18 Biometrika Tables for Statisticians, Jilid I seizin E. S. Pearson dan Biometrika Trustees.

Lampiran 37

Tabel Z

Z	0	1	2	3	4	5	6	7	8	9
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998
3.5	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998
3.6	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.7	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.8	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.9	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000