MONITORING DEVICE DAN NETWORK TRAFFIC MENGGUNAKAN APLIKASI ZABBIX BERBASIS WEB DENGAN SISTEM NOTIFIKASI EMAIL

Aditya Nugroho 5235117086

Skripsi ini Ditulis untuk Memenuhi Sebagian Persyaratan dalam Memperoleh Gelar Sarjana

PENDIDIKAN TEKNIK INFORMATIKA DAN KOMPUTER JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS NEGERI JAKARTA 2016

HALAMAN PENGESAHAN

NAMA DOSEN

M. Ficky Duskarnaen, ST., M.Sc (Dosen Pembimbing I)

Hamidillah Ajie, S.Si., MT (Dosen Pembimbing II)

PENGESAHAN PANITIA UJIAN SKRIPSI

NAMA DOSEN

Drs. Wisnu Djatmiko, MT (Ketua Penguji)

Widodo, M. Kom (Sekretaris Penguji)

Lipur Sugiyanta, Ph. D

(Dosen Ahli)

TANDA TÁNGAN

28-01-2016

TANGGAL

28-01-2016

28-01-2016

Tanggal Lulus: 19 Januari 2016

HALAMAN PERNYATAAN

Dengan ini saya menyatakan bahwa:

- 1. Karya tulis skripsi saya ini adalah asli dan belum pernah diajukan untuk mendapatkan gelar akademik sarjana, baik di Universitas Negeri Jakarta maupun di perguruan tinggi lain.
- 2. Karya tulis ini adalah murni gagasan, rumusan dan penelitian saya sendiri dengan arahan dosen pembimbing.
- 3. Dalam karya tulis ini tidak terdapat karya atau pendapat yang telah ditulis atau dipublikasikan orang lain, kecuali secara tertulis dengan jelas dicantumkan sebagai acuan dalam naskah dengan disebutkan nama pengarang dan dicantumkan dalam daftar pustaka.
- 4. Pernyataan ini saya buat dengan sesungguhnya dan apabila di kemudian hari terdapat penyimpangan dan ketidakbenaran dalam penyataan ini, maka saya bersedia menerima sanksi akademik berupa pencabutan gelar yang telah diperoleh karena karya tulis ini, serta sanksi lainnya sesuai dengan norma yang berlaku di Universitas Negeri Jakarta.

Jakarta, 13 Januari 2016 Yang membuat pernyataan

> Aditya Nugroho 5235117086

MONITORING DEVICE DAN NETWORK TRAFFIC MENGGUNAKAN APLIKASI ZABBIX BERBASIS WEB DENGAN SISTEM NOTIFIKASI EMAIL

ADITYA NUGROHO

ABSTRAK

Latar belakang masalah ini adalah sering terjadi kendala data yang terhambat atau koneksi yang sering terputus, maka dari itu sangat di butuhkan alat untuk me*monitoring* jaringan dalam kampus UNJ. *Monitoring* ini mengharuskan *network* administrator untuk terus berada di depan layar, ada saatnya *network* administrator tidak berada di depan layar. Hal seperti ini menyebabkan monitoring sedikit terhambat dan hal-hal yang terjadi dalam jaringan tidak diketahui secara langsung oleh *network* administrator. Mengatasi masalah seperti ini, jalan keluarnya adalah menghubungi *network* administrator sesaat setelah gangguan pada jaringan terdeteksi dengan sistem notifikasi *email*. Metode penelitian yang dipakai adalah eksperimen. *Monitoring device* dan *network* traffic menggunakan sistem notifikasi *email* pada Zabbix kurang pas diterapkan pada organisasi yang besar apalagi mencangkup jaringan yang luas.

Kata kunci: Monitoring, Network Traffic, Zabbix, Notifikasi Email

MONITORING DEVICE AND NETWORK TRAFFIC USING ZABBIX WEB-BASED APPLICATION WITH EMAIL NOTIFICATION SYSTEM

ADITYA NUGROHO

ABSTRACT

The background of this problem is there are common data constraints that obstructed or disconnected connections are often, and therefore very needed tool for monitoring network within the campus UNJ Monitoring requires network administrators to continue to be in front of the screen, there are times when network administrators are not in front of the screen. Things like this cause a little obstructed monitoring and things that are happening in the network is not known directly by the network administrator. Problems such as these, the solution is to contact the network administrator shortly after a disturbance on the network is detected with email notification system. The research method used is experiment. Monitoring devices and network traffic using the email notification system Zabbix not really appropriate for large organizations especially covers a broad network.

Keywords: Monitoring, Network Traffic, Zabbix, Email Notification

KATA PENGANTAR

Puji dan syukur kehadirat Allah SWT Yang Maha Pengasih dan Maha Penyayang. Atas rahmat dan karunianya-Nya, sehingga penulis dapat menyelesaikan skripsi dengan judul: "Monitoring Device dan Network Traffic Antar Kelas di Pustikom dan Gedung Dewi Sartika Menggunakan Zabbix Berbasis Website dan Email".

Skripsi ini disusun sebagai salah satu syarat dalam memperoleh gelar Sarjana Pendidikan pada Program Studi Pendidikan Teknik Informatika dan Komputer, Jurusan Teknik Elektro, Fakultas Teknik, Universitas Negeri Jakarta.

Dalam merencanakan, menyusun dan menyelesaikan penulisan skripsi, penulis banyak menerima bantuan, bimbingan, dan motivasi serta dukungan dari berbagai pihak. Oleh karena itu, pada kesempatan ini penulis mengucapkan terima kasih kepada yang sebesar – besarnya kepada:

- Ibu Yuliatri Sastrawijaya, M.Pd., selaku Ketua Program Studi Pendidikan Teknik Informatika dan Komputer, Jurusan Teknik Elektro, Fakultas Teknik, Universitas Negeri Jakarta.
- Bapak M. Ficky Duskarnaen, M.Sc. selaku Dosen Pembimbing I dan Kepala Pustikom UNJ.
- 3. Bapak Hamidillah Ajie, M.T., selaku Dosen Pembimbing II dan pembimbing akademik.
- Seluruh Staf Pustikom Universitas Negeri Jakarta yang telah memberikan kesempatan kepada penulis dalam menyelesikan skripsi ini.
- 5. Bapak Imam Isai dan Ibu Sumartinah, selaku kedua orang tua penulis. Terima kasih sudah membesarkan, mendidik, merawat, mendoakan dan memberikan semangat kepada penulis sehingga dapat menyelesaikan skripsi ini.
- Teman-teman seperjuangan PTIK angkatan 2011, Grup Pejabat PTIK, PKM SMK 22, dan siswa/siswi SMK 22 yang telah memberikan motivasi, semangat, dan doanya dalam penulisan skripsi ini.
- 7. Seluruh pihak yang telah mendukung yang tidak bisa disebutkan

satu persatu demi terselesaikannya skripsi ini dengan baik dan lancar. Semoga Tuhan membalas semua kebaikan yang telah diberikan.

Penulis menyadari bahwa skripsi ini masih jauh dari kesempurnaan, karenanya penulis mohon maaf apabila terdapat kekurangan kesalahan baik dari isi maupun tulisan. Akhir kata penulis berharap semoga penulisan dan penyusunan skripsi ini dapat bermanfaat bagi pembacanya dan semua pihak yang terkait.

Jakarta, 13 Januari 2016

Aditya Nugroho

DAFTAR ISI

Halaman

HALAMAN PENGESAHANii
HALAMAN PERNYATAANiii
ABSTRAK iv
ABSTRACT v
KATA PENGANTAR vi
DAFTAR ISI viii
DAFTAR TABEL xiii
DAFTAR GAMBAR xiv
DAFTAR LAMPIRAN xvi
BAB I PENDAHULUAN 1
1.1 Latar Belakang Masalah 1
1.2 Identifikasi Masalah 4
1.3 Pembatasan Masalah5
1.4 Perumusan Masalah5
1.5 Tujuan Penelitian6
1.6 Manfaat Penelitian6
BAB II KERANGKA TEORITIK, KERANGKA BERPIKIR DAN HIPOTESIS
PENELITIAN
2.1 Kerangka Teoritik
2.1.1 Definisi Jaringan Komputer7
2.1.2 Macam-Macam Jaringan Komputer7
2.1.3 Topologi

2.1.3.1 Topologi Bus 1	0
2.1.3.2 Topologi Cincin 1	1
2.1.3.3 Topologi Bintang 1	2
2.1.3.4 Topologi Mesh 1	2
2.1.4 Media Transmisi 1	3
2.1.5 Twisted Pair 1	4
2.1.6 Protokol 1	5
2.1.7 Model Referensi 1	6
2.1.8 Model Referensi OSI 1	7
2.1.8.1 Lapisan Aplikasi 1	9
2.1.8.2 Lapisan Presentasi 2	20
2.1.8.3 Lapisan Sesi	20
2.1.8.4 Lapisan <i>Transport</i>	1
2.1.8.5 Lapisan Network 2	2
2.1.8.6 Lapisan Data Link 2	3
2.1.8.7 Lapisan Fisik 2	3
2.1.9 Model Referensi TCP/IP 2	4
2.1.9.1 Lapisan Aplikasi dalam Model TCP/IP 2	4
2.1.9.2 Lapisan <i>Transport</i> dalam Model TCP/IP 2	25
2.1.9.3 Lapisan Internet dalam Model TCP/IP 2	27
2.1.9.4 Lapisan Network Interface dalam Model TCP/IP 2	9
2.1.10 Perangkat Jaringan Komputer 2	9
2.1.10.1 Network Adapter 2	9
2.1.10.2 <i>Hub</i>	0

2.1.10.3 <i>Repeater</i>	31
2.1.10.4 Switch	32
2.1.10.5 Router	32
2.1.11 Monitoring Jaringan	33
2.1.12 Zabbix	35
2.1.12.1 Kelebihan Menggunakan Zabbix	37
2.1.12.2 Kebutuhan Sistem (System Requirement) Zabbix	38
2.2 Kerangka Berpikir	38
2.3 Hipotesis Penelitian	40
BAB III METODE PENELITIAN	42
3.1 Tujuan Penelitian	42
3.2 Tempat dan Waktu Penelitian	42
3.3 Metode Penelitian	42
3.4 Rancangan Penelitian	42
3.4.1 Observasi dan Analisis Terhadap Perangkat Jaringan Kompu	ter
UNJ	42
3.4.2 Melihat dan Menganalisis Topologi Jaringan UNJ	44
3.4.3 Membuat Kabel UTP Dengan Susunan Straight	44
3.4.4 Penempatan Server Monitoring Pada Jaringan UNJ	45
3.4.5 Alat dan Bahan	46
3.4.6 Instalasi Sistem Operasi Linux CentOS 6.7 i386	46
3.4.7 Instalasi Zabbix Pada Linux CentOS	48
3.4.7.1 Mengkonfigurasi Monitoring Target	50
3.4.7.2 Mengkonfigurasi SMTP Server untuk Mengirim Emai	<i>l</i> 50

3.4.7.3 Mengkonfigurasi Notifikasi Email	50
3.4.7.4 Menambahkan Windows Pada Monitoring Target	51
3.4.7.5 Menambahkan Perangkat Jaringan Pada Monitoring	
Target	52
3.4.8 Konfigurasi SNMP Trap Pada Switch	52
3.4.9 Konfigurasi SNMP Trap Pada Access Point	53
3.4.10 Pengujian Hasil Monitoring Jaringan	53
3.5 Prosedur Penelitian	54
3.5.1 Pengamatan Utilitas Switch	54
3.5.2 Pengamatan Utilitas Access Point	54
3.5.3 Pengamatan Utilitas Personal Computer	54
3.6 Teknik Pengambilan Data	54
3.6.1 System Status	55
3.6.2 Host Status	55
3.6.3 Last 20 Issues	55
3.6.4 Notifikasi <i>Email</i>	55
BAB IV HASIL PENELITIAN DAN PEMBAHASAN	56
4.1 Hasil Penelitian	56
4.1.1 Pengamatan Lapangan	56
4.1.2 Hasil Pengambilan Data Utilitas Switch	57
4.1.2.1 Monitoring Switch 2226-SFP Plus 3COM	57
a) Pengukuran Bandwidth pada Switch	57
b) Tampilan Hasil Utilitas Switch 2226-SFP Plus 3COM	58
4.1.2.2 Monitoring Switch AT-FS750/48	60

a) Pengukuran <i>Bandwidth</i> pada <i>Switch</i>	60
b) Tampilan Hasil Utilitas Switch AT-FS750/48	. 61
4.1.2.3 Monitoring Switch Cisco Catalyst 2960	62
a) Pengukuran Bandwidth pada Switch	62
b) Tampilan Hasil Utilitas Switch Cisco Catalyst 2960	63
4.1.3 Hasil Pengambilan Data Utilitas Access Point	. 64
4.1.3.1 Monitoring Access Point EnGenius ENS202EXT	65
a) Pengukuran Bandwidth pada Access Point	. 65
b) Tampilan Hasil Utilitas Access Point ENS202EXT	. 66
4.1.3.2 Monitoring Access Point EnGenius ENS200EXT	. 67
a) Pengukuran Bandwidth pada Access Point	. 67
b) Tampilan Hasil Utilitas Access Point ENS200EXT	. 68
4.1.4 Hasil Pengambilan Data Utilitas Personal Computer	70
4.1.4.1 Monitoring Personal Computer Compaq	. 70
a) Pengukuran Bandwidth pada Personal Computer	. 70
b) Pengecekan Disk Space Usage pada Harddisk	. 71
c) Pengecekan CPU Load	. 72
d) Pengecekan Memory	. 73
e) Tampilan Hasil Utilitas Personal Computer	. 74
BAB V KESIMPULAN DAN SARAN	. 77
5.1 Kesimpulan	. 77
5.2 Saran	. 78
DAFTAR PUSTAKA	79
LAMPIRAN	80

DAFTAR TABEL

Tabel 2.1 Klasifikasi Prosesor Terinterkoneksi Berdasarkan Jarak	8
Tabel 2.2 Kategori Kabel Twisted Pair dan Spesifikasinya	14
Tabel 2.3 Tujuh Lapis Model OSI	17
Tabel 2.4 Lapisan Atas Model OSI	18
Tabel 2.5 Lapisan Bawah Model OSI	18
Tabel 2.6 Lapisan Model OSI danTCP/IP	24
Tabel 2.7 Daftar Aplikasi yang Menggunakan TCP	27
Tabel 2.8 Daftar Aplikasi yang Menggunakan UDP	27
Tabel 2.9 Daftar Kebutuhan Sistem untuk Zabbix	38
Tabel 2.10 Daftar Sistem Operasi untuk Zabbix	38
Tabel 4.1 Tampilan Hasil Utilitas Switch 2226-SFP Plus 3COM	59
Tabel 4.2 Tampilan Hasil Utilitas Switch AT-FS750/48	62
Tabel 4.3 Tampilan Hasil Utilitas Switch Cisco Catalys 2960	64
Tabel 4.4 Tampilan Hasil Utilitas Access Point ENS202EXT	67
Tabel 4.5 Tampilan Hasil Utilitas Access Point ENS200EXT	69
Tabel 4.6 Tampilan Hasil Utilitas Personal Computer Compag	76

DAFTAR GAMBAR

Halaman

Gambar 2.1 Topologi <i>Bus</i>
Gambar 2.2 Topologi Cincin 11
Gambar 2.3 Topologi Bintang
Gambar 2.4 Topologi Mesh 13
Gambar 2.5 <i>Gigabit</i> PCI <i>Network Adapter</i>
Gambar 2.6 <i>Hub</i>
Gambar 2.7 <i>Repeater</i>
Gambar 2.8 <i>Switch</i>
Gambar 2.9 <i>Router</i>
Gambar 2.10 Kerangka Berfikir 40
Gambar 3.1 Topologi UNJ 44
Gambar 3.2 Penempatan Server Monitoring pada Jaringan UNJ Lantai 2
Gambar 3.2 Penempatan <i>Server Monitoring</i> pada Jaringan UNJ Lantai 2 Pustikom
Gambar 3.2 Penempatan Server Monitoring pada Jaringan UNJ Lantai 2Pustikom
Gambar 3.2 Penempatan Server Monitoring pada Jaringan UNJ Lantai 2 Pustikom 46 Gambar 4.1 Pengukuran Bandwidth dengan Speedtest 57 Gambar 4.2 Pengukuran Bandwidth dengan Monitoring Network Traffic 58
Gambar 3.2 Penempatan Server Monitoring pada Jaringan UNJ Lantai 2PustikomGambar 4.1 Pengukuran Bandwidth dengan SpeedtestGambar 4.2 Pengukuran Bandwidth dengan Monitoring Network Traffic58Gambar 4.3 Pengukuran Bandwidth dengan Task Manager58
Gambar 3.2 Penempatan Server Monitoring pada Jaringan UNJ Lantai 2 Pustikom 46 Gambar 4.1 Pengukuran Bandwidth dengan Speedtest 57 Gambar 4.2 Pengukuran Bandwidth dengan Monitoring Network Traffic 58 Gambar 4.3 Pengukuran Bandwidth dengan Task Manager 58 Gambar 4.4 Pengukuran Bandwidth dengan Speedtest 60
Gambar 3.2 Penempatan Server Monitoring pada Jaringan UNJ Lantai 2Pustikom46Gambar 4.1 Pengukuran Bandwidth dengan Speedtest57Gambar 4.2 Pengukuran Bandwidth dengan Monitoring Network Traffic58Gambar 4.3 Pengukuran Bandwidth dengan Task Manager58Gambar 4.4 Pengukuran Bandwidth dengan Speedtest60Gambar 4.5 Pengukuran Bandwidth dengan Monitoring Network Traffic60
Gambar 3.2 Penempatan Server Monitoring pada Jaringan UNJ Lantai 2Pustikom46Gambar 4.1 Pengukuran Bandwidth dengan Speedtest57Gambar 4.2 Pengukuran Bandwidth dengan Monitoring Network Traffic58Gambar 4.3 Pengukuran Bandwidth dengan Task Manager58Gambar 4.4 Pengukuran Bandwidth dengan Speedtest60Gambar 4.5 Pengukuran Bandwidth dengan Monitoring Network Traffic60Gambar 4.6 Pengukuran Bandwidth dengan Task Manager61Gambar 4.6 Pengukuran Bandwidth dengan Task Manager61
Gambar 3.2 Penempatan Server Monitoring pada Jaringan UNJ Lantai 2 Pustikom 46 Gambar 4.1 Pengukuran Bandwidth dengan Speedtest 57 Gambar 4.2 Pengukuran Bandwidth dengan Monitoring Network Traffic 58 Gambar 4.3 Pengukuran Bandwidth dengan Task Manager 58 Gambar 4.4 Pengukuran Bandwidth dengan Speedtest 60 Gambar 4.5 Pengukuran Bandwidth dengan Monitoring Network Traffic 60 Gambar 4.6 Pengukuran Bandwidth dengan Task Manager 61 Gambar 4.7 Pengukuran Bandwidth dengan Speedtest 62
Gambar 3.2 Penempatan Server Monitoring pada Jaringan UNJ Lantai 2 Pustikom 46 Gambar 4.1 Pengukuran Bandwidth dengan Speedtest 57 Gambar 4.2 Pengukuran Bandwidth dengan Monitoring Network Traffic 58 Gambar 4.3 Pengukuran Bandwidth dengan Task Manager 58 Gambar 4.4 Pengukuran Bandwidth dengan Speedtest 60 Gambar 4.5 Pengukuran Bandwidth dengan Monitoring Network Traffic 60 Gambar 4.6 Pengukuran Bandwidth dengan Task Manager 61 Gambar 4.7 Pengukuran Bandwidth dengan Task Manager 61 Gambar 4.8 Pengukuran Bandwidth dengan Speedtest 62 Gambar 4.8 Pengukuran Bandwidth dengan Monitoring Network Traffic 62 Gambar 4.8 Pengukuran Bandwidth dengan Monitoring Network Traffic 62 Gambar 4.8 Pengukuran Bandwidth dengan Monitoring Network Traffic 63

Gambar 4.10 Pengukuran Bandwidth dengan Speedtest	65
Gambar 4.11 Pengukuran Bandwidth dengan Monitoring Network Traffic	65
Gambar 4.12 Pengukuran Bandwidth dengan Task Manager	66
Gambar 4.13 Pengukuran Bandwidth dengan Speedtest	67
Gambar 4.14 Pengukuran Bandwidth dengan Monitoring Network Traffic	68
Gambar 4.15 Pengukuran Bandwidth dengan Task Manager	68
Gambar 4.16 Pengukuran Bandwidth dengan Speedtest	70
Gambar 4.17 Pengukuran Bandwidth dengan Monitoring Network Traffic	70
Gambar 4.18 Pengukuran Bandwidth dengan Task Manager	71
Gambar 4.19 Pengecekan Langsung Disk Space Usage	71
Gambar 4.20 Pengecekan Monitoring Device pada Disk Space Usage	72
Gambar 4.21 Pengecekan Langsung pada CPU Load	72
Gambar 4.22 Pengecekan Monitoring Device pada CPU Load	72
Gambar 4.23 Pengecekan Langsung pada Memory	73
Gambar 4.24 Pengecekan Monitoring Device pada Memory	73

DAFTAR LAMPIRAN

Halaman

Lampiran 1. Surat Permohonan Penelitian di PUSTIKOM UNJ 80	1
Lampiran 2. Keterangan dari Hasil Pengamatan Monitoring	
Lampiran 3. Pengambilan Data System Status Saat Terjadi Masalah pada	
Perangkat	0
Lampiran 4. Pengambilan Data Host Status Saat Terjadi Masalah pada	
Perangkat 15	3
Lampiran 5. Pengambilan Data Last 20 Issues Saat Terjadi Masalah pada	
Perangkat	5
Lampiran 6. Pengambilan Data Notifikasi Email Saat Terjadi Masalah	
pada Perangkat	9
Lampiran 7. Analisis Data yang Didapat 16	1

BAB I

PENDAHULUAN

1.1 Latar Belakang Masalah

Perkembangan teknologi informasi dan komunikasi yang disebabkan oleh tingginya kebutuhan manusia akan sebuah informasi telah membuat lalu lintas data di dalam sebuah jaringan singkat, baik di jaringan lokal maupun jaringan Internet. Hal ini menjadikan jaringan komputer sebagai objek yang cukup penting dalam sebuah instansi karena jika kinerja jaringan terganggu dapat mengakibatkan terganggunya penyebaran informasi sehingga kelancaran operasional instansi tersebut menjadi terhambat. Oleh karena itu, untuk menjaga kinerja infrastruktur jaringan dibutuhkan satu solusi yang secara kontinu dapat memantau aktivitas di setiap perangkat infrastruktur jaringan.

Solusi dan jawaban dari penjelasan di atas tersebut sangat di butuhkan dengan adanya *network monitoring* untuk memantau kinerja jaringan Internet yang sedang bekerja dan bisa juga memantau lalu lintas data pada jaringan Internet tersebut. *monitoring* dan analisis sangat dibutuhkan untuk dokumentasi lalu lintas jaringan Internet. Dokumentasi ini sangat penting dan diperlukan untuk mengevaluasi kinerja suatu jaringan.

Monitoring paling umum adalah *monitoring* penggunaan *bandwidth* dari *router*, *switch*, dan *modem* melalui SNMP (*Simple Network Monitoring Protocol*), *agent*, *netflow*, atau *packet sniffing*. Dengan menggunakan SNMP informasi yang diperoleh berupa besaran lalu lintas yang terjadi pada sebuah *interface* yang dimonitor tanpa mengetahui informasi detail dari lalu lintas yang terjadi seperti asal dan tujuan serta besaran paket data yang dikirimkannya. Sedangkan *agent* dapat memberikan informasi lebih lengkap dari SNMP. Salah satu aplikasi yang dapat digunakan untuk melakukan *monitoring* jaringan melalui SNMP dan *agent* adalah aplikasi Zabbix.

Monitoring ini dilakukan untuk mengukur, mencatat, mengumpulkan dan memanfaatkan informasi yang berhubungan dengan jaringan komputer pada kelas di Pustikom dan Gedung Dewi Sartika Universitas Negeri Jakarta untuk kemudian ditindak lanjuti.

Universitas Negeri Jakarta (UNJ) merupakan salah satu Perguruan Tinggi Negeri di Jakarta yang terus berkembang menuju universitas terkemuka di Indonesia. Didirikan pada tahun 1964, dikarenakan atas dasar dirasakan kurangnya tenaga pendidikan di semua jenjang dan jenis lembaga pendidikan oleh pemerintah Indonesia. UNJ memiliki 4 kampus (kampus A Rawamangun, Kampus B Palad, Kampus Halimun, dan Kampus Setia Budi) dengan 1 kampus pusat (kampus A). Mengikuti perkembangan kekinian, seluruh aktivitas civitas akademika maupun non-akademik menggunakan teknologi jaringan komputer dan Internet dalam kesehariaannya.

Universitas Negeri Jakarta memiliki jaringan komputer yang berpusat di Gedung D yang sering kita kenal dengan Pustikom, jaringan komputer di UNJ sering terjadi kendala data yang terhambat atau koneksi yang sering terputus, maka dari itu sangat di butuhkan alat untuk memonitoring jaringan dalam kampus UNJ. Kebutuhan Internet di Universitas Negeri Jakarta sangat besar dengan perjanjian sewa data Internet sebesar 350 Mbps untuk *internasional* dan 300 Mbps untuk lokal. Dengan penggunaan yang sebanyak itu maka diperlukan pengaturan *bandwidth management* yang baik agar terbagi baik ke seluruh UNJ, terutama ke fakultas-fakultas tempat mahasiswa-mahasiswi banyak berkumpul. Oleh karena itu, UNJ mengadakan kebijakan pembagian *bandwidth management* sebesar 20 Mbps ke setiap fakultas di setiap gedung.

Di setiap gedung memiliki beberapa intansi dan setiap instansi memiliki jaringannya sendiri dan juga memiliki *switch*, untuk saling berhubungan antara satu gedung dengan gedung lainnya menggunakan *switch* tersebut, jika satu *switch* bermasalah maka salah satu instansi tersebut akan mengalami kendala jaringan, dari data yang terhambat bahkan tidak sampai ketujuan dengan baik atau mungkin tibatiba sering terputus koneksi jaringannya.

Gedung Dewi Sartika adalah gedung baru yang dibiayai oleh IDB (*Islamic Development Bank*) yang terdiri dari 10 lantai. Lantai 1 terdiri dari 6 ruangan, lantai 2 dan 3 terdiri dari 2 aula yaitu Aula Latief dan Aula Yusuf. Lantai 4 sampai dengan lantai 10 terdiri dari 8 ruangan. Gedung Dewi Sartika menggunakan teknologi jaringan internet sebagai layanan untuk kegiatan akademik dan non akademik sehingga setiap lantai terdapat perangkat jaringan berupa *distribution switch* sebagai alat untuk mendistribusikan *bandwidth* ke setiap pengguna untuk layanan Internet melalui kabel dan terdapat *access point* yang terhubung ke *switch* yang digunakan untuk koneksi Internet secara *wireless* atau *wi-fi* yang kemudian tersambung ke berbagai jenis perangkat pengguna.

Monitoring pada jaringan ini umumnya dilakukan dengan menggunakan sebuah perangkat komputer atau PC (*Personal Computer*) yang bertindak sebagai *server* dan terhubung ke dalam jaringan lokal Pustikom Universitas Negeri Jakarta. *Monitoring* ini mengharuskan *network administrator* untuk terus berada di depan layar dan melakukan pemantauan terhadap berbagai situasi yang terjadi dalam jaringan agar kinerja jaringan tetap terjaga. Ada saatnya *network administrator* tidak berada di depan layar untuk memantau jaringan, hal seperti ini menyebabkan *monitoring* sedikit terhambat dan hal-hal yang terjadi dalam jaringan tidak diketahui secara langsung oleh *network administrator*. Pada saat ini jika terjadi gangguan pada jaringan, penanganan di *network administrator* akan tertunda.

Mengatasi masalah seperti ini, jalan keluarnya adalah menghubungi *network administrator* sesaat setelah gangguan pada jaringan terdeteksi, sehingga diperlukan aplikasi untuk menghubungi *network administrator* adalah dengan mengirim pesan ke handphone atau leptop yang dimiliki oleh *network administrator* dengan sistem notifikasi *email*. Aplikasi ini agar memudahkan *network administrator* untuk mengevaluasi terhadap kinerja suatu jaringan. Hal tersebut yang melatar belakangi dibuatnya sebuah *monitoring* jaringan menggunakan Zabbix.

1.2 Identifikasi Masalah

Berdasarkan latar belakang masalah di atas, masalah yang dapat diidentifikasi sebagai berikut:

- 1. Bagaimana merancang aplikasi *monitoring* jaringan menggunakan aplikasi Zabbix pada Linux untuk *monitoring device* dan *network traffic* secara jelas dalam bentuk grafik.
- 2. Sistem yang dibuat ini nantinya bisa memantau beberapa *device* yang *up* dan *down* secara *real time*.
- 3. Bagaimana merancang aplikasi Zabbix berbasis *web* dengan sistem notifikasi *email*.

4. Bagaimana hasil uji coba menggunakan aplikasi Zabbix berbasis *web* dengan sistem notifikasi *email*.

1.3 Pembatasan Masalah

Agar pada masalah yang dibahas tidak terlalu meluas dan tidak menyimpang dari topik yang ada, maka peneliti perlu membatasi masalah sebagai berikut:

- Monitoring device dan network traffic di lakukan pada jaringan kelas yang berada pada kelas di Pustikom dan Gedung Dewi Sartika menggunakan perangkat dan jaringan Universitas Negeri Jakarta.
- 2. *Monitoring device* dan *network traffic* menggunakan aplikasi *Zabbix* untuk *monitoring* jaringan.
- 3. Aplikasi *monitoring* jaringan menggunakan *Postfix* untuk mengirim *alert* notifikasi melalui *email*.

1.4 Perumusan Masalah

Berdasarkan latar belakang, identifikasi, dan pembatasan masalah maka perumusan masalah yang akan dibahas pada tugas akhir ini adalah:

- 1. Apakah *monitoring device* dan *network traffic* menggunakan Zabbix dapat memberikan gambaran dan informasi aktivitas data jaringan pada setiap perangkat dikelas yang ada di Pustikom dan Gedung Dewi Sartika Universitas Negeri Jakarta?
- 2. Apakah *monitoring device* dan *network traffic* menggunakan Zabbix berbasis *web* dengan sistem notifikasi *email* dapat memberikan informasi lebih cepat kepada *network administrator* bila terjadi masalah pada setiap perangkat dikelas yang ada di Pustikom dan Gedung Dewi Sartika Universitas Negeri Jakarta?

1.5 Tujuan Penelitian

Tujuan umum dari penelitian ini adalah mengaplikasikan sebuah *network monitoring* menggunakan aplikasi Zabbix berbasis *web* dengan sistem notifikasi *email* untuk dapat melihat gambaran dan informasi yang mengenai lalu lintas data jaringan yang terjadi pada setiap perangkat dan memberikan informasi lebih cepat kepada *network administrator* bila terjadi masalah pada setiap perangkat didalam kelas yang ada di Pustikom dan Gedung Dewi Sartika Universitas Negeri Jakarta.

1.6 Manfaat Penelitian

Adapun manfaat penelitian yang dilakukan ini, yaitu:

- Dapat membantu dan memudahkan *network administrator* dalam upaya monitoring device dan network traffic secara cepat pada kelas di Pustikom dan Gedung Dewi Sartika Universitas Negeri Jakarta.
- 2. Dapat mengidentifikasi dan mengatasi masalah secepat mungkin sebelum mendapat komplain.
- 3. Dapat mengukur dan menganalisa ketersediaan dan kinerja dari komputer.
- 4. Dapat merencanakan *upgrade*/restrukturisasi sumber daya perangkat keras (*hardware*).
- 5. Lebih hemat biaya dan waktu untuk *maintenance*.

BAB II

KERANGKA TEORETIK, KERANGKA BERPIKIR DAN HIPOTESIS PENELITIAN

2.1 Kerangka Teoritik

2.1.1 Definisi Jaringan Komputer

Jaringan komputer merupakan sekumpulan komputer berjumlah banyak yang terpisah-pisah akan tetapi saling berhubungan dalam melaksanakan tugasnya¹. Lebih lengkapnya, jaringan komputer merupakan sekelompok komputer otonom yang saling berhubungan antara yang satu dengan yang lainnya menggunakan protokol komunikasi melalui media komunikasi sehingga dapat saling berbagi informasi dan sumber daya.

2.1.2 Macam-Macam Jaringan Komputer

Dalam sistem jaringan tidak ada klasifikasi khusus yang tepat yang dapat diterima secara umum, tetapi terdapat dua klasifikasi yang sangat penting yaitu teknologi transmisi dan jarak². Secara garis besar, terdapat dua jenis teknologi transmisi yaitu jaringan *broadcast* dan jaringan *point to point*.

Jaringan *broadcast* memiliki saluran komunikasi tunggal yang dipakai bersama-sama oleh semua pihak yang ada pada jaringan³. Pesan-pesan berukuran kecil yang disebut paket, dikirimkan oleh suatu mesin kemudian akan diterima oleh

¹ Andrew S Tanenbaum, *Jaringan Komputer*, diterjemahkan oleh Durnita Priatna dan Purnomo Wahyu Indarto (Jakarta: Prenhallindo, 1997), h. 1.

² Andrew S Tanenbaum, *Jaringan Komputer*, diterjemahkan oleh Durnita Priatna dan Purnomo Wahyu Indarto (Jakarta: Prenhallindo, 1997), h. 5.

³ Andrew S Tanenbaum, *Jaringan Komputer*, diterjemahkan oleh Durnita Priatna dan Purnomo Wahyu Indarto (Jakarta: Prenhallindo, 1997), h. 5.

mesin-mesin lainnya. *Field* alamat dalam sebuah paket berisi keterangan tentang kepada siapa paket tersebut ditujukan. Saat menerima paket, mesin akan mengecek *field* alamat, bila paket tersebut ditujukan untuk dirinya maka mesin akan memperoses paket itu, bila paket tersebut bukan untuk dirinya maka mesin akan mengabaikannya.

Jaringan *point to point* terdiri dari beberapa koneksi pasangan individu dari mesin-mesin untuk mengirim paket dari sumber ke suatu tujuan⁴. Sebuah paket pada jaringan jenis ini mungkin harus melalui satu atau lebih mesin-mesin perantara, sering kali paket tersebut melewati banyak *route* yang mungkin berbeda jaraknya. Oleh sebab itu pada jaringan *point to point* algoritma *routing* memegang peranan yang sangat penting.

Pada umumnya jaringan yang lebih kecil dan teralokasi secara geografis cenderung memakai *broadcasting*, sedangkan jaringan-jaringan yang lebih besar menggunakan *point to point*⁵.

Klasifikasi jaringan komputer selain berdasarkan teknologi trasmisi adalah klasifikasi berdasarkan pada jaraknya.

Jarak antar	Prosesor di tempat yang	Contoh
 prosesor	sama	
 0,1 m	Papan rangkaian	Data flow machine
1 m	Sistem	Multicomputer
10 m	Ruangan	Local area network
100 m	Gedung	
1 km	Kampus	Metropolitan area network

Tabel 2.1 Klasifikasi Prosesor Terinterkoneksi Berdasarkan Jarak⁶

⁴ Andrew S Tanenbaum, *Jaringan Komputer*, diterjemahkan oleh Durnita Priatna dan Purnomo Wahyu Indarto (Jakarta: Prenhallindo, 1997), h. 6.

⁵ Andrew S Tanenbaum, *Jaringan Komputer*, diterjemahkan oleh Durnita Priatna dan Purnomo Wahyu Indarto (Jakarta: Prenhallindo, 1997), h. 6.

⁶ Andrew S Tanenbaum, *Jaringan Komputer*, diterjemahkan oleh Durnita Priatna dan Purnomo Wahyu Indarto (Jakarta: Prenhallindo, 1997), h. 6.

ork
,

Dari Tabel 2.1 terlihat pada bagian paling atas adalah *data flow machine*, komputer-komputer yang sangat paralel yang memiliki beberapa unit fungsi yang semuanya bekerja untuk program yang sama. Kemudian *multicomputer*, sistem yang bekerja dengan mengirim pesan melalui bus pendek dengan sangat cepat. Setelah *multicomputer* adalah jaringan sejati, komputer-komputer yang berkomunikasi dengan cara bertukar data atau pesan melalui kabel yang lebih panjang. Jaringan seperti ini dapat dibagi menjadi LAN (*Local Area Network*), MAN (*Metropolitan Area Network*), dan WAN (*Wide Area Network*). Akhirnya koneksi antara dua jaringan atau lebih disebut dengan *internetwork*. Internet merupakan salah satu contoh yang terkenal dari suatu *internetwork*⁷.

2.1.3 Topologi

Topologi dapat didefinisikan sebagai tata letak fisik atau logis dari jaringan⁸. Biasanya, topologi fisik didokumentasikan dengan diagram jaringan, seperti diagram Visio. Sedangkan topologi logis mengacu pada bagaimana sebuah jaringan benar-benar berkomunikasi. Terdapat beberapa topologi dalam jaringan komputer, diantaranya adalah *bus*, *ring*, *star*, dan *mesh*. Masing-masing topologi ini mempunyai ciri khas, dengan kelebihan dan kekurangannya sendiri.

⁷ Andrew S Tanenbaum, *Jaringan Komputer*, diterjemahkan oleh Durnita Priatna dan Purnomo Wahyu Indarto (Jakarta: Prenhallindo, 1997), h. 6.

⁸ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 52.

2.1.3.1 Topologi Bus

Topologi *bus* merupakan topologi dengan menggunakan sebuah kabel tunggal dimana semua *node* pada jaringan terhubung, dengan *T-Connector*, maka komputer atau perangkat jaringan lainnya bisa dengan mudah dihubungkan satu sama lain⁹.

Pada topologi *bus*, kedua ujung jaringan harus diakhiri dengan sebuah *terminator*. Untuk menambah komputer ke dalam jaringan dapat dilakukan dengan men-*tap Ethernet* komputer tersebut sepanjang kabel¹⁰. Ilustrasi dari topologi *bus* dapat dilihat pada Gambar 2.1.

Gambar 2.1 Topologi Bus

Keuntungan dari penerapan topologi *bus* adalah hemat kabel, layout kabel sederhana, dan pengembangan jaringan atau penambahan *workstation* baru dapat dilakukan dengan mudah tanpa mengganggu *workstation* lain, sedangkan kerugiannya adalah deteksi dan isolasi kesalahan sangat kecil, kepadatan lalu lintas

⁹ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 52.

¹⁰ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 52.

pada jalur utama, dan diperlukan repeater untuk jarak jauh. Kelemahan dari topologi ini adalah bila terdapat gangguan di sepanjang kabel pusat maka keseluruhan jaringan akan mengalami gangguan¹¹.

2.1.3.2 Topologi Cincin

Topologi cincin adalah topologi jaringan berbentuk rangkaian titik yang masing-masing terhubung ke dua titik lainnya, sedemikian sehingga membentuk jalur melingkar membentuk cincin¹². Ilustrasi dari topologi cincin dapat dilihat pada Gambar 2.2.

Gambar 2.2 Topologi Cincin

Keunggulan dari topologi cincin adalah tidak terjadinya *collision* atau tabrakan pengiriman data seperti pada topologi bus, karena hanya satu titik yang dapat mengirimkan data pada suatu saat. Sedangkan kelemahan dari topologi ini adalah setiap titik dalam jaringan akan selalu ikut serta mengelola informasi yang

¹¹ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 53.

¹² Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 53.

dilewatkan sehingga bila terjadi gangguan di suatu titik maka seluruh jaringan akan terganggu¹³.

2.1.3.3 Topologi Bintang

Pada topologi bintang, terdapat perangkat pusat yang memiliki koneksi terpisah dengan setiap *node* akhir¹⁴. Ilustrasi dari topologi *star* dapat dilihat pada Gambar 2.3.

Gambar 2.3 Topologi Bintang

Keunggulan dari topologi bintang adalah karena ada hubungan terpisah antara *node* akhir dan perangkat sentral, topologi ini memungkinkan *administrator* jaringan untuk menambah atau menghapus *node* akhir tanpa mempengaruhi layanan untuk semua *node* lain pada jaringan¹⁵.

2.1.3.4 Topologi Mesh

¹³ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 54.

¹⁴ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 54.

¹⁵ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 54.

Pada topologi *mesh*, setiap perangkat saling terhubung secara langsung dengan perangkat lain¹⁶. Ilustrasi dari topologi *mesh* dapat dilihat pada Gambar 2.4.

Gambar 2.4 Topologi Mesh

Keunggulan dari topologi *mesh* adalah dengan keterhubungan masing-masing perangkat secara langsung, jika terdapat gangguan pada satu jalur penghubung maka transmisi data bisa melewati jalur yang lain¹⁷. Kelemahan topologi ini adalah boros kabel.

2.1.4 Media Transmisi

Media transmisi merupakan jalur fisik diantara *transmitter* (pengirim) dan *receiver* (penerima). Media transmisi untuk gelombang elektromagnetik terbagi menjadi dua, yaitu media transmisi *guided* dan *unguided*¹⁸. Para media *guided*, gelombang dipadu sepanjang media dari ujung *transmitter* sampai *receiver*. Secara fisik, media *guided* tampak kasat mata, contohnya *twisted pair* tembaga, *coaxial* tembaga, dan serat optik. Media *unguided* mentransmisikan gelombang

¹⁶ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 54.

¹⁷ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 54.

¹⁸ William Stallings, *Data and Computer Communications (Eighth Edition)*, (United States of America: Pearson Education, Inc., 2001), h.110.

elektromagnetik namun tidak memandunya. Contoh dari media *unguided* adalah atmosfer dan ruang angkasa¹⁹.

Karakteristik dan kualitas suatu transmisi data ditentukan oleh dua hal yaitu karakteristik media dan karakteristik sinyal. Pada media *guided*, media menjadi lebih penting dalam penentuan batasan-batasan transmisi. Untuk media *unguided*, karakteristik transmisi lebih ditentukan kualitas sinyal yang dihasilkan melalui antena.

2.1.5 Twisted Pair

Twisted pair adalah media transmisi *guided* yang paling hemat dan paling banyak digunakan²⁰. Tidak hanya harganya yang lebih murah daripada jenis kabel lainnya, instalasi kabel *twisted pair* juga sederhana dan peralatan yang diperlukan untuk instalasinya tidak mahal. Secara fisik, *twisted pair* terdiri dari dua kawat yang disekat yang disusun dalam suatu pola spiral beraturan. Sepasang kawat bertindak sebagai satu jalur komunikasi tunggal. Biasanya beberapa pasang kawat digabungkan menjadi satu kabel dengan dibungkus dalam satu sarung pelindung yang keras. Pada jarak yang sangat jauh, kabel bisa diisikan ratusan pasang kawat. Terdapat dua jenis utama *twisted pair* yang beredar di pasaran, yaitu UTP (*Unshield Twisted Pair*) dan STP (*Shield Twisted Pair*). Kategori yang terdapat pada kabel *twisted pair* dapat dilihat di Tabel 2.2.

Tabel 2.2. Kategori Kabel *Twisted Pair* dan Spesifikasinya²¹

Kategori Standar Spesifikasi	Kategori	Standar	Spesifikasi
------------------------------	----------	---------	-------------

¹⁹ William Stallings, *Data and Computer Communications (Eighth Edition)*, (United States of America: Pearson Education, Inc., 2001), h.110.

²⁰ William Stallings, *Data and Computer Communications (Eighth Edittion)*, (United States of America: Pearson Education, Inc., 2001), h.112.

²¹ Andrew Oliviero and Bill Woodward, *Cabling The Complete Guide to Cooper and Fiber – Optic Networking (Fourth Edition)*, (Indianapolis: Wiley Publishing, Inc., 2009), h. 11.

1	Tidak didefinisikan oleh ANSI/TIA-568-C	Mendukung frekuensi kurang dari 1 MHz. Umumnya digunakan pada sistem telepon analog.
2	Tidak didefinisikan oleh ANSI/TIA-568-C	Mendukung frekuensi hingga 4 MHz.
3	ANSI/TIA-568-C	Mendukung frekuensi hingga 16 MHz. Umum digunakan pada 4 Mbps UTP <i>Token Ring</i> , 10 <i>Base-T Ethernet</i> , 100 <i>Base-T4</i> , dan sistem digital dan analog.
4	ANSI/TIA-568-A	Mendukung frekuensi hingga 20 MHz. Dibuat untuk memenuhi kebutuhan untuk solusi <i>Token Ring</i> LAN 16 Mbps.
5	ANSI/TIA-568-B	Mendukung frekuensi hingga 100 MHz. Digunakan pada 100 <i>Base-TX</i> , FDDI <i>over copper</i> , 155 Mbps ATM <i>over</i> UTP, dan berkat teknik pengkodean yang canggih 1000 Base-T Ethernet.
5e	ANSI/TIA-568-C	Mendukung frekuensi hingga 100 MHz. Kriteria kerja tambahan dan persyaratan uji trensmisi yang ketat membuat kabel ini lebih cocok untuk penerapan kecepatan tinggi seperti <i>Gigabit</i> <i>Ethernet</i> .
6	ANSI/TIA-568-C	Mendukung frekuensi hingga 250 MHz. Digunakan pada <i>Gigabit Ethernet</i> .
ба	ANSI/TIA-568-C	Mendukung frekuensi hingga 500 MHz. Dimaksudkan untuk penggunaan 10 <i>Gigabit Ethernet</i> .
7	ISO 11801	Mendukung frekuensi hingga 1 GHz. Telah digunakan secara luas di Eropa dan mulai populer di Amerika Serikat.

UTP berupa kabel telepon biasa yang umumnya digunakan pada perkantoran. Meskipun telah digunakan selama bertahun-tahun untuk sistem telpon, UTP digunakan secara umum pada jaringan LAN pada akhir 1980 dengan didahului munculnya *ethernet* melalui *twisted pair* dan standar *10 Base-T*. Kabel UTP biasanya hanya memiliki satu lapis luar atau jaket yang terdiri dari beberapa jenis bahan non-kondusi. STP memiliki kinerja yang lebih baik dan rate data yang lebih tinggi. Namun STP lebih mahal dan tidak mudah mengoperasiannya dibanding UTP.

2.1.6 Protokol

Protokol adalah sebuah aturan yang mendefinisikan beberapa fungsi yang ada dalam sebuah jaringan komputer, misalnya mengirim pesan, data, informasi, dan fungsi lain yang harus dipenuhi oleh sisi pengirim (*transmitter*) dan sisi penerima (*receiver*) agar komunikasi dapat berlangsung dengan benar²². Protokol mendefinisikan apa yang dikomunikasikan, bagaimana, dan kapan terjadinya komunikasi. Elemen-elemen penting pada protokol adalah *syntax, semantic,* dan *timing*.

Syntax merupakan format data dan cara pengkodean yang digunakan untuk mengkodekan sinyal. Sebagai contoh, sebuah protokol sederhana akan memiliki urutan pada delapan *bit* pertama adalah alamat pengirim, delapan *bit* kedua adalah alamat penerima dan *bit stream* sisanya merupakan informasinya sendiri.

Semantic mengacu pada maksud setiap section bit. Dengan kata lain adalah bagaimana bit-bit tersebut terpola untuk dapat diterjemahkan.

Timing mengacu pada dua karakteristik yakni kapan data tersebut harus dikirim dan seberapa cepat data tersebut dikirim. Sebagai contoh, jika pengirim memproduksi data sebesar 100 Mbps (*Mega bit per second*) namun penerima hanya mampu mengolah data pada kecepatan 1 Mbps, maka transmisi akan menjadi *overload* pada sisi penerima dan akibatnya akan banyak data yang hilang atau musnah.

2.1.7 Model Referensi

Terdapat dua arsitektur jaringan yang penting, yaitu model referensi OSI dan model referensi TCP/IP. Meskipun protokol yang terkait dengan model OSI sudah

²² Andri Kristianto, Jaringan Komputer, (Yogyakarta: Graha Ilmu, 2003), h. 23.

tidak digunakan lagi, tetapi model OSI masih cukup umum dan masih berlaku serta fitur yang ada pada seiap lapisannya masih sangat penting. Model TCP/IP tidak banyak digunakan tetapi protokolnya digunakan secara luas²³.

2.1.8 Model Referensi OSI

Model OSI (*Open System Interconnection*) didasarkan pada proposal yang dikembangkan oleh ISO (*International Standards Organization*) sebagai langkah awal menuju standarisasi internasional protokol yang digunakan dalam berbagai lapisan²⁴. Model OSI awalnya dikembangkan pada tahun 1980²⁵.

Tujuan utama dari OSI adalah untuk membuat jaringan dari berbagai sistem dan vendor berbeda dapat saling bekerja sama secara harmonis. Meskipun sekarang sudah tidak banyak digunakan, tetapi terminologinya lazim digunakan oleh orangorang di bidang jaringan. Model OSI terdiri dari tujuh lapis, setiap lapisnya memiliki nama dan nomor lapisan. Daftar tujuh lapis OSI dapat dilihat pada Tabel 2.3.

Nomor	Nama	
7	Aplikasi	
6	Presentasi	
5	Sesi	
4	Transport	
3	Network	
2	Data Link	
1	Fisik	

Tabel 2.3 Tujuh Lapis Model OSI²⁶

²³ Andrew S Tanenbaum, *Computer Networks (Fifth Edition)*, (United States of America: Pearson Education, Inc., 2011), h. 41.

²⁴ Andrew S Tanenbaum, *Computer Networks (Fifth Edition)*, (United States of America: Pearson Education, Inc., 2011), h. 41.

²⁵ Chuck Easttom, Computer Security Fundamentals, (Indianapolis: Pearson, 2012), h. 41.

²⁶ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 15.

Secara umum, setiap lapisan komunikasi dengan lapisan yang berdekatan pada model OSI dan lapisan yang sesuai pada sistem lain. Sebagai contoh, lapisan Presentasi berkomunikasi dengan lapisan Aplikasi, lapisan Sesi, dan juga dengan lapisan Presentasi pada sistem lain yang terhubung²⁷. Tujuh lapis OSI dapat dikelompokkan menjadi dua bagian, yaitu lapisan atas dan lapisan bawah.

Lapisan bagian atas dari model OSI mendefinisikan komunikasi antara aplikasi yang berada pada *station* pengguna akhir²⁸. Hal ini umumnya terkait dengan komunikasi perangkat lunak. Lapisan yang termasuk lapisan atas dapat dilihat pada Tabel 2.4.

Tabel 2.4 Lapisan Atas Model OSI

Nomor	Nama
7	Aplikasi
6	Presentasi
5	Sesi

Lapisan bawah dari model OSI fokus pada transportasi data, yang dapat dicapai melalui *router*, *switch*, atau kabel fisik²⁹. Lapisan yang termasuk lapisan bawah dapat dilihat pada Tabel 2.5.

 Tabel 2.5 Lapisan Bawah Model OSI

Nomor	Nama	
4	Transport	
3	Network	
2	Data Link	
1	Fisik	

²⁷ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 15.

²⁸ Jeremy Cloara, dkk., CCNA Examp Prep (Second Edition), (United States of America: Pearson Education, Inc., 2008), h. 15.

²⁹ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 18.

Setiap lapisan dalam model OSI melewatkan informasi kepada lapisan yang berdekatan dengan menggunakan PDU (*Protocol Data Unit*). PDU mencangkup pesan dan informasi protokol/kontrol dari lapisan di depannya. Informasi kontrol dapat juga berupa *header* atau *trailer*. Proses penambahan *header* atau *trailer* untuk PDU pada setiap lapisan OSI disebut enkapsulasi³⁰.

2.1.8.1 Lapisan Aplikasi

Lapisan Aplikasi atau lapisan ke-7 menyediakan antarmuka antara perngkat lunak komunikasi pada sebuah *host* dengan aplikasi eksternal yang diperlukan (seperti email dan transfer file). Lapisan ini juga dapat mengevaluasi sumber daya apa yang diperlukan untuk berkomunikasi antar dua perangkat dan ketersediaannya. Selain itu lapisan Aplikasi juga menyediakan layanan sinkronisasi aplikasi *client server* dan kontrol kesalahan dan integritas data diantara aplikasi³¹.

Protokol yang terdapat pada lapisan Aplikasi antara lain Telnet, HTTP (*Hypertext Transfer Protocol*), HTTPS (*Hypertext Transfer Protocol Secure*), FTP (*File Transfer Protocol*), TFTP (*Trivial File Transfer Protocol*), DNS (*Domain Name System*), SMTP (*Simple Mail Transfer Protocol*), POP3 (*Post Office Protocol* 3), NFS (*Network File System*), NNTP (*Network News Transfer Protocol*), SNMP (*Simple Network Monitoring Protocol*), NTP (*Network Time Protocol*), dan DHCP (*Dynamic Host Configuration Protocol*)³².

³⁰ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 24.

³¹ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 16.

³² Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 16 – 17.

2.1.8.2 Lapisan Presentasi

Lapisan ke-6 menyajikan data ke lapisan Aplikasi dan bertindak sebagai penerjemah format data. Penerjemah format diperlukan untuk memastikan bahwa data dapat dibaca oleh aplikasi. Lapisan ke-6 juga menangani penataan data dan negoisasi *syntax* transfer data ke lapisan ke-7. Proses yang terlibat meliputi enkripsi data, dekripsi, kompresi, dan dekompresi³³. Lapisan Presentasi adalah satu-satunya lapisan yang dapat benar-benar mengubah data.

Protokol pada layer 6 meliputi:

- 1. JPEG (Joint Photographic Experts Group)
- 2. ASCII (American Standard Code for Information Intercharge)
- 3. EBCDIC (Extended Binary Coded Decimal Interchange Code)
- 4. TOFF (Tagged Image File Format)
- 5. GIF (Graphic Image File)
- 6. PICT (*Picture*)
- 7. MPEG (*Moving Picture Experts Group*)
- 8. MIDI (Musical Instrument Digital Interface)
- 9. Quick Time
- 10. RTF (Rich Text Format)

2.1.8.3 Lapisan Sesi

Lapisan ke-5 intinya berkaitan dengan kontrol dialog antar perangkat. Lapisan ini menentukan awal, tengah, dan akhir sesi dari percakapan yang terjadi antara

³³ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 17.
aplikasi³⁴. Dengan cara ini, lapisan Sesi bertindak sebagai perantara untuk aplikasi tersebut.

Protokol yang terdapat pada lapisan Sesi antara lain NFS (*Network File System*), SQL (*Sctructured Query Language*), RFC (*Remote Procedure Call*), ASP (*AppleTalk Session Protocol*), X Windows, dan DNA SCP (*Digital Network Architecture Session Conntrol Protocol*)³⁵.

2.1.8.4 Lapisan *Transport*

Lapisan ke-4 bertanggung jawab untuk koneksi *end to end* dan pengiriman data antar dua *host*. Fungsi utama dari lapisan ke-4 adalah kemampuan untuk memotong dan menyusun kembali data. Sebagai contoh ketika satu sistem mengirim data ke sistem lain, data dapat dibagi menjadi blok-blok data yang lebih kecil dan ditransmisikan melalui jaringan. Sistem penerima kemudian dapat menyusun kembali blok data yang telah dipotong pada lapisan *Transport*. Transmisi terjadi melalui konektivitas logis antara pengirim dan tujuan. Lapisan ke-4 menyediakan transfer data transparan dengan menyembunyikan rincian transmisi dari lapisan atas. Lapisan *Transport* juga menyediakan fungsi deteksi kesalahan, perbaikan kesalahan, dan membangun, memelihara, dan menghancurkan sirkuit virtual³⁶.

Lapisan *Transport* dapat menyediakan jaringan yang handal melalui *ackknowledgments*, *sequencing*, dan *flow control*³⁷.

³⁴ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 18.

³⁵ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 18.

³⁶ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 19.

³⁷ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 19.

- 1. *Acknowledgments*, segmen yang dikirim diakui ke pengiriman. Jika segmen tidak diakui, pengirim akan mengirim ulang.
- 2. *Sequencing*, segmen data diurutkan ke dalam urutan asli ketika tiba di tempat tujuan.
- Flow control, menyediakan kontrol buffer yang mencegah banjir paket ke host tujuan. Buffer menyimpan ledakan data untuk diproses pada saat transmisi selesai.

Protokol lapisan ke-4 meliputi TCP (*Transmission Control Protocol*), UDP (*User Datagram Protocol*), dan SPX (*Sequenced Packed Exchange*).

2.1.8.5 Lapisan Network

Lapisan ke-3 merupakan tempat penentuan jalur terbaik yang dibuat untuk pengiriman paket di seluruh jaringan. Protokol seperti IP digunakan untuk menentukan pengalamatan logis, yang dapat mengidentifikasi tujuan dari sebuah paket atau datagram³⁸.

Terdapat dua jenis paket yang digunakan pada lapisan ke-3, yaitu *Data Packets* dan *Route Update Packets*. *Data Packets* merupakan transportasi data di seluruh *internetwork* dan didukung oleh protokol IP dan IPX. Sedangkan *Route Update Packets* merupakan paket kiriman pembaruan ke *router* tetangga semua jaringan yang terhubung dalam *internetwork* dan didukung oleh protokol *routing* seperti RIP, EIGRP, dan OSPF³⁹.

³⁸ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 20.

³⁹ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 20.

Protokol pada lapisan ke-3 meliputi IP (*Internet Protokol*), IPX (*Internet Packet Exchange*), dan AppleTalk DDP (*Diagram Delivery Protokol*). Perangkat yang digunakan dalam lapisan Network adalah *router* dan *switch* L3 (*Layer* 3).

2.1.8.6 Lapisan Data Link

Lapisan ke-2 menjamin transfer data yang dapat diandalkan dari lapisan *Network* ke lapisan Fisik untuk pengiriman di seluruh jaringan. Data yang diterima dari lapisan *Network* diformat ke dalam *frame* untuk ditransmisikan ke lapisan Fisik. Pengalamatan fisik atau pengalamatan perngkat keras (lebih baik dari pengalamatan logis) memastikan bahwa data dikirimkan ke *node* yang sesuai pada LAN. Lapisan ini juga bertanggung jawab untuk pemberitahuan *error* (bukan koreksi), topologi jaringan, dan *flow control*⁴⁰.

Lapisan ini merupakan satu-satunya lapisan yang memiliki *sub layer*. Dua *sub layer* pada lapisan *Data Link* didefinisikan dalam IEEE Ethernet 802.3 yaitu MAC (*Media Access Control*) dan LLC (*Logical Link Control*). Perangkat yang digunakan lapisan *Data Link* adalah *bridge* dan *switch*.

2.1.8.7 Lapisan Fisik

Lapisan ke-1 memindahkan *bit* diantara *node*. Kebutuhan listrik, mekanik, prosedural, dan fungsional didefinisikan pada lapisan Fisik untuk membantu aktivasi, pemeliharaan, dan deaktivasi kenektivitas fisik antar perangkat⁴¹. Perangkat yang terdapat pada lapisan fisik meliputi *hub* dan *repeater*.

Atribut lain pada lapisan Fisik meliputi:

1. Spesifikasi voltase, kecepatan kabel, dan pin out kabel.

⁴⁰ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 21.

⁴¹ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 23.

- 2. Kemampuan untuk menerima dan mengirim sebuah sinyal data.
- 3. Pengidentifikasian antarmuka yang berada diantara DTE (*Data Terminal Equipment*) dan DCE (*Data Communication Equipment*).

2.1.9 Model Referensi TCP/IP

Model TCP/IP (*Transmission Control Protocol/Internet Protocol*), juga dikenal sebagai model DoD (*Department of Defense*) diciptakan oleh Departemen Pertahanan Amerika Serikat ketika mereka mengembangkan rangkaian protokol TCP/IP. Tujuannya adalah menyediakan jaringan yang dapat diandalkan dan integritas data ketika terjadi bencana. Saat ini, komunikasi TCP/IP telah melekat dalam susunan jaringan⁴². Model TCP/IP terdiri dari empat lapis yaitu lapisan Aplikasi, *Transport, Internet*, dan *Network Access*. Pada dasarnya model TCP/IP memiliki banyak kesamaan dengan model OSI. Tabel 2.6 memperlihatkan lapisan OSI di bagian kiri dan lapisan TCP/IP di bagian kanan.

Tabel 2.6. Lapisan Model OSI dan TCP/IP

Lapisan OSI	Lapisan TCP/IP
Aplikasi Presentasi Sesi	Aplikasi
Transport	Transport
Network	Internet
Data Link	Network Access
Fisik	

2.1.9.1 Lapisan Aplikasi dalam Model TCP/IP

Lapisan ini menggabungkan fungsi dari tiga lapisan atas dari model OSI dan juga dapat disebut lapisan Proses/Aplikasi. Beberapa aplikasi yang paling populer (*email, file transport*, dan sebagainya) menggunakan antarmuka lapisan ini untuk

⁴² Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 26.

berkomunikasi dengan aplikasi lain pada jaringan⁴³. Protokol yang terdapat pada lapisan Aplikasi adalah Telnet, HTTP/HTTPS, FTP, TFTP, DNS, SMTP, POP3, NFS, NNTP, SNMP, NTP, DHCP, dan sebagainya⁴⁴.

2.1.9.2 Lapisan Transport dalam Model TCP/IP

Lapisan Transport sama dengan lapisan Transport dalam model OSI. Lapisan Transport juga dikenal sebagai lapisan *host to host*. Tidak hanya bertanggung jawab untuk pengiriman data yang dapat diandalkan, tetapi lapisan ini juga dapat memastikan bahwa data tiba dalam urutan yang tepat⁴⁵. Terdapat dua protokol dalam lapisan ini yaitu TCP dan UDP.

TCP merupakan protokol *connection oriented* yang dapat diandalkan. TCP menggunakan *acknowledgments*, *sequencing*, dan *flow control* untuk memastikan keandalannya. Segmen TCP berisi kolom untuk nomor *Sequence Acknowledgments*, dan *Windowing*. Kolom ini membantu memastikan bahwa datagram sampai dalam keadaan tidak rusak. Hal ini dianggap sebagai pengiriman handal⁴⁶.

TCP menggunakan PAR (Positive Acknowledgment and Retransmission)⁴⁷:

1. Perangkat sumber memulai *timer* ketika sebuah segmen dikirim dan mengirim kembali jika sampai *timer* habis pengakuan belum diterima.

⁴³ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 26.

⁴⁴ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 27.

⁴⁵ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 27.

⁴⁶ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 27.

⁴⁷ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 27.

- 2. Perangkat sumber melacak segmen yang dikirim dan membutuhkan pengakuan untuk setiap segmen.
- Perangkat tujuan mengakui ketika sebuah segmen diterima dengan mengirimkan paket ke perangkat sumber yang untuk menandakan untuk mengulangi pada nomor urutan berikutnya.

Seperti disebutkan pada bagian sebelumnya, TCP merupakan protokol *connection oriented*. Ketika perangkat sumber siap mengirimkan data, perangkat tersebut membuat komunikasi *connection oriented* dengan calon penerima. Langkah ini disebut *call setup* atau *three way handshake*. Ketika data berhasil dikirimkan, terminasi panggilan terjadi untuk memutuskan rangkaian virtual.

Three way handshake meliputi langkah-langkah berikut⁴⁸:

- 1. *SYN packet*, yaitu tahap pengiriman segmen "persetujuan koneksi" ke penerima untuk sinkronisasi sistem.
- SYN-ACK packet, segmen kedua dan ketiga mengakui permintaan untuk menghubungkan dan menentukan aturan keterlibatan. Sinkronisasi Sequencing diminta dari perangkat penerima. Koneksi dua arah telah didirikan.
- 3. *ACK packet*, segmen akhir dikirim sebagai pengakuan bahwa aturan telah diterima dan koneksi telah terbentuk.

Baik TCP maupun UDP menggunakan nomor port. Aplikasi yang menggunakan TCP dapat dilihat pada Tabel 2.7.

⁴⁸ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 20.

Aplikasi	Nomor Port	
FTP	20, 21	
Telnet	23	
SMTP	25	
DNS (zone transfers)	53	
HTTP	80	
POP3	110	
NNTP	119	
HTTPS	443	

Tabel 2.7 Daftar Aplikasi yang Menggunakan TCP

UDP jauh lebih sederhana dibandingkan TCP karena merupakan protokol *connection less*. Header UDP hanya berisi sumber dan port tujuan, panjang isian dan sebuah *checksum*. Karena tidak adanya urutan, pengakuan, dan *windowing field*, UDP tidak menjamin pengiriman. Karena tidak menjamin pengiriman, UDP dianggap tidak dapat diandalkan. Dengan protokol ini, keandalan tergantung pada aplikasi. Sisi positif dari UDP adalah lebih mudah diimplementasikan dan memiliki *transfer rate* yang lebih cepat⁴⁹. Aplikasi yang menggunakan UDP dapat dilihat pada Tabel 2.8.

Tabel 2.8 Daftar Aplikasi yang Menggunakan UDP

Aplikasi	Nomor Port	
DHCP	67, 68	
DNS (name resolution)	53	
TFTP	69	
NTP	123	
SNMP	161	

2.1.9.3 Lapisan Internet dalam Model TCP/IP

Lapisan Internet sama dengan lapisan *Network* dalam model OSI. Protokol yang berhubungan dalam pengiriman paket meliputi sebagai berikut⁵⁰.

⁴⁹ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 29.

⁵⁰ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 31.

- 1. IP
- 2. ICMP
- 3. ARP, RARP, dan Proxy ARP

IP (*Internet Protocol*) menggunakan pengalamatan logis atau virtual untuk mendapatkan sebuah paket dari sumber ke tujuannya. Alamat IP digunakan oleh *router* untuk membuat keputusan penerusan⁵¹.

Beberapa karakteristik kunci dari alamat IP adalah sebagai berikut⁵²:

- 1. Alamat dialokasikan oleh IANA (Internet Assigned Numbers Authority)
- Alamat IPv4 adalah 32 *bit* dibagi menjadi empat oktet (masing-masing 8 bit)
- 3. Nilai minimum (per oktet) adalah 0 dan nilai maksimalnya adalah 255
- IPv6 direncanakan untuk menggantikan IPv4 di masa depan dengan terdiri dari 128 *bit*

ICMP (*Internet Control Messaging Protocol*) digunakan oleh utilitas ping dan *traceroute*. Ping (*Packet Internet Gropper*) memungkinkan untuk memastikan bahwa alamat IP ada dan dapat menerima permintaan. *Treacroute* menelusuri rute atau jalur yang diambil dari *client* ke *remote host*. *Traceroute* juga melaporkan alamat IP dari *router* pada setiap *hop* berikutnya dalam perjalanan ke tujuan⁵³.

ARP (*Address Resolution Protocol*) memetakan alamat IP yang diketahui ke alamat MAC dengan mengirim ARP *broadcast*. Ketika IP tujuan berada pada

⁵¹ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 31.

⁵² Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 31.

⁵³ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 32.

subnet yang berbeda, ARP *broadcast* dikirim ke *router* atau *default gateway* sehingga alamat MAC yang dikirim kembali adalah MAC *Router*⁵⁴.

RARP (*Reverse Address Resolution Protocol*) memetakan alamat MAC yang diketahui ke alamat IP.

Proxy ARP memungkinkan *router* merespon permintaan ARP yang telah dikirim ke *remote host*.

2.1.9.4 Lapisan Network Interface dalam Model TCP/IP

Lapisan ini sama dengan lapisan *Data Link* dan Fisik pada model OSI. Lapisan ini mengatur pengalamatan perangkat keras dan pengiriman data fisik⁵⁵. Beberapa protokol yang terdapat pada lapisan ini adalah *Ethernet*, *Fast Ethernet*, *Token Ring*, dan FDDI (*Fiber Distributed Data Interface*)⁵⁶.

2.1.10 Perangkat Jaringan Komputer

2.1.10.1 Network Adapter

Network adapter merupakan perangkat keras yang digunakan untuk menghubungkan komputer dengan jaringan. Network adapter pada komputer terbagi menjadi dua jenis yaitu internal dan eksternal. Untuk network adapter internal bisa berupa adapter onboard seperti Ethernet onboard dan juga berupa expansion card seperti PCI Ethernet Card. Network adapter external dapat berupa express card ataupun perangkat dengan antarmuka USB. Gambar 2.5 menunjukkan salah satu contoh dari network adapter.

⁵⁴ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 33.

⁵⁵ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 33.

⁵⁶ Jeremy Cloara, dkk., *CCNA Examp Prep (Second Edition)*, (United States of America: Pearson Education, Inc., 2008), h. 27.

Gambar 2.5 Gigabit PCI Network Adapter

2.1.10.2 Hub

Hub (seperti yang terdapat pada Gambar 2.6) merupakan perangkat elektronik yang berbentuk kotak kecil yang dapat digunakan untuk menghubungkan kabel jaringan. *Hub* memiliki empat atau lebih (biasanya sampai 24) stop kontak RJ-45 yang masing-masing disebut sebagai *port. Hub* dapat menghubungkan komputer sejumlah *port* yang dimilikinya. *Hub* juga dapat dihubungkan dengan *hub* lainnya⁵⁷.

Cara kerja hub adalah ketika ada kompuer yang mengirimkan paket data, maka *hub* akan mengirim paket tersebut ke semua *port* yang dimilikinya. Hal ini membuat lalu lintas jaringan yang tidak perlu. Hub merupakan perangkat yang bekerja pada lapisan ke-1 model referensi OSI. Saat ini hub sudah tidak dijual di pasaran karena perannya sudah tergantikan oleh *switch*⁵⁸.

⁵⁷ Chuck Easttom, *Computer Security Fundamentals*, (Indianapolis: Pearson, 2012), h. 25.

⁵⁸ Chuck Easttom, *Computer Security Fundamentals*, (Indianapolis: Pearson, 2012), h. 25.

Gambar 2.6 Hub

2.1.10.3 Repeater

Repeater (seperti yang terdapat pada Gambar 2.7) adalah perangkat yang digunakan untuk memperkuat sinyal. *Repeater* digunakan ketika kebutuhan kabel lebih panjang dari batas maksimum jenis kabel yang digunakan (misalnya 100 m untuk UTP). Terdapat dua jenis *repeater* yaitu amplifer dan sinyal. Amplifer *repeater* menguatkan semua sinyal yang diterima termasuk *noise*⁵⁹. *Repeater* bekerja pada lapisan ke-1 model referensi OSI.

Gambar 2.7 Repeater

⁵⁹ Chuck Easttom, *Computer Security Fundamentals*, (Indianapolis: Pearson, 2012), h. 25.

2.1.10.4 Switch

Pada dasarnya *switch* merupakan *hub* yang pintar, *switch* bekerja dan terlibat sama seperti *hub* dengan satu perbedaan signifikan. Ketika *switch* menerima *packet*, *switch* akan mengirim paket keluar hanya pada *port* yang terhubung dengan komputer yang membutuhkan paket tersebut⁶⁰. *Switch* umumnya bekerja pada lapisan ke-2 model OSI, tetapi saat ini sudah terdapat *switch* yang mampu bekerja pada lapisan ke-3 model OSI. Contoh *switch* ditunjukkan oleh Gambar 2.8.

Gambar 2.8 Switch

2.1.10.5 Router

Router (seperti yang terdapat pada Gambar 2.9) adalah perangkat yang digunakan untuk menghubungkan dua atau lebih jaringan⁶¹. *Router* merupakan perangkat yang bekerja pada lapisan ke-3 model OSI.

⁶⁰ Chuck Easttom, *Computer Security Fundamentals*, (Indianapolis: Pearson, 2012), h. 25.

⁶¹ Chuck Easttom, *Computer Security Fundamentals*, (Indianapolis: Pearson, 2012), h. 25.

Gambar 2.9 Router

2.1.11 Monitoring Jaringan

Monitoring adalah suatu proses mengukur, mencatat, mengumpulkan, memperoses, dan mengkomunikasikan informasi untuk membantu pengambilan keputusan manajemen program/proyek⁶². *Monitoring* jaringan komputer adalah proses pengumpulan dan melakukan analisis terhadap data-data pada lalu lintas jaringan dengan tujuan memaksimalkan seluruh sumber daya yang dimiliki jaringan komputer.

Monitoring jaringan ini merupakan bagian dari manajemen jaringan. *Monitoring* jaringan memiliki peranan yang penting dalam upaya pencegahan insiden. Monitoring jaringan juga dapat memantau kondisi jaringan setiap saat, memperoleh laporan statistik, dan memperkirakan apakah ada perangkat yang perlu diganti, ditambah, atau ditiadakan. *Network monitoring* tidak dapat digunakan untuk menyelesaikan masalah ketika terjadi insiden, namun berbagai informasi yang sangat berharga dapat disajikan oleh sebuah aplikasi *network monitoring*⁶³.

⁶² Eric Clayton and Flancoise Petry, *Monitoring System for Agricultural and Rural Development Projects*, (Rome: FAO Economic and Social Development, 1983), h.32.

 ⁶³ Iwan Sofana, Cisco CCNP dan Jaringan Komputer (Materi Route, Switch, dan Troubleshooting),
 (Bandung: Informatika, 2012), h. 481.

Tujuan *monitoring* jaringan komputer adalah untuk mengumpulkan informasi yang berguna dari berbagai bagian jaringan sehingga jaringan dapat diatur dan dikontrol dengan menggunakan informasi yang telah terkumpul. Dengan begitu diharapkan jika terjadi permasalahan dalam jaringan akan cepat diketahui dan diperbaiki sehingga stabilitas jaringan lebih terjamin.

Monitoring jaringan perlu dilakukan karena beberapa alasan utama berikut:

- 1. Menjaga stabilitas jaringan
- 2. Sulitnya mengawasi apa yang sedang terjadi dalam jaringan yang memiliki sejumlah besar mesin (*host*) tanpa alat pengawas yang baik.
- 3. Mendeteksi kesalahan pada infrastruktur jaringan, *gateway*, *server*, maupun *user*.
- 4. Memberikan peringatan dengan segera kepada *administrator* ketika terjadi kesalahan dalam jaringan.
- 5. Mendokumentasikan jaringan.

Terdapat banyak hal yang dapat dimonitoring dalam jaringan komputer. Salah satu yang paling sering di *monitoring* adalah *load traffic* jaringan yang melewati sebuah *router* atau *interface* komputer. Untuk melakukan *monitoring load traffuc* pada jaringan, dapat menggunakan SNMP dan *agent*.

SNMP singkatan dari *Simple Network Management Protocol*. Protokol ini digunakan untuk memonitor *device-device* yang terhubung ke jaringan akan kondisi-kondisi systemnya yang penting. Sebagai contoh penggunaan CPU, penggunaan *harddisk*, penggunaan *memory*, *traffic* jaringan dan lain-lain. Untuk *device-device* yang dapat dipantau adalah perangkat seperti PC, *Server*, atau *router*.

Sedangkan untuk sistem operasi yang dapat dipantau meliputi *Linux*, **Nix*, *Windows*, atau yang lain.

Agent adalah sebuah aplikasi yang dapat melihat mengumpulkan informasi operasional lokal dan laporan data ke server Zabbix untuk diproses lebih lanjut.. Agent ditempatkan pada target pemantauan untuk secara aktif memantau sumber daya lokal dan aplikasi (hard drive, memory, processor dan lain-lain). Dalam kasus kegagalan (seperti hard disk berjalan penuh atau proses pelayanan jatuh), server dapat secara aktif mengingatkan para administrator dari mesin tertentu yang melaporkan kegagalan. Agent sangat efisien karena penggunaan sistem panggilan asli untuk mengumpulkan informasi statistik. Agent dapat melakukan pemeriksaan pasif dan aktif. Dalam pemeriksaan pasif *agent* merespon permintaan data. Server meminta data, misalnya, beban CPU, dan *agent* mengirimkan kembali hasilnya. Cek aktif memerlukan pengolahan lebih kompleks. Agent pertama harus mengambil daftar item dari server untuk pengolahan independen. Maka secara berkala akan mengirimkan nilai-nilai baru ke server. Apakah akan melakukan pemeriksaan pasif atau aktif dikonfigurasi dengan memilih masing-masing jenis item pemantauan. Agent memproses item dari jenis 'agent (pasif)' atau 'agent (aktif)'.

2.1.12 Zabbix

Zabbix merupakan aplikasi *class enterprise* yang dapat yang dapat digunakan untuk mengawasi dan melacak status berbagai macam *service* jaringan, *server*, *hardware* komputer dan perangkat jaringan lainnya⁶⁴.

⁶⁴ Andrea Dalle Vacche, Mastering Zabbix (Second Edition), (Brimingham: Packt Publishing, 2013), h. 2.

Untuk menyimpan *log* data yang dihasilkan, Zabbix memanfaatkan *database server* seperti MySQL, PostgreSQL atau Oracle untuk menyimpan data⁶⁵. Tampilan Zabbix dibuat berbasiskan web dan dibuat sepenuhnya dengan manggunakan bahasa PHP.

Zabbix menggunakan mekanisme pemberitahuan fleksibel yang memungkinkan pengguna untuk mengkonfigurasi tanda berdasarkan *email* untuk hampir semua acara. Hal ini memungkinkan reaksi cepat untuk masalah pada *server*. Zabbix menawarkan pelaporan dan visualisasi data fitur unggulan berdasarkan data yang disimpan.

Hal ini membuat Zabbix ideal untuk perencanaan kapasitas. Semua laporan dan statistik Zabbix, serta parameter konfigurasi, diakses melalui antarmuka berbasis web. Sebuah tampilan berbasis web memastikan bahwa status jaringan dan keadaan server dapat dinilai dari lokasi manapun.

Zabbix dapat dengan mudah mengetahui status keberadaan sejumlah standar servis seperti SMTP atau HTTP tanpa menginstalasi software tambahan lainnya pada komputer *agent*.

Agent menghasilkan statistik penggunaan *resource hardware* komputer, utilisasi jaringan dan sebagainya. Zabbix juga mendukung proses monitoring melalui protokol SNMP⁶⁶.

⁶⁵ Andrea Dalle Vacche, Mastering Zabbix (Second Edition), (Brimingham: Packt Publishing, 2013), h. 124.

⁶⁶ Andrea Dalle Vacche, Mastering Zabbix (Second Edition), (Brimingham: Packt Publishing, 2013), h. 143.

2.1.12.1 Kelebihan Menggunakan Zabbix

Ada beberapa alasan mengapa peneliti menggunakan Zabbix, diantaranya adalah:

- 1. Open Source.
- 2. Instalasi yang mudah.
- 3. Support SNMP versi 1, 2, dan 3.
- 4. Kemampuan visualisasi.
- 5. Konfigurasi yang mudah.
- 6. Tersedianya dalam berbagai sistem operasi.
- 7. Sistem *monitoring* yang tersentralisasi.
- 8. Real time monitoring.
- 9. Dapat me-monitoring dalam satu group ataupun hanya 1 host.
- 10. Memberikan informasi masalah dengan cepat baik melalui email atau sms.
- 11. Menyediakan visualisasi seperti map dan grafik.
- 12. Web based interface.
- 13. Otentifikasi user yang aman.
- 14. Flexible user permission
- 15. Auto discovery of servers and network devices
- 16. Men-support mekanisme polling and trapping
- 17. Pemilihan jenis dan kondisi laporan perminggu, dengan hanya menampilkan data tanpa grafik, dan lain-lain.
- 18. Flexible dan mudah dalam konfigurasi
- 19. Bisa menggunakan database MySQL, PostgreSQL, dan Oracle

2.1.12.2 Kebutuhan Sistem (System Requirement) Zabbix

Kebutuhan sistem (*system requirement*) merupakan sekumpulan layanan/kemampuan sistem dan batasan yang ditulis secara detil. Daftar kebutuhan sistem untuk Zabbix dapat dilihat pada Tabel 2.9.

Tabel 2.9 Daftar Kebutuhan Sistem untuk Zabbix

No	Kebutuhan	Minimal	Rekomendasi
1	Disk Space	10 MB	100 MB
2	RAM	64 MB	256 MB
3	CPU	Pentium	Pentium IV atau lebih

Zabbix dapat digunakan untuk banyak sistem operasi. Daftar sistem operasi

yang dapat berjalan dengan aplikasi Zabbix dapat dilihat pada Tabel 2.10.

 Tabel 2.10 Daftar Sistem Operasi untuk Zabbix

No	Sistem Operasi	Zabbix Server	Zabbix Agent
1	AIX	Supported	Supported
2	FreeeBSD	Supported	Supported
3	HP-UX	Supported	Supported
4	Linux	Supported	Supported
5	Windows	-	Supported

2.2 Kerangka Berpikir

Untuk mengaplikasikan sebuah *network monitoring* menggunakan sistem notifikasi *email* pada Zabbix harus berdasarkan prosedur yang diawali dengan mengidentifikasi masalah yang telah dijelaskan pada Bab 1, bertujuan untuk mengangkat masalah yang akan diteliti.

Langkah berikutnya adalah studi pustaka, studi pustaka bertujuan untuk memperkuat materi pembahasan sekaligus menjadi dasar untuk menggunakan teori-teori tertentu menyelesaikan masalah.

Langkah berikutnya adalah implementasi *network monitoring* sekaligus melakukan pengujian, yang meliputi analisis perangkat jaringan yang terpasang di

jaringan Universitas Negeri Jakarta. Dilanjutkan dengan melakukan instalasi sistem operasi dan perangkat lunak Zabbix pada sebuah PC (*Personal Computer*) yang akan dijadikan sebagai *Network Analyzer* yang akan memantau jaringan. Dan juga melakukan konfigurasi terhadap *switch*, *access point*, dan *personal computer* yang terdapat di jaringan yang akan di *monitoring* agar dapat mengirimkan data kepada *Network Analyzer*.

Serta melakukan pengujian terhadap hasil *monitoring* jaringan yang dilakukan oleh *Network Analyzer*. Tujuannya untuk melihat apakah hasil dari *monitorng* jaringan pada perangkat sudah sesuai dengan keadaan yang sebenarnya terjadi pada jaringan Universitas Negeri Jakarta. Jika hasil dari *monitoring* jaringan belum dapat menunjukkan hasil yang sesuai dengan keadaan yang terjadi, maka perlu dilakukan pengecekan dan perbaikan terhadap langkah-langkah yang dilakukan.

Jika data yang dihasilkan oleh *Network Analyzer* sudah sesuai dengan keadaan yang terjadi, langkah berikutnya adalah melakukan analisis terhadap hasil *monitoring* jaringan. Apakah perangkat dan jaringan yang di *monitoring* sudah sesuai dengan keadaan sebenarnya dan bisa memberikan data secara signifikan. Apakah bila terjadi kendala pada perangkat atau jaringan yang di *monitoring* akan memberikan pemberitahuan berupa *alert* dengan sistem notifikasi *email* sebagai pengirimannya kepada *network administrator* secara cepat.

Yang terakhir adalah penarikan kesimpulan berdasarkan hasil analisis yang telah dilakukan pada tahapan sebelumnya.

Secara ringkas, kerangka berpikir yang digunakan dalam penelitian ini dapat dilihat pada Gambar 2.10.

Gambar 2.10 Kerangka Berfikir

2.3 Hipotesis Penelitian

Berdasarkan kerangka teori dan kerangka berfikir yang telah dikemukakan oleh peneliti pada halaman sebelumnya, maka peneliti menyampaikan hipotesis penelitian sebagai berikut.

Hipotesis pertama *web monitoring* pada kelas dapat dibuat dengan terlebih dahulu menguji instrumen *monitoring device* dan *network traffic* agar valid dan reliabel, sistem *alert* dengan notifikasi *email* berhasil mengirim pemberitahuan pada saat perangkat bermasalah, dan *web* yang semua fungsinya berfungsi dengan baik.

Hipotesis kedua penerapan *web monitoring* ruang kelas berhasil memberikan data yang valid untuk pengambilan keputusan terhadap pengaturan *monitoring* pada kelas di Pustikom dan Gedung Dewi Sartika Universitas Negeri Jakarta.

BAB III

METODOLOGI PENELITIAN

3.1 Tujuan Penelitian

Tujuan penelitian ini adalah menganalisis, merancang, membangun dan mengimplementasi sistem *monitoring* dalam rangka untuk memantau *device* dan *network traffic* pada kelas di Pustikom dan Gedung Dewi Sartika Universitas Negeri Jakarta.

3.2 Tempat dan Waktu Penelitian

Penelitian dilakukan di Pustikom Universitas Negeri Jakarta, adapun waktu penelitian dilaksanakan bulan Agustus 2015 sampai dengan Januari 2016.

3.3 Metode Penelitian

Metode penelitian yang digunakan dalam penelitian ini adalah eksperimen. Penelitian eksperimen merupakan metode yang paling kuat untuk mengungkapkan hubungan sebab akibat.

3.4 Rancangan Penelitian

3.4.1 Observasi dan Analisis Terhadap Perangkat Jaringan Komputer UNJ

Sebagai langkah awal, peneliti melakukan observasi terhadap perangkat jaringan yang terdapat pada kelas di Pustikom dan Gedung Dewi Sartika UNJ, khususnya perangkat *switch*, *access point*, dan *personal computer* yang terpasang dan terhubung dalam jaringan UNJ. Peneliti melakukan pengamatan langsung ke setiap lokasi yang akan dilakukan monitoring, dari observasi ini, peneliti mendapatkan informasi mengenai jenis-jenis perangkat yang terpasang dan terhubung dengan jaringan UNJ, termasuk informasi merek dan tipe perangkat tersebut. Informasi tersebut sangatlah penting agar dapat diketahui apakah perangkat jaringan tersebut dapat di *monitoring* menggunakan aplikasi yang akan diinstall.

Selain melakukan observasi langsung, peneliti juga melakukan wawancara terhadap *network administrator* yang berada di Pustikom. Dari hasil wawancara tersebut, peneliti mendapatkan informasi yang lebih detail tentang keadaan jaringan dan perangkat yang terpasang dilokasi tersebut. Dari situ peneliti mendapatkan informasi tentang IP *Address* yang dipakai pada perangkat, jalur jaringan ke setiap perangkat, dan kendala pada perangkat. Sehingga peneliti bisa menentukan cara untuk mengkonfigurasi setiap perangkat tersebut agar bisa dilakukan monitoring secara *real time*.

Dari hasil observasi, peneliti dapat mengetahui bahwa jaringan komputer di gedung D Kampus A Universitas Negeri Jakarta yang sering disebut sebagai Pustikom dijadikan sebagai pusat *Data Centre* Universitas Negeri Jakarta yang didalamnya terdapat berbagai jenis *server*, *router* dan *switch* yang terhubung dengan gedung lainnya atau dengan unit-unit yang dalam naungan UNJ melalui jalur kabel *fiber optic* dan kabel jaringan UTP. *server*, *router*, dan *switch* yang berada di PUSTIKOM mengatur segala aktivitas jaringan dari yang lokal maupun jaringan Internet yang dari luar.

Setelah melakukan observasi, peneliti melakukan analisis terhadap perangkat yang terdapat pada kelas di Pustikom dan Gedung Dewi Sartika khususnya pada perangkat jaringan yang akan terhubung dengan *switch*, *access point* dan *personal computer*.

Kemudian peneliti juga melakukan wawancara terhadap *administrator* jaringan yang terdapat di Pustikom tentang *switch* yang berada di setiap gedung dan unit-

unit yang terhubung dengan *access poin*t, hasilnya peneliti dapat mengetahui tempat-tempat *switch* tersebut berada. Peneliti juga mengetahui tentang SNMP yang terdapat di *switch* dan di *access point* tersebut.

3.4.2 Melihat dan Menganalisis Topologi Jaringan UNJ

Untuk melanjutkan penelitian, peneliti menganalisis dan mengetahui bagaimana topologi jarigan yang berada di UNJ, mulai dari pusat data center yang berada di Pustikom sampai ke *switch-switch* yang berada di setiap unit-unit yang saling terhubung dengan *access point dan personal computer*. Berikut topologi jaringan UNJ berawal dari *server* menuju ke *switch* dan sampai *access point* dan *personal computer* pada Gambar 3.1.

Gambar 3.1 Topologi UNJ

3.4.3 Membuat Kabel UTP Dengan Susunan Straight

Untuk menghubungkan *server* dengan *switch* yang terhubung dengan jaringan UNJ, peneliti menggunakkan kabel UTP Cat 5E dengan konektor RJ45 yang dibuat dengan susunan *straight*. Dalam membuat kabel jaringan UTP dengan susunan *straight* tersebut, peneliti menggunakkan pola kabel T568B pada kedua ujung kabel jaringan tersebut dengan konektor RJ45. Adapun urutan atau susunan pola kabel T568B adalah sebagai berikut:

- 1. Putih Orange
- 2. Orange
- 3. Putih Hijau
- 4. Biru
- 5. Putih Biru
- 6. Hijau
- 7. Putih Cokelat
- 8. Cokelat

3.4.4 Penempatan Server Monitoring Pada Jaringan UNJ

Server monitoring yang akan dihubungkan dengan switch yang berada di Pustikom dengan menggunakan kabel UTP dengan susunan straight. Sedangkan switch tersebut terhubung langsung dengan pusat Data Centre yang berada dilantai 2 Pustikom, informasi penempatan server monitoring tersebut sangatlah penting karena berkaitan dengan konfigurasi dan installasi aplikasi yang akan digunakan untuk me-monitoring switch, access point dan personal computer yang berada dijaringan UNJ.

Penempatan *server monitoring* tidak sembarangan tempat untuk menaruhnya, karena server *monitoring* ini harus bekerja secara *real time* agar tidak terjadi yang *error* dalam kinerjanya untuk memonitoring jaringan UNJ. Untuk lebih jelasnya mengenai penempatan *server monitoring* yang berada dijaringan UNJ ini dapat dilihat pada Gambar 3.2.

Gambar 3.2 Penempatan Server Monitoring pada Jaringan UNJ di Lantai 2

Pustikom

3.4.5 Alat dan Bahan

Dalam penelitian ini perangkat dan bahan yang dipergunakan adalah sebagai

berikut:

- 1 Sebuah PC HP Compaq dx2200 MT dengan spesifikasi:
 - Prosesor Intel Pentium D 2,8 GHz
 - RAM DDR2 2GB
 - Harddisk 300GB
- 2 PCI gigabit ethernet adapter.
- 3 Kabel UTP Cat 5E.
- 4 Konektor RJ45.

3.4.6 Instalasi Sistem Operasi Linux CentOS 6.7 i386

1. Memasukkan DVD bootable linux CentOS 6.7 i386

- Masuk ke BIOS (*Basic Input Output System*), kemudian ubah 1st *boot* Service pada PC yang akan di jadikan server menjadi CD/DVD. Berikutnya simpan konfigurasi lalu keluar dari BIOS.
- 3. Komputer akan *restart* dan mulai *booting* dari DVD. Pada saat muncul tulisan *Press any Key do boot krom CD bor DVD*, tekan sembarang tombol pada keyboard PC untuk memulai proses *booting* melalui *CD/DVD*.
- 4. Pada jendela instalasi yang muncul pertama kali, pilih *instal or upgrade an existing System*, lalu tekan *Enter*.
- 5. Pada pilihan pemeriksaan media, pilih *skip* untuk melanjutkan ke tahap berikutnya. Lalu klik *Next*.
- 6. Pada pilihan bahasa, pilih English (English). Lalu klik Next.
- Pada pilihan standar keyboard yang digunakan sistem, pilih U.S English lalu klik Next.
- Pada pilihan *Device Type* yang akan diinstal, pilih *Basic Storage Device*. Lalu klik *Next*.
- 9. Pada jendela *pop up storage Device Warning* yang muncul, centang *Apply My choice to all Service Alt undetected partitions bot file system*, setelah klik Yes, discard any data.
- Pada jendela nama *hostname*, ubah menjadi SVRCACTIMNT. Lalu klik Next.
- 11. Pada pilihan City & Timezone, pilih Asia/Jakarta. Klik Next.
- 12. Kemudian masukkan Root Password dan konfirmasi ulang password yang dimasukkan. Lalu klik *Next*.

- 13. Pada pilihan format harddisk, pilih *Use All Space*, klik Next. Kemudian pada *pop-up* yangmuncul klik *write Changde do disk*.
- Kemudian pada pilihan instalasi *software* CentOS, pilih Desktop lalu klik Next.
- 15. Tunggu hingga proses instalasi selesai hingga komputer melakukan restart secara otomatis.
- 16. Pada tampilan awal yang menyatakan telah berhasil menginstalasi CentOS, klik *Forward* untuk melanjutkan.
- 17. Pada halaman persetujuan lisensi CentOS, pilih Yes, i agree do The License Agreement lalu klik Froward.
- Pada jendela buat user, masukkan username, fullname, password pada kotak input yang tersedia, lalu klik Froward.
- 19. Pada jendela pengaturan tanggal dan waktu, atur sesuai dengan kondisi yang ada, kemudian klik *Forward*.
- 20. Pada pilihan *Kdump (Kernel Dump)*, centang pilihan *enable kdump?*, lalu klik *finis*.
- 21. Kemudian pada *pop up* yang muncul klik *yes*. Lalu sistem akan melakukan reboot dan tunggu hingga muncul tampilan *login*.
- 22. PC server siap digunakan untuk instalasi aplikasi monitoring.

3.4.7 Instalasi Zabbix Pada Linux Centos

- 1. Mengatur alamat IP statis pada server.
- 2. Menginstal Apache httpd dan mengkonfigurasinya.
- 3. Menginstal PHP menggunakan PHP *Script* pada httpd.
- 4. Menginstal MySQL untuk mengkonfigurasi database server.

- 5. Menginstal phpMyAdmin untuk beroperasi MySQL pada *web browser* dari *client*.
- 6. Menginstal beberapa paket yang diperlukan lainnya dan repositori Zabbix.
- 7. Menginstal *server* Zabbix.
- 8. Menginstal Zabbix Agent untuk memantau Zabbix server itu sendiri
- 9. Membuat *database* untuk Zabbix.
- 10. Mengkonfigurasi dan memulai server Zabbix.
- 11. Mengkonfigurasi dan mulai Zabbix Agen untuk memantau Zabbix *server* itu sendiri.
- Akses ke "http://(hostname atau IP address Zabbix server)/zabbix/" dari klien yang berada dalam jaringan diperbolehkan oleh server Zabbix. Kemudian, halaman awal Zabbix ditampilkan, klik "Next" untuk melanjutkan.
- 13. Pastikan semua adalah "OK", kemudian lanjutkan ke berikutnya.
- 14. Pada bagian pengaturan *database*. Mengubah pengaturan *default* pada "User" dari "root" untuk "Zabbix" dan masukan DB sandi untuk itu. Berikutnya, klik "Test Connection". Jika itu OK, itu mungkin untuk klik "Next" untuk melanjutkan.
- 15. Pada pengaturan koneksi ke server Zabbix. Jika itu satu lokal, itu OK dengan menjaga default. Tapi Itu lebih baik untuk mengubah "Name" untuk nama apapun yang Anda suka.
- Pada konfirmasi pengaturan sebelumnya, lanjutkan ke berikutnya jika semua OK.
- 17. Klik "Finish" untuk menyelesaikan pengaturan awal.

 Pada halaman *login*. Mungkin untuk login dengan username "*admin*", password awal "*zabbix*".

3.4.7.1 Mengkonfigurasi *Monitoring* Target

- Login ke situs admin Zabbix dengan user admin dan klik [Configuration]
 [Host].
- 2. *Localhost* yang Zabbix Agen telah diinstal ditampilkan seperti berikut, centang kotak di atasnya dan pilih "*Enable*" dan berikutnya, klik "*Go*".
- 3. "*Status*" diaktifkan untuk "*Enabled*" dan server dipantau.
- 4. Setelah beberapa menit kemudian, pemantauan data yang dikumpulkan seperti berikut. Layar berikut adalah pada [*Monitoring*] [*Screens*].

3.4.7.2 Mengkonfigurasi SMTP Server untuk Mengirim Email

- Login ke situs admin Zabbix dengan user admin dan pindah ke [Administrasi] - [Media Types] tab dan kemudian, klik "Email" tombol.
- Info set SMTP *server* yang ingin Anda gunakan seperti berikut dan klik "Update" tombol.

3.4.7.3 Mengkonfigurasi Notifikasi Email

- Menginstal dan mengkonfigurasi Postfiix dan beberapa paket yang diperlukan lainnya.
- Mengatur alamat *email* Zabbix *admin* dan mengatur pengaturan pertama SMTP *server*.
- 3. Login ke Zabbix admin situs dengan admin pengguna dan pindah ke [Configuration] - [Actions] tab. Suatu tindakan pemberitahuan yang dikirim didefinisikan secara default seperti berikut, jadi klik 'Disabled' untuk mengubah 'Enabled'.

- Pemberitahuan diaktifkan. Penerima *default* adalah hanya kelompok admin Zabbix.
- 5. Jika nilai yang lebih dari nilai yang ditetapkan sebagai sebuah *trigger*, pemberitahuan dikirim seperti contoh berikut.
- Untuk klik nama [Action], dapat melihat rincian. Untuk mengedit mail body jika menginginkan.
- 7. Untuk mengatur *triggers* pada tab 'Conditions'.
- 8. Untuk mengatur tindakan pada tab 'Operation'.

3.4.7.4 Menambahkan Windows Pada Monitoring Target

- Mengkonfigurasi Windows *Firewall* untuk memungkinkan mengaktifkan port 10050.
- Men-download file binay dari Zabbix Agent pada target host Windows dari situs Zabbix bawah.

 \Rightarrow http://www.zabbix.com/jp/download.php

- 3. Setelah men-download, ekstrak file ZIP, kemudian "bin" dan "conf" folder yang ada seperti berikut. Copy "zabbix_agentd.win.conf" yang berada di bawah "conf" dan juga menyalin file exe 3 yang berada di bawah "bin" folder ke dalam folder yang Anda ingin menemukan mereka.Misalnya di sini, membuat folder baru "C: \ Program Files \ Zabbix_Agent".
- Membuka file konfigurasi "zabbix_agentd.win.conf" dengan editor teks dan parameter perubahan.
- Mulai command prompt dengan hak istimewa admin dan perintah Taruh seperti berikut.
 - \blacktriangleright Cd C: \ Program Files \ Zabbix_Agent

- Zabbix_agentd.exe --config "C: \ Program Files \ Zabbix_Agent \ zabbix_agentd.win.conf" --install
- Setelah menginstal, manajemen layanan terbuka, maka "Zabbix Agen" telah saja menambahkan seperti berikut. Klik "Start" untuk memulainya.
- Login ke situs admin Zabbix dengan user admin dan pindah ke [Configuration] - [Host] tab, dan kemudian klik "Crate Host" tombol.
- 8. Masukan nama host untuk "Hostname", masukan nama yang disukai untuk "Visible Name", pilih grup atau menambahkan kelompok baru "Grup", alamat IP masukan dan nama DNS untuk "Agen interface". Untuk bidang lain adalah opsional. Jika itu OK semua, pindah ke "Template" tab.
- 9. Klik "Select" tombol.
- 10. Pilih "Template OS Windows" dan klik "pilih" tombol.
- 11. Klik "Add" link.
- 12. Konfirmasi template ditambahkan dan klik tombol "Add".
- 13. Target monitoring baru ditambahkan.
- 14. Setelah beberapa menit kemudian, pemantauan data dapat ditampilkan.

3.4.7.5 Menambahkan Perangkat Jaringan Pada Monitoring Target

- Konfigurasi perangkat jaringan tersebut dan daftarkan pada Zabbix *server* ⇒ snmpwalk [versi snmp] -c [community] [ip host] [attribute]
- Login ke Zabbix admin situs dengan admin pengguna dan pindah ke [Configuration] - [Host] tab dan klik nama host yang ingin ditambahkan item.
- 3. Pindah ke [*Template*] tab dan klik 'Select'.
- 4. Pilih "Template SNMP Device".

- 5. Klik "Add" link.
- 6. Klik "*Update*" tombol.

3.4.8 Konfigurasi SNMP Trap pada Switch

- 1. Buka *web browser*, kemudian masukkan alamat IP *switch* pada *address bar*.
- 2. Masukkan username dan password kemudian klik Login.
- Dari menu SNMP, pilih "Trap Setting" kemudian setting "Version Trap", "Destination IP Address", "Community for Trap"
- 4. Klik "*OK*"
- 5. Klik "Save Configuration", untuk menyimpan konfigurasi.

3.4.9 Konfigurasi SNMP Trap pada Access Point

- 1. Buka *web browser*, kemudian masukkan alamat IP *access point* pada *address bar*.
- 2. Masukkan *username* dan *password* kemudian klik Login.
- Dari menu Manager, pilih "Trap Setting" kemudian setting "SNMP", "Trap Destination Address", "Trap Destination Community Name" dan " Version SNMP"
- 4. Klik "Save/Apply", untuk menyimpan konfigurasi.

3.4.10 Pengujian Hasil Monitoring Jaringan

Pengujian terhadap hasil *monitoring* jaringan yang didapatkan dari SNMP, *agent*, dan *alert* pada perangkat lunak Zabbix didasarkan pada dua hal, yaitu:

1. Hasil dari SNMP dan *agent* dapat me*-monitoring* dan menampilkan grafik dari perangkat-perangkat yang telah didaftarkan pada jaringan lokal UNJ. 2. Hasil dari *alert* dapat memberikan pemberitahuan kesalahan jika jaringan atau perngkat mengalami masalah melalui notifikasi melalui *email* yang dikirimkan kepada *administrator*.

3.5 Prosedur Penelitian

3.5.1 Pengamatan Utilitas Switch

Untuk melakukan pengamatan utilitas *switch*, peneliti melakukan perbandingan *bandwidth* menggunakan salah satu layanan *speedtest*, *task manager* dan *monitoring network traffic* dalam bentuk grafik.

3.5.2 Pengamatan Utilitas Access Point

Untuk melakukan pengamatan utilitas *access point*, peneliti melakukan perbandingan *bandwidth* menggunakan salah satu layanan *speedtest*, *task manager* dan *monitoring network traffic* dalam bentuk grafik.

3.5.3 Pengamatan Utilitas Personal Computer

Untuk melakukan pengamatan utilitas *personal computer*, peneliti melakukan perbandingan pengukuran *bandwidth* menggunakan salah satu layanan *speedtest*, *taks manager*, dan *monitoring network traffic* dalam bentuk grafik. Pembandingan sistem utilitas menggunakan pengecekan *harddisk*, CPU, dan *memory* pada *personal computer* dan *monitoring device* dalam bentuk grafik.

3.6 Teknik Pengambilan Data

Teknik pengambilan data yang digunakan adalah dengan mengumpulkan datadata yang didapatkan dari hasil *monitoring* dengan menggunakan SNMP, *agent*, dan *alert* pada Zabbix, kemudian diambil data berdasarkan *Dashboard* yang telah ditampilkan.

3.6.1 System Status

System Status akan menampilkan informasi perangkat yang bermasalah. Informasi yang didapatkan berdasarkan kondisi sistem (*Disaster*, *High*, *Average*, *Warning*, *Information*, dan *Not Classified*) yang diklasifikasikan berdasarkan *Host Group*.

3.6.2 Host Status

Host Status akan menampilkan informasi jumlah perangkat yang bermasalah maupun yang tidak. Informasi yang didapatkan berdasarkan kondisi sistem (Without Problems, With Problem, dan Total) yang diklasifikasikan berdasarkan Host Group.

3.6.3 Last 20 Issues

Last 20 Issues akan menampilkan informasi 20 masalah perangkat terbaru yang diurutkan berdasarkan waktu. Informasi yang didapatkan berdasarkan kondisi sistem (*Issue, Last Change, Age, Info, Ack, dan Action*) yang diklasifikasikan berdasarkan *Host*.

3.6.4 Notifikasi *Email*

Notifikasi *email* akan mengirimkan informasi tentang perangkat yang bermasalah melalui akun *email* yang dimiliki oleh *administrator*. Informasi yang didapatkan berdasarkan kondisi sistem (*Host, Status, dan Saverity*).

BAB IV

HASIL PENELITIAN DAN PEMBAHASAN

4.1 Hasil Penelitian

4.1.1 Pengamatan Lapangan

Terdapat 5 ruang kelas di Pustikom (3 kelas dilantai bawah dan 2 kelas dilantai atas) dan 10 ruang panel di Gedung Dewi Sartika Universitas Negeri Jakarta (terdapat 1 ruang panel ditiap lantainya). Pengamatan langsung dilakukan untuk mengetahui *device* apa saja yang terdapat pada lokasi tersebut yang dapat di *monitoring*.

 Berikut adalah spesifikasi ruang kelas di Pustikom Universitas Negeri Jakarta:

Lebar Ruang	: 440 cm / 4,4 meter
Panjang Ruang	: 1140 cm / 11,4 meter
Tinggi Ruang	: 359 cm / 3,59 meter
Rak Switch	: 1 Rak
Komputer	: 22 – 25 buah
Meja	: 25 – 30 buah
Sistem Pendingin	: 2 – 3 pendingin ruang
Proyektor	: 1 buah

 Berikut adalah spesifikasi ruang panel pada tiap lantai di Gedung Dewi Sartika Universitas Negeri Jakarta:

Lebar Ruang	: 220 cm / 2,2 meter
Panjang Ruang	: 310 cm / 3,1 meter
Tinggi Ruang	: 2,59 cm / 2,59 meter
Rak Switch	: 1 Rak
-------------	----------
Kotak panel	: 2 buah

4.1.2 Hasil Pengamatan Utilitas Switch

Melakukan *monitoring* dengan menggunakan SNMP terhadap perangkat *switch* yang berada di jaringan Universitas Negeri Jakarta, khususnya pada kelas di Pustikom dan ruang panel di tiap lantai Gedung Dewi Sartika. Jumlah *switch* yang di *monitoring* berjumlah 12 buah (2 buah di Pustikom dan 10 buah di Gedung Dewi Sartika) dan dapat ter-*monitoring* semuanya. Ada tiga jenis *switch* yang di *monitoring* pada jaringan ini, yaitu:

4.1.2.1 Monitoring Switch 2226-SFP Plus 3COM

a) Pengukuran Bandwidth pada Switch

Pengukuran *bandwidth* menggunakan perbandingan antara salah satu layanan *speedtest, monitoring network traffic* dan *task manager*. Tampilan pengukuran *bandwidth* dengan menggunakan salah satu layanan *speedtest* sebesar 92,47 Mbps, tanggal 06 Januari 2016 pada Gambar 4.1.

Gambar 4.1 Pengukuran Bandwidth dengan Speedtest

Tampilan pengukuran *bandwidth* dengan *monitoring network traffic* sebesar 98,3 Mbps, tanggal 06 Januari 2016, pada Gambar 4.2.

Gambar 4.2 Pengukuran Bandwidth dengan Monitoring Network Traffic

Tampilan pengukuran *bandwidth* dengan menggunakan *task manager* sebesar 99,55 Mbps, tanggal 06 Januari 2016 pada Gambar 4.3.

Gambar 4.3 Pengukuran Bandwidth dengan Task Manager

b) Tampilan Hasil Utilitas Switch 2226-SPF Plus 3COM

Status tampilan berdasarkan dari hasil data utilitas yang didapat saat *monitoring* terdapat pada Tabel 4.1. Keterangan dari hasil pengamatan dapat dilihat pada Lampiran 2.

No	Status Perangkat	Me	lalui Web	Mela	alui <i>Email</i>
		Status	Keterangan	Status	Keterangan
1	Terdeteksi switch on/off	Bisa		Bisa	
2	Terdeteksi port switch on/off	Bisa		Bisa	
3	Terdeteksi port switch backbond	Bisa		-	-
4	Muncul grafik saat incoming traffic	Bisa		-	-
5	Muncul grafik saat outgoing traffic	Bisa		-	-
6	Muncul waktu saat incoming traffic dan outgoing traffic	Bisa		-	-
7	Muncul tanggal saat incoming traffic dan outgoing traffic	Bisa		-	-
8	Muncul <i>bandwidth</i> saat <i>incoming traffic</i> dan <i>outgoing traffic</i>	Bisa		-	-
9	Terdeteksi port switch (Ethernet)	Bisa		-	-
10	Terdeteksi <i>port</i> switch (Aux)	Bisa		-	-
11	Terdeteksi port switch (Copper)	Bisa		-	-
12	Terdeteksi port switch (Fiber)	Bisa		-	-
13	Terdeteksi port switch (InLoopBack)	Bisa		-	-
14	Terdeteksi port switch (Vlan Interface)	Bisa		-	-
15	Terdeteksi <i>last</i> traffic bandwidth	Bisa		-	-
16	Terdeteksi min traffic bandwidth	Bisa		-	-
17	Terdeteksi max traffic bandwidth	Bisa		-	-
18	Terdeteksi avg traffic bandwidth	Bisa		-	-

 Tabel 4.1 Tampilan Hasil Utilitas Switch 2226-SPF Plus 3COM

4.1.2.2 Monitoring Switch AT-FS750/48

a) Pengukuran Bandwidth pada Switch

Pengukuran *bandwidth* menggunakan perbandingan antara salah satu layanan *speedtest, monitoring network traffic* dan *task manager*. Tampilan pengukuran *bandwidth* dengan menggunakan salah satu layanan *speedtest* sebesar 94,16 Mbps, tanggal 07 Januari 2016 pada Gambar 4.4.

Gambar 4.4 Pengukuran Bandwidth dengan Speestest

Tampilan pengukuran *bandwidth* dengan *monitoring network traffic* sebesar 96,18 Mbps, tanggal 07 Januari 2016 pada Gambar 4.5.

Gambar 4.5 Pengukuran Bandwidth dengan Monitoring Network Traffic

Tampilan pengukuran *bandwidth* dengan menggunakan *task manager* sebesar 99,23 Mbps, tanggal 07 Januari 2016 pada Gambar 4.6.

Gambar 4.6 Pengukuran Bandwidth dengan Task Manager

b) Tampilan Hasil Utilitas Switch AT-FS750/48

Status tampilan berdasarkan dari hasil data utilitas yang didapat saat *monitoring* terdapat pada Tabel 4.2. Keterangan dari hasil pengamatan dapat dilihat pada Lampiran 2.

No	Status Perangkat	Me	lalui <i>Web</i>	Mela	alui <i>Email</i>
		Status	Keterangan	Status	Keterangan
1	Terdeteksi switch on/off	Bisa		Bisa	
2	Terdeteksi port switch backbond	Bisa		-	-
3	Terdeteksi port switch on/off	Bisa		Bisa	
4	Muncul grafik saat incoming traffic	Bisa		-	-
5	Muncul grafik saat outgoing traffic	Bisa		-	-
6	Muncul waktu saat incoming traffic dan outgoing traffic	Bisa		-	-
7	Muncul tanggal saat <i>incoming</i> <i>traffic</i> dan <i>outgoing traffic</i>	Bisa		-	-

8	Muncul <i>bandwidth</i> saat <i>incoming</i> traffic	Bisa	-	-
9	Terdeteksi port switch (Ethernet)	Bisa	-	-
10	Terdeteksi last traffic bandwidth	Bisa	-	-
11	Terdeteksi min traffic bandwidth	Bisa	-	-
12	Terdeteksi max traffic bandwidth	Bisa	-	-
13	Terdeteksi avg traffic bandwidth	Bisa	-	-

Tabel 4.2 Tampilan Hasil Utilitas Switch AT-FS750/48

4.1.2.3 Monitoring Switch Cisco Catalyst 2960

a) Pengukuran Bandwidth pada Switch

Pengukuran *bandwidth* menggunakan perbandingan antara salah satu layanan *speedtest, monitoring network traffic* dan *task manager*. Tampilan pengukuran *bandwidth* dengan menggunakan salah satu layanan *speedtest* sebesar 15,58 Mbps, tanggal 11 Januari 2016 pada Gambar 4.7.

Gambar 4.7 Pengukuran Bandwidth dengan Speedtest

Tampilan pengukuran bandwidth dengan monitoring network traffic sebesar

13,17 Mbps, tanggal 11 Januari 2016 pada Gambar 4.8.

Gambar 4.8 Pengukuran Bandwidth dengan Monitoring Network Traffic

Tampilan pengukuran *bandwidth* dengan menggunakan *task manager* sebesar 10,23 Mbps, tanggal 11 Januari 2016 pada Gambar 4.9.

Gambar 4.9 Pengukuran Bandwidth dengan Task Manager

b) Tampilan Hasil Utilitas Switch Cisco Catalyst 2960

Status tampilan berdasarkan dari hasil data utilitas yang didapat saat *monitoring* terdapat pada Tabel 4.3. Keterangan dari hasil pengamatan dapat dilihat pada Lampiran 2.

No	Status Perangkat	Mel	alui Web	Mela	ılui <i>Email</i>
	0	Status	Keterangan	Status	Keterangan
1	Terdeteksi switch on/off	Bisa		Bisa	
2	Terdeteksi port switch	Bisa		Bisa	
	backbond				
3	Terdeteksi port switch	Bisa		-	-
	on/off				
4	Muncul grafik saat	Bisa		-	-
	incoming traffic				
5	Muncul grafik saat	Bisa		-	-
	outgoing traffic				
6	Muncul waktu saat	Bisa		-	-
	incoming traffic dan				
	outgoing traffic				
7	Muncul tanggal saat	Bisa		-	-
	incoming traffic dan				
	outgoing traffic				
8	Muncul bandwidth saat	Bisa		-	-
	incoming traffic dan				
	outgoing traffic				
9	Terdeteksi port switch	Bisa		-	-
	(Vlan Interface)				
10	Terdeteksi port switch	Bisa		-	-
	(FastEthernet)				
11	Terdeteksi port switch	Bisa		-	-
	(Null)				
12	Terdeteksi port switch	Bisa		-	-
	(GigabitEthernet)				
13	Terdeteksi last traffic	Bisa		-	-
	bandwidth				
14	Terdeteksi min traffic	Bisa		-	-
	bandwidth				
15	Terdeteksi max traffic	Bisa		-	-
	bandwidth				
16	Terdeteksi avg traffic	Bisa		-	-
	bandwidth				

Tabel 4.3 Tampilan Hasil Utilitas Switch Cisco Catalyst 2960

4.1.3 Hasil Pengamatan Utilitas Access Point

Melakukan *monitoring* dengan menggunakan SNMP terhadap perangkat *access point* yang berada dijaringan Universitas Negeri Jakarta, khususnya pada kelas di Pustikom. Jumlah access *point* yang di *monitoring* berjumlah 2 buah dan dapat ter-*monitoring* semuanya. Terdapat dua jenis *access point* yang dimonitoring pada jaringan ini, yaitu:

4.1.3.1 Monitoring Access Point EnGenius ENS202EXT

a) Pengukuran Bandwidth pada Access Point

Pengukuran *bandwidth* menggunakan perbandingan antara salah satu layanan *speedtest, monitoring network traffic* dan *task manager*. Tampilan pengukuran *bandwidth* dengan menggunakan salah satu layanan *speedtest* sebesar 25,05 Mbps, tanggal 08 Januari 2016 pada Gambar 4.10.

Gambar 4.10 Pengukuran Bandwidth dengan Speedtest

Tampilan pengukuran *bandwidth* dengan *monitoring network traffic* sebesar 25,31 Mbps, tanggal 08 Januari 2016 pada Gambar 4.11.

Gambar 4.11 Pengukuran Bandwidth dengan Monitoring Network Traffic

Tampilan pengukuran bandwidth dengan menggunakan task manager sebesar

45,12 Mbps, tanggal 08 Januari 2016 pada Gambar 4.12.

Gambar 4.12 Pengukuran Bandwidth dengan Task Manager

b) Tampilan Hasil Utilitas Access Point ENS202EXT

Status tampilan berdasarkan dari hasil data utilitas yang didapat saat *monitoring* terdapat pada Tabel 4.4. Keterangan dari hasil pengamatan dapat dilihat pada Lampiran 2.

No	Status Perangkat	Me	lalui Web	Mela	alui <i>Email</i>
		Status	Keterangan	Status	Keterangan
1	Terdeteksi access	Bisa		Bisa	
	point on/off				
2	Terdeteksi port	Bisa		Bisa	
	access point on/off				
3	Muncul grafik saat	Bisa		-	-
	incoming traffic				
4	Muncul grafik saat	Bisa		-	-
	outgoing traffic				
5	Muncul waktu saat	Bisa		-	-
	incoming traffic dan				
	outgoing traffic				
6	Muncul tanggal saat	Bisa		-	-
	incoming traffic dan				
	outgoing traffic				
7	Muncul bandwidth	Bisa		-	-
	saat incoming traffic				
	dan outgoing traffic				

8	Terdeteksi <i>port</i>	Bisa	-	-
9	Terdeteksi <i>port</i> access point (br-ln)	Bisa	-	-
10	Terdeteksi <i>port</i>	Bisa	-	-
11	Terdeteksi <i>port</i>	Bisa	-	-
12	Terdeteksi <i>port</i>	Bisa	-	-
13	Terdeteksi <i>port</i>	Bisa	-	-
14	Terdeteksi <i>port</i>	Bisa	-	-
15	Terdeteksi <i>last</i>	Bisa	-	-
16	Terdeteksi <i>min</i> <i>traffic bandwidth</i>	Bisa	-	-
17	Terdeteksi <i>max</i>	Bisa	-	-
18	Terdeteksi avg	Bisa	-	-

```
Tabel 4.4 Tampilan Hasil Utilitas Access Point ENS202EXT
```

4.1.3.2 Monitoring Access Point EnGenius ENS200EXT

a) Pengukuran Bandwidth pada Access Point

Pengukuran *bandwidth* menggunakan perbandingan antara salah satu layanan *speedtest, monitoring network traffic* dan *task manager*. Tampilan pengukuran *bandwidth* dengan menggunakan salah satu layanan *speedtest* sebesar 10,37 Mbps, tanggal 08 Januari 2016 pada Gambar 4.13.

Gambar 4.13 Pengukuran Bandwidth dengan Speedtest

Tampilan pengukuran bandwidth dengan monitoring network traffic sebesar

14,05 Mbps, tanggal 08 Januari 2016 pada Gambar 4.14.

Gambar 4.14 Pengukuran Bandwidth dengan Monitoring Network Traffic

Tampilan pengukuran *bandwidth* dengan menggunakan *task manager* sebesar 32,92 Mbps, tanggal 08 Januari 2016 pada Gambar 4.15.

Gambar 4.15 Pengukuran Bandwidth dengan Task Manager

b) Tampilan Hasil Utilitas Access Point ENS200EXT

Status tampilan berdasarkan dari hasil data utilitas yang didapat saat *monitoring* terdapat pada Tabel 4.5. Keterangan dari hasil pengamatan dapat dilihat pada Lampiran 2.

No	Status Perangkat	Me	lalui Web	Mela	alui Email
		Status	Keterangan	Status	Keterangan
1	Terdeteksi access	Bisa		Bisa	
•	point on/off	D !		D !	
2	Terdeteksi port	Bisa		Bisa	
2	access point on/off	р.			
3	Muncul grafik saat	Bisa		-	-
4	incoming traffic	р.			
4	Muncul grafik saat	Bisa		-	-
~	outgoing traffic	р.			
3	Muncul waktu saat	Bisa		-	-
	incoming traffic dan				
~	outgoing traffic	р.			
6	Muncul tanggal saat	Bisa		-	-
	incoming traffic dan				
7	outgoing traffic	D !			
/	Muncul bandwidth	Bisa		-	-
	saat incoming traffic				
0	dan <i>outgoing traffic</i>	D !			
8	Terdeteksi port	Bisa		-	-
0	access point (ath0)	р.			
9	Terdeteksi port	Bisa		-	-
10	access point (br-in)	D'			
10	Terdeteksi port	Bisa		-	-
11	access point (eth0)	חיים			
11	Terdeteksi port	Bisa		-	-
10	access point (ath1)	р.			
12	Terdeteksi port	Bisa		-	-
10	access point (lo)	D !			
13	Terdeteksi port	Bisa		-	-
14	access point (eth1)	р.			
14	Terdeteksi port	Bisa		-	-
1.5	access point (wifi0)	р.			
15	Terdeteksi <i>last</i>	Bisa		-	-
10	traffic bandwidth	D'			
16	Terdeteksi min	Bisa		-	-
17	traffic bandwidth	D !			
1/	i erdeteksi <i>max</i>	Bisa		-	-
10	traffic bandwidth	ית.			
18	redeteksi avg	Bisa		-	-
	traffic bandwidth				

 Tabel 4.5 Tampilan Hasil Utilitas Access Point ENS200EXT

4.1.4 Hasil Pengamatan Utilitas Personal Computer

Melakukan *monitoring* dengan menggunakan terhadap perangkat *personal computer* yang berada dijaringan Universitas Negeri Jakarta, khususnya pada kelas di Pustikom. Terdapat satu jenis *personal computer* yang di *monitoring* pada jaringan ini, yaitu:

4.1.4.1 Monitoring Personal Computer Compaq

a) Pengukuran Bandwidth pada Personal Computer

Pengukuran *bandwidth* menggunakan perbandingan antara salah satu layanan *speedtest, monitoring network traffic* dan *task manager*. Tampilan pengukuran *bandwidth* dengan menggunakan salah satu layanan *speedtest* sebesar 94,19 Mbps, tanggal 11 Januari 2016 pada Gambar 4.16.

Gambar 4.16 Pengukuran Bandwidth dengan Speedtest

Tampilan pengukuran *bandwidth* dengan *monitoring network traffic* sebesar 98,02 Mbps, tanggal 11 Januari 2016 pada Gambar 4.17.

Gambar 4.17 Pengukuran Bandwidth dengan Monitoring Network Traffic

Tampilan pengukuran *bandwidth* dengan menggunakan *task manager* sebesar 98,92 Mbps, tanggal 11 Januari 2016 pada Gambar 4.18.

Gambar 4.18 Pengukuran Bandwidth dengan Task Manager

b) Pengecekan Disk Space Usage pada Harddisk

Pengecekan *disk space usage* pada *harddisk* menggunakan perbandingan antara salah pengecekan langsung pada perangkat dan *monitoring device*. Tampilan pengecekan langsung pada perangkat 59.4 GB free of 80.0 GB, tanggal 11 Januari 2016 pada Gambar 4.19.

Gambar 4.19 Pengecekan Langsung Disk Space Usage

Tampilan pengecekan *monitoring device* 59.4 GB free of 80.0 GB, tanggal 11 Januari 2016 pada Gambar 4.20.

Gambar 4.20 Pengecekan Monitoring Device pada Disk Space Usage

c) Pengecekan CPU Load

Pengecekan *CPU load* menggunakan perbandingan antara salah pengecekan langsung pada perangkat dan *monitoring device*. Tampilan pengecekan langsung pada perangkat tanggal 11 Januari 2016 pada Gambar 4.21.

Gambar 4.21 Pengecekan Langsung pada CPU Load

Tampilan pengecekan monitoring device pada CPU load tanggal 11 Januari

2016 pada Gambar 4.22.

Gambar 4.22 Pengecekan Monitoring Device pada CPU Load

d) Pengecekan Memory

Pengecekan *Memory* menggunakan perbandingan antara salah pengecekan langsung pada perangkat dan *monitoring device*. Tampilan pengecekan langsung pada perangkat tanggal 11 Januari 2016 pada Gambar 4.23.

Gambar 4.23 Pengecekan Langsung pada Memory

Tampilan pengecekan monitoring device pada Memory tanggal 11 Januari 2016

pada Gambar 4.24.

Gambar 4.24 Pengecekan Monitoring Device Pada Memory

e) Tampilan Hasil Utilitas Personal Computer

Status tampilan berdasarkan dari hasil data utilitas yang didapat saat *monitoring* terdapat pada Tabel 4.6. Keterangan dari hasil pengamatan dapat dilihat pada Lampiran 2.

No	Status Perangkat	Me	lalui <i>Web</i>	Mela	alui <i>Email</i>
		Status	Keterangan	Status	Keterangan
1	Terdeteksi PC on/off	Bisa		Bisa	
2	Terdeteksi warning	Bisa		Bisa	
	pada PC				
3	Terdeteksi CPU load	Bisa		-	-
4	Terdeteksi disk	Bisa		-	-
	space usage C:				
5	Terdeteksi disk	Bisa		-	-
	space usage D:				
6	Terdeteksi disk	Bisa		-	-
	space usage F:				
7	Terdeteksi disk	Bisa		-	-
	space usage I:				
8	Terdeteksi memory	Bisa		-	-
	usage				
9	Terdeteksi Microsoft	Bisa		-	-
	ISATAP Adapter				
10	Terdeteksi RAS	Bisa		-	-
	Async Adapter				
11	Terdeteksi Realtek	Bisa		-	-
	PCIe FE Family				
	Controller				
12	Terdeteksi Realtek	Bisa		-	-
	PCIe FE Family				
	Controller*QoS				
	Packet				
	Scheduler*0000				
13	Terdeteksi Realtek	Bisa		-	-
	PCIe FE Family				
	Controller-WFP				
	LightWeight Filter-				
	0000				
14	Terdeteksi WAN	Bisa		-	-
	Miniport (IP)				
15	Terdeteksi WAN	Bisa		-	-
	Miniport (IP)-QoS				

	Packet Scheduler- 0000			
16	Terdeteksi WAN	Bisa	-	-
	Miniport (IPv6)			
17	Terdeteksi WAN	Bisa	-	-
	Miniport (IPv6)-QoS			
	Packet Scheduler-			
	0000			
18	Terdeteksi WAN	Bisa	-	-
	Miniport (L2TP)			
19	Terdeteksi WAN	Bisa	-	-
	Miniport (Network			
• •	Monitor)			
20	Terdeteksi WAN	Bisa	-	-
	Miniport (Network			
	Monitor)-QoS			
	Packet Scheduler-			
01	UUUU Taulatalaa'i HAN	D!		
21	I erdeteksi WAIV	BISa	-	-
าา	Miniport (PPPOE) Tordotokoj WAN	Dico		
	Miniport (DDTD)	DISa	-	-
23	Terdeteksi WAN	Rico		
23	Miniport (SSTP)	DISa	-	-
24	Muncul grafik saat	Risa	_	_
21	processor load	Disa		
25	Muncul waktu saat	Bisa	_	-
20	processor load			
26	Muncul besaran	Bisa	-	-
	pemakaian saat			
	processor load			
27	Muncul grafik saat	Bisa	-	-
	total disk space			
28	Muncul grafik saat	Bisa	-	-
	free disk space			
29	Muncul value saat	Bisa	-	-
	total disk space			
30	Muncul value saat	Bisa	-	-
	free disk space			
31	Muncul grafik saat	Bisa	-	-
	free memory			
32	Muncul waktu saat	Bisa	-	-
	free memory			

33	Muncul besaran pemakaian saat <i>free</i> <i>memory</i>	Bisa	-	-
34	Terdeteksi last traffic bandwidth	Bisa	-	-
35	Terdeteksi min traffic bandwidth	Bisa	-	-
36	Terdeteksi max traffic bandwidth	Bisa	-	-
37	Terdeteksi avg traffic bandwidth	Bisa	-	-

 Tabel 4.6 Tampilan Hasil Utilitas Personal Computer Compaq

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan analisa peneliti dari bab-bab sebelumnya dan teori yang ada, hasil pengembangan produk, hasil pengujian dan revisi produk serta pembahasan yang yang telah dipaparkan, maka ditarik kesimpulan:

- Monitoring device dan network traffic menggunakan SNMP dan agent pada Zabbix telah dapat menghasilkan laporan device dan network traffic pada kelas di Pustikom dan ruang panel di tiap lantai Gedung Dewi Sartika.
- Laporan yang dihasilkan oleh SNMP dan *agent* pada Zabbix dapat digunakan untuk mendeteksi adanya perangkat atau jaringan yang bermasalah pada kelas di Pustikom dan ruang panel di tiap lantai Gedung Dewi Sartika.
- Perangkat access point memiliki beban minimal dalam kapasitas pemakaian bandwidth.
- 4. Monitoring *device* dan *network traffic* menggunakan sistem notifikasi *email* pada Zabbix kurang pas diterapkan pada organisasi yang besar apalagi mencangkup jaringan yang luas.

5.2 Saran

Saran-saran yang dapat peneliti berikan berdasarkan hasil analisa dan kesimpulan, yaitu:

- Monitoring device dan network traffic menggunakan SNMP dan agent pada Zabbix memiliki kekurangan karena belum bisa me-monitoring port akses dan alamat web yang dibuka oleh user.
- 2. Perlu dibuat sistem keamanan jaringan komputer berupa IPS (*Instruction Prevention System*) yang dapat mencegah terjadinya lalu lintas jaringan data yang tidak semestinya atau diatas rata-rata maksimum, baik ke dalam ringan dilingkungan Universitas Negeri Jakarta maupun keluar jaringan Universitas Negeri Jakarta.

DAFTAR PUSTAKA

- Clayton, Eric & Petry, Flancoise. 1983. *Monitoring System for Agricultural and Rural Development Projects*. Rome: FAO Economic and Social Development.
- Cloara, Jeremy, dkk.. 2008. *CCNA Examp Prep (Second Edition)*. United States of America: Pearson Education, Inc..
- Easttom, Chuck. 2012. Computer Security Fundamental. Indianapolis: Pearson.
- Kristanto, Andri. 2003. Jaringan Komputer. Yogyakarta: Graha Ilmu.
- Oliviero, Andrew & Woodward, Bill. 2009. Cabling The Complete Guide to Cooper and Fiber-Optic Networking (Fourth Edition). Indianapolis: Wiley Publishing, Inc..
- Sofana, Iwan. 2012. *Cisco CCNP dan Jaringan Komputer (Materi Route, Switch, & Troubleshooting)*. Bandung: Informatika.
- Stallings, William. 2001. *Data and Computer Communication (Eight Edition)*. United State of America: Pearson Education, Inc..
- Tanenbaum, Andrew S. 1997. *Jaringan Komputer*. Terjemahan oleh Priatna, Gurnita; & Indarto, Purnomo Wahyu. Jakarta: Prenhallindo.
- Tanenbaum, Andrew S. 2011. *Computer Network (Fifth Edition)*. United States of America: Pearson Education, Inc..
- Vacche, Andrea Dalle. 2013. *Mastering Zabbix (Second Edition)*. Brimingham: Packt Publishing.
- Tim Penyusun. 2012. Buku Pedoman Skripsi/Komprehensif/Karya Inovatif (S1). Jakarta: Universitas Negeri Jakarta.

Lampiran 1. Surat Permohonan Penelitian di PUSTIKOM UNJ

Dengan ini kami mohon diberikan ijin mahasiswa tersebut, untuk dapat mengadakan penelitian guna mendapatkan data yang diperlukan dalam rangka Penulisan Skripsi. Skripsi tersebut dengan judul :

"Monitoring Device dan Network Traffic Menggunakan Aplkasi Zabbix Berbasis Web Dengan Sistem Notifikasi Email"

Atas perhatian dan kerjasama Saudara, kami sampaikan terima kasih.

Tembusan :

1. Dekan Fakultas Teknik 2. Kaprog / Jurusan Teknik Elektro Kepala Biro Administrasi Akademik dan Kemahasiswaa

Svaifullah Drg NP 195702161984031001

Lampiran 2. Keterangan dari Hasil Pengamatan Monitoring

4.1.2 Hasil Pengambilan Data Utilitas Switch

Melakukan *monitoring* dengan menggunakan SNMP terhadap perangkat *switch* yang berada dijaringan Universitas Negeri Jakarta, khususnya pada kelas di Pustikom dan ruang panel di tiap lantai Gedung Dewi Sartika. Terdapat tiga jenis *switch* yang di *monitoring* pada jaringan ini, yaitu:

4.1.2.1 Monitoring Switch 2226-SPF Plus 3COM

c) Terdeteksi Switch On/Off

Status perangkat *switch* terdeteksi *on/off*, bisa dilihat melalui *web* dan melalui *email*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berwarna hijau, mengindikasikan bahwa *switch* tersebut on dan dapat dimonitoring dengan SNMP pada Gambar 4.1.

Enabled Z 👬 IIII Pil

Gambar 4.1 Switch Terdeteksi On pada Web

Sedangkan tampilan pemberitahuan berwarna merah, mengindikasikan perangkat tersebut *off* atau perangkat tersebut belum bisa di *monitoring* menggunakan SNMP pada Gambar 4.2.

Enabled Z 👬 III P11

Gambar 4.2 Switch Terdeteksi Off pada Web

Pada *email* dapat dilihat berupa, pesan pemberitahuan *email* masuk yang mengindikasikan bahwa perangkat tersebut *on* tapada Gambar 4.3.

 OK: Operational status was changed on Switch 2226-SFP Plus 3com interface Ethernet0/23

 Kotak Masuk x

 22/12/15

 ke saya

 Trigger: Operational status was changed on Switch 2226-SFP Plus 3com interface Ethernet0/23

 Trigger status: OK

 Trigger status: OK

 Trigger status: OK

 Trigger URL:

 Item values:

 1. Operational status of interface Ethernet0/23 (Switch 2226-SFP Plus 3com:ifOperStatus[Ethernet0/23]): down (2)

 2. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN*

 3. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN*

 Original event ID: 54734

Gambar 4.3 Switch Terdeteksi On pada Email

Sedangkan pesan pemberitahuan email masuk yang mengindikasikan bahwa

perangkat tersebut off pada Gambar 4.4.

Gambar 4.4 Switch Terdeteksi Off pada Email

d) Terdeteksi Port Switch Backbond

Status perangkat terdeteksi *port switch backbond*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan grafik *incoming* lebih besar dari pada *outgoing* pada Gambar 4.5. Selain itu peneliti juga mengecek langsung pada perangkat tersebut.

Gambar 4.5 Port Switch Backbond Terdeteksi pada Web

e) Terdeteksi Port Switch On/Off

Status perangkat *port switch on/off*, bisa dilihat melalui *web* dan melalui email. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa *switch* tersebut *on* pada Gambar 4.6.

Gambar 4.6 Port Switch Terdeteksi On pada Web

Sedangkan tampilan pemberitahuan tidak terdapat grafik, mengindikasikan perangkat tersebut *off* pada Gambar 4.7.

Gambar 4.7 Port Switch Terdeteksi Off pada Web

Pada *email* dapat dilihat berupa, pesan pemberitahuan *email* masuk yang mengindikasikan bahwa *port switch* tersebut *on* pada Gambar 4.8.

Gambar 4.8 Port Switch Terdeteksi On pada Email

Sedangkan pesan pemberitahuan email masuk yang mengindikasikan bahwa

port switch tersebut off pada Gambar 4.9.

PRO Kotak I	BLEM: Operational status was changed on Switch <mark>2226</mark> -SFP Plus 3com i _{Masuk} x	nterface <mark>Ethernet0/1</mark>	• 0
	zabbix.unj@gmail.com ke saya	29/12/15 (8 hari yang lalu) 📩 🔺	*
	Trigger: Operational status was changed on Switch 2226-SFP Plus 3com interface Ethernet0/1 Trigger status: PROBLEM Trigger severity: Information Trigger URL:		
	Item values:		
	Operational status of interface Ethemet0/1 (Switch 2226-SFP Plus 3com:ifOperStatus[Ethemet0 "UNKNOWN* (*UNKNOWN*): *UNKNOWN*) "UNKNOWN* (*UNKNOWN*): *UNKNOWN*)	2/1]): up (1)	
	Original event ID: 74041		

Gambar 4.9 Port Switch Terdeteksi Off Pada Email

f) Muncul Grafik Saat Incoming

Status perangkat muncul grafik saat *incoming*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik berwarna hijau, mengindikasikan bahwa terjadi *incoming traffic* pada Gambar 4.10.

Gambar 4.10 Muncul Grafik Saat Incoming pada Web

g) Muncul Grafik Saat Outgoing

Status perangkat muncul grafik saat *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik berwarna biru, mengindikasikan bahwa terjadi *outgoing traffic* pada Gambar 4.11.

Gambar 4.11 Muncul Grafik Saat Outgoing pada Web

h) Muncul Waktu Saat Incoming dan Outgoing

Status perangkat muncul waktu saat *incoming* dan *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat pada bawah grafik, mengindikasikan bahwa muncul waktu saat terjadi *incoming* dan *outgoing traffic* pada Gambar 4.12.

Gambar 4.12 Muncul Waktu Saat Incoming dan Outgoing pada Web

i) Muncul Tanggal Saat Incoming dan Outgoing

Status perangkat muncul tanggal saat *incoming* dan *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat

diantara waktu pada bawah grafik, mengindikasikan bahwa terjadi *incoming* dan *outgoing traffic* pada Gambar 4.13.

Gambar 4.13 Muncul Tanggal Saat Incoming dan Outgoing pada Web

j) Muncul Bandwidth Saat Incoming dan Outgoing

Status perangkat muncul *bandwidth* saat *incoming* dan *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat pada bawah waktu, mengindikasikan bahwa muncul *bandwidth* saat terjadi *incoming* dan *outgoing traffic* pada Gambar 4.14.

k) Terdeteksi Port Switch (Ethernet)

Status perangkat *port switch (Ethernet)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port switch (Ethernet)* pada Gambar 4.15.

Gambar 4.15 Terdeteksi Port Switch (Ethernet) pada Web

l) Terdeteksi Port Switch (Aux)

Status perangkat *port switch (Aux)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port switch (Aux)* pada Gambar 4.16.

Gambar 4.16 Terdeteksi Port Switch (Aux) pada Web

m) Terdeteksi Port Switch (Fiber)

Status perangkat *port switch (Fiber)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port switch (Fiber)* pada Gambar 4.17.

Gambar 4.17 Terdeteksi Port Switch (Fiber) pada Web

n) Terdeteksi Port Switch (InLoopBack)

Status perangkat *port switch (InLoopBack)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port switch (InLoopBack)* pada Gambar 4.18.

Gambar 4.18 Terdeteksi Port Switch (InLoopBack) pada Web

o) Terdeteksi Port Switch (Vlan-interface)

Status perangkat *port switch (Vlan-interface)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port switch (Vlan-interface)* pada Gambar 4.19.

p) Terdeteksi Port Switch (Copper)

Status perangkat *port switch (Copper)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port switch (Copper)* pada Gambar 4.20.

Gambar 4.20 Terdeteksi Port Switch (Copper) pada Web

q) Terdeteksi Last Traffic Bandwidth

Status *last traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* terakhir pada Gambar

4.21.

Gambar 4.21 Terdeteksi Last Traffic Bandwidth

r) Terdeteksi Min Traffic Bandwidth

Status *min traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* terendah pada Gambar 4.22.

Gambar 4.22 Terdeteksi Min Traffic Bandwidth

s) Terdeteksi Max Traffic Bandwidth

Status *max traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* tertinggi pada Gambar

4.23.

Gambar 4.23 Terdeteksi Max Traffic Bandwidth

t) Terdeteksi Avg Traffic Bandwidth

Status *avg traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* rata-rata pada Gambar 4.24.

Gambar 4.24 Terdeteksi Avg Traffic Bandwidth

4.1.2.2 Monitoring Switch AT-FS750/48

c) Terdeteksi Switch On/Off

Status perangkat *switch* terdeteksi *on/off*, bisa dilihat melalui *web* dan melalui *email*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berwarna hijau, mengindikasikan bahwa *switch* tersebut *on* dan dapat di *monitoring* dengan SNMP pada Gambar 4.25.

Enabled Z 👬 III Pi

Gambar 4.25 Switch Terdeteksi On pada Web

Sedangkan tampilan pemberitahuan berwarna merah, mengindikasikan perangkat tersebut *off* atau perangkat tersebut belum bisa di *monitoring* menggunakan SNMP pada Gambar 4.26.

Enabled Z 👬 III Pil

Gambar 4.26 Switch Terdeteksi Off pada Web

Pada *email* dapat dilihat berupa, pesan pemberitahuan *email* masuk yang mengindikasikan bahwa perangkat tersebut *on* pada Gambar 4.27.

OK: Operational status was changed on ATI interface physical port 06 on physical unit 6 Kotak Masuk ×				
+	zabbix.unj@gmail.com ke saya	29/12/15 (8 h	ari yang lalu) 📩	
	Trigger: Operational status was changed on <mark>ATI</mark> interface physical <mark>port 06</mark> on physical <mark>unit 6</mark> Trigger status: OK Trigger severity: Information Trigger URL:			
	Item values:			
	1. Operational status of interface physical port 06 on physical unit 6 (ATI:ifOperStatus[physical port 2. *UNKNOWN* (*UNKNOWN*): *UNKNOWN* 3. *UNKNOWN* (*UNKNOWN*): *UNKNOWN*): *UNKNOWN*	06 on physical	unit 6]): up (1)	
	Original event ID: 74189			

Gambar 4.27 Switch Terdeteksi On pada Email

Sedangkan pesan pemberitahuan email masuk yang mengindikasikan bahwa

perangkat tersebut off pada Gambar 4.28.

PROBLEM: Operational status was changed on ATI interface physical port 06 on physical unit 6 Kotak Masuk ×

+	zabbix.unj@gmail.com ke saya	29/12/15 (8 hari yang lalu) 💥	
	Trigger: Operational status was changed on <mark>ATI</mark> interface physical port 06 on physical unit 6 Trigger status: PROBLEM Trigger severity: Information Trigger URL:		
	values:		
	 Operational status of interface physical port 06 on physical unit 6 (ATI:ifOperStatus[physical port *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN* *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN* 	<mark>06</mark> on physical <mark>unit 6</mark>]): up (1)	
	Original event ID: 74189		

Gambar 4.28 Switch Terdeteksi Off pada Email

d) Terdeteksi Port Switch Backbond

Status perangkat terdeteksi *port switch backbond*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan grafik *incoming* lebih besar dari pada *outgoing* pada Gambar 4.29. Selain itu peneliti juga mengecek langsung pada perangkat tersebut.

Gambar 4.29 Port Switch Backbond Terdeteksi pada Web

e) Terdeteksi Port Switch On/Off

Status perangkat *port switch on/off*, bisa dilihat melalui *web* dan melalui *email*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa *switch* tersebut *on* pada Gambar 4.30.

Gambar 4.30 Port Switch Terdeteksi On pada Web

Sedangkan tampilan pemberitahuan tidak terdapat grafik, mengindikasikan perangkat tersebut *off* pada Gambar 4.31.

Gambar 4.31 Port Switch Terdeteksi Off pada Web

Pada *emai*l dapat dilihat berupa, pesan pemberitahuan *email* masuk yang mengindikasikan bahwa *port switch* tersebut *on* pada Gambar 4.32.

Gambar 4.32 Port Switch Terdeteksi On Pada Email

Sedangkan pesan pemberitahuan email masuk yang mengindikasikan bahwa

port switch tersebut off pada Gambar 4.33.

Gambar 4.33 Port Switch Terdeteksi Off pada Email

f) Muncul Grafik Saat Incoming

Status perangkat muncul grafik saat *incoming*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik berwarna hijau, mengindikasikan bahwa terjadi *incoming traffic* pada Gambar 4.34.

Gambar 4.34 Muncul Grafik Saat Incoming pada Web

g) Muncul Grafik Saat Outgoing

Status perangkat muncul grafik saat *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik berwarna biru, mengindikasikan bahwa terjadi *outgoing traffic* pada Gambar 4.35.

Gambar 4.35 Muncul Grafik Saat Outgoing pada Web

h) Muncul Waktu Saat Incoming dan Outgoing

Status perangkat muncul waktu saat *incoming* dan *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat pada bawah grafik, mengindikasikan bahwa muncul waktu saat terjadi *incoming* dan *outgoing traffic* pada Gambar 4.36.

Gambar 4.36 Muncul Waktu Saat Incoming dan Outgoing pada Web

i) Muncul Tanggal Saat *Incoming* dan *Outgoing*

Status perangkat muncul tanggal saat *incoming* dan *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat

diantara waktu pada bawah grafik, mengindikasikan bahwa terjadi *incoming* dan *outgoing traffic* pada Gambar 4.37.

Gambar 4.37 Muncul Tanggal Saat Incoming dan Outgoing pada Web

j) Muncul Bandwidth Saat Incoming dan Outgoing

Status perangkat muncul *bandwidth* saat *incoming* dan *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat pada bawah waktu, mengindikasikan bahwa muncul *bandwidth* saat terjadi *incoming* dan *outgoing traffic* pada Gambar 4.38.

k) Terdeteksi Port Switch (Ethernet)

Status perangkat *port switch* (*Ethernet*), bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port switch* (*Ethernet*) pada Gambar 4.39.

Gambar 4.39 Terdeteksi Port Switch (Ethernet) pada Web

I) Terdeteksi Last Traffic Bandwidth

Status *last traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* terakhir pada Gambar 4.40.

Gambar 4.40 Terdeteksi Last Traffic Bandwidth

m) Terdeteksi Min Traffic Bandwidth

Status *min traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* terendah pada Gambar 4.41.

Gambar 4.41 Terdeteksi Min Traffic Bandwidth

m) Terdeteksi Max Traffic Bandwidth

Status *max traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* tertinggi pada Gambar 4.42.

Gambar 4.42 Terdeteksi Max Traffic Bandwidth

n) Terdeteksi Avg Traffic Bandwidth

Status *avg traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* rata-rata pada Gambar 4.43.

Gambar 4.43 Terdeteksi Avg Traffic Bandwidth

4.1.2.3 Monitoring Switch Cisco Catalyst 2960

c) Terdeteksi Switch On/Off

Status perangkat *switch* terdeteksi *on/off*, bisa dilihat melalui *web* dan melalui *email*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berwarna hijau, mengindikasikan bahwa *switch* tersebut *on* dan dapat di *monitoring* dengan SNMP pada Gambar 4.44.

Enabled Z 👬 Jill Pil

Gambar 4.44 Switch Terdeteksi On pada Web

Sedangkan tampilan pemberitahuan berwarna merah, mengindikasikan perangkat tersebut *off* atau perangkat tersebut belum bisa di *monitoring* menggunakan SNMP pada Gambar 4.45.

Enabled Z 🏭 JIN P11

Gambar 4.45 Switch Terdeteksi Off pada Web

Pada *email* dapat dilihat berupa, pesan pemberitahuan *email* masuk yang mengindikasikan bahwa perangkat tersebut *on* pada Gambar 4.46.

zabbix.unj@gmail.com	5 Jar	n (2 hari yang lalu) 📩	*	•
Trigger: Operational status was changed on Switch Sartilka Lt3 interface FastEthernet0/3 Trigger status: OK Trigger seventy: Information Trigger URL:				
Item values:				
1. Operational status of interface FastEthernet0/3 (Switch Sartilka Lt3:ifOperStatus[FastEthernet0/3]): 2. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN* 3. *UNKNOWN* (*UNKNOWN*): *UNKNOWN*): *UNKNOWN*	up (1))		
Original event ID: 83038				

Gambar 4.46 Switch Terdeteksi On pada Email

Sedangkan pesan pemberitahuan email masuk yang mengindikasikan bahwa

perangkat tersebut off pada Gambar 4.47.

```
      PROBLEM: Operational status was changed on Switch Sartilka Lt3 interface FastEthernet0/3

      Kotak Masuk

      Zabbix.unj@gmail.com

      ke saya •

      Trigger: Operational status was changed on Switch Sartilka Lt3 interface FastEthernet0/3

      Trigger: Operational status was changed on Switch Sartilka Lt3 interface FastEthernet0/3

      Trigger: Operational status was changed on Switch Sartilka Lt3 interface FastEthernet0/3

      Trigger severity: Information

      Trigger URL:

      Item values:

      1. Operational status of interface FastEthernet0/3 (Switch Sartilka Lt3:ifOperStatus[FastEthernet0/3]): down (2)

      2. *UNKNOWN* (*UNKNOWN*): *UNKNOWN*

      0riginal event ID: 83038
```

Gambar 4.47 Switch Terdeteksi Off pada Email

d) Terdeteksi Port Switch Backbond

Status perangkat terdeteksi *port switch backbond*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan grafik *incoming* lebih besar dari pada *outgoing* pada Gambar 4.48. Selain itu peneliti juga mengecek langsung pada perangkat tersebut.

Gambar 4.48 Port Switch Backbond Terdeteksi pada Web

e) Terdeteksi Port Switch On/Off

Status perangkat *port switch on/off*, bisa dilihat melalui *web* dan melalui *email*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa *switch* tersebut *on* pada Gambar 4.49.

Gambar 4.49 Port Switch Terdeteksi On pada Web

Sedangkan tampilan pemberitahuan tidak terdapat grafik, mengindikasikan perangkat tersebut *off* pada Gambar 4.50.

Gambar 4.50 Port Switch Terdeteksi Off pada Web

Pada *email* dapat dilihat berupa, pesan pemberitahuan *email* masuk yang mengindikasikan bahwa *port switch* tersebut *on* pada Gambar 4.51.

OK:	Operational status was changed on Switch Sartilka <mark>Lt3</mark> interface FastEthernet0/11	Kotak Masuk x	ē 2
-	zabbix.unj@gmail.com ke saya	21/12/15 🕁	* -
	Trigger: Operational status was changed on Switch Sartilka <mark>Lt3</mark> interface FastEthernet0/11 Trigger status: OK Trigger severity: Information Trigger URL:		
	Item values:		
	1. Operational status of interface FastEthernet0/11 (Switch Sartilka Lt3:ifOperStatus[FastEthernet0/11]): up (1) 2. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN* 3. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN*		
	Original event ID: 53403		

Gambar 4.51 Port Switch Terdeteksi On pada Email

Sedangkan pesan pemberitahuan email masuk yang mengindikasikan bahwa

port switch tersebut off pada Gambar 4.52.

PRO Kotak I	BLEM: Operational status was changed on Switch Sartilka Lt3 interface FastEthernet0)/11 👼 🖻
-	zabbix.unj@gmail.com ke saya ∵	21/12/15 📩 🔹
	Trigger: Operational status was changed on Switch Sartilka Lt3 interface FastEthernet0/11 Trigger status: PROBLEM Trigger severity: Information Trigger URL:	
	Item values:	
	Operational status of interface FastEthernet0/11 (Switch Sartilka Lt3: ifOperStatus[FastEthernet0/11]): up (1) "UNKNOWN* (*UNKNOWN*: *UNKNOWN*): *UNKNOWN* "UNKNOWN* (*UNKNOWN*: *UNKNOWN*): *UNKNOWN*	
	Original event ID: 53403	

Gambar 4.52 Port Switch Terdeteksi Off pada Email

f) Muncul Grafik Saat Incoming

Status perangkat muncul grafik saat *incoming*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik berwarna hijau, mengindikasikan bahwa terjadi *incoming traffic* pada Gambar 4.53.

Gambar 4.53 Muncul Grafik Saat Incoming pada Web

g) Muncul Grafik Saat Outgoing

Status perangkat muncul grafik saat *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik berwarna biru, mengindikasikan bahwa terjadi *outgoing traffic* pada Gambar 4.54.

Gambar 4.54 Muncul Grafik Saat Outgoing pada Web

h) Muncul Waktu Saat Incoming dan Outgoing

Status perangkat muncul waktu saat *incoming* dan *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat pada bawah grafik, mengindikasikan bahwa muncul waktu saat terjadi *incoming* dan *outgoing traffic* pada Gambar 4.55.

Gambar 4.55 Muncul Waktu Saat Incoming dan Outgoing pada Web

i) Muncul Tanggal Saat Incoming dan Outgoing

Status perangkat muncul tanggal saat *incoming* dan *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat

diantara waktu pada bawah grafik, mengindikasikan bahwa terjadi *incoming* dan *outgoing traffic* pada Gambar 4.56.

Gambar 4.56 Muncul Tanggal Saat Incoming dan Outgoing pada Web

j) Muncul Bandwidth Saat Incoming dan Outgoing

Status perangkat muncul *bandwidth* saat *incoming* dan *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat pada bawah waktu, mengindikasikan bahwa muncul *bandwidth* saat terjadi *incoming* dan *outgoing traffic* pada Gambar 4.57.

k) Terdeteksi Port Switch (FastEthernet)

Status perangkat *port switch (FastEthernet)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port switch (FastEthernet)* pada Gambar 4.58.

Gambar 4.58 Terdeteksi Port Switch (FastEthernet) pada Web

l) Terdeteksi *Port Switch* (*Null*)

Status perangkat *port switch (Aux)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port switch (Null)* pada Gambar 4.59.

1.244	2														S	wit	ch !	Sart	ilka	a Lt	:3:	Traf	fic	on	inte	rfa	ce M	Juli	0 (1	h)																		
1.2 DPS																																																
1.0 bps																																																
0.8 bps																																																
0.6 bps																																																
0.4 bps																																																
0.2 bps																																																
0 bps -	22:40	22:41	22:43	22:44 22:45	22:46	22:47	22:49	22:50	22:51	22.22	22.54	22:55	22:56	22:57	22.58	22.59	10.52	23:02	23:03	23:04	23:05	23:06	0.0	50.5	23:10	23:11	1 1	23.14	23:15	23:16	23:17	81 52 53 10	23:20	23:21	23:22	22.22 VC-EC	23:25	23:26	23:27	23:28	23:29	23.31	23:32	23:33	23:34	23.36	23:37	23.38
02.01.0	7 10.70																4																															07.01 2
Incoming	traffi	c on i	nterfa	ce Nu	110	[av	9]	las 0 bj	t os	mi 0 b	n ps	a 0 I	ops	n 0	hax bps	5																																

Gambar 4.59 Terdeteksi Port Switch (Null) pada Web

m) Terdeteksi Port Switch (GigabitEthernet)

Status perangkat *port switch (GigabitEthernet)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port switch (GigabitEthernet)* pada Gambar 4.60.

Gambar 4.60 Terdeteksi Port Switch (GigabitEthernet) pada Web

n) Terdeteksi Port Switch (Vlan-interface)

Status perangkat *port switch (Vlan-interface)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port switch (Vlan-interface)* pada Gambar 4.61.

Gambar 4.61 Terdeteksi Port Switch (Vlan-interface) pada Web

o) Terdeteksi Last Traffic Bandwidth

Status *last traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* terakhir pada Gambar 4.62.

Gambar 4.62 Terdeteksi Last Traffic Bandwidth

p) Terdeteksi Min Traffic Bandwidth

Status *min traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah

waktu, mengindikasikan bahwa tercatat *traffic bandwidth* terendah pada Gambar 4.63.

Gambar 4.63 Terdeteksi Min Traffic Bandwidth

q) Terdeteksi Max Traffic Bandwidth

Status *max traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* tertinggi pada Gambar 4.64.

Gambar 4.64 Terdeteksi Max Traffic Bandwidth

r) Terdeteksi Avg Traffic Bandwidth

Status *avg traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* rata-rata pada Gambar 4.65.

Gambar 4.65 Terdeteksi Avg Traffic Bandwidth

4.1.3 Hasil Pengambilan Data Utilitas Access Point

Melakukan *monitoring* dengan menggunakan SNMP terhadap perangkat *access point* yang berada dijaringan Universitas Negeri Jakarta, khususnya pada kelas di Pustikom. Terdapat dua jenis *access point* yang di *monitoring* pada jaringan ini, yaitu:

4.1.3.1 Monitoring Access Point EnGenius ENS202EXT

c) Terdeteksi Access Point On/Off

Status perangkat *access point* terdeteksi *on/of*f, bisa dilihat melalui *web* dan melalui *email*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berwarna hijau, mengindikasikan bahwa *switch* tersebut *on* dan dapat di *monitoring* dengan SNMP pada Gambar 4.66.

Enabled Z 👬 🛲 🖬

Gambar 4.66 Access Point Terdeteksi On pada Web

Sedangkan tampilan pemberitahuan berwarna merah, mengindikasikan perangkat tersebut *off* atau perangkat tersebut belum bisa di *monitoring* menggunakan SNMP pada Gambar 4.67.

Enabled Z 👬 III Pil

Gambar 4.67 Access Point Terdeteksi Off pada Web

Pada *email* dapat dilihat berupa, pesan pemberitahuan *email* masuk yang mengindikasikan bahwa perangkat tersebut *on* pada Gambar 4.68.

OK: 0	Dperational status was changed on ENS202EXT interface eth0 Kotak Masuk	× 🖶	2
+	zabbix.unj@gmail.com ke saya ∵	5 Jan (2 hari yang lalu) 🔀 🦱	Ŧ
	Trigger: Operational status was changed on ENS202EXT interface eth0 Trigger status: OK Trigger severity: Information Trigger URL:		
	Item values:		
	1. Operational status of interface eth0 (ENS202EXT:ifOperStatus[eth0]): up (1) 2. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN* 3. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN*		
	Original event ID: 82301		

Gambar 4.68 Access Point Terdeteksi On pada Email

Sedangkan pesan pemberitahuan email masuk yang mengindikasikan bahwa

perangkat tersebut off pada Gambar 4.69.

Gambar 4.69 Access Point Terdeteksi Off pada Email

d) Terdeteksi Port Access Point Backbond

Status perangkat terdeteksi *port access point backbond*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan grafik *incoming* lebih besar dari pada *outgoing* pada Gambar 4.70. Selain itu peneliti juga mengecek langsung pada perangkat tersebut.

Gambar 4.70 Port Access Point Backbond Terdeteksi pada Web

e) Terdeteksi Port Access Point On/Off

Status perangkat *port access point on/off*, bisa dilihat melalui *web* dan melalui *email*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa *access point* tersebut *on* pada Gambar 4.71.

Gambar 4.71 Port Access Point Terdeteksi On pada Web

Sedangkan tampilan pemberitahuan tidak terdapat grafik, mengindikasikan perangkat tersebut *off* pada Gambar 4.72.

Gambar 4.72 Port Access Point Terdeteksi Off pada Web

Pada *email* dapat dilihat berupa, pesan pemberitahuan *email* masuk yang mengindikasikan bahwa *port access point* tersebut *on* pada Gambar 4.73.

OK:	Operational status was changed on ENS202EXT interface ath0 Kotak Masuk x	ēD
•	zabbix.unj@gmail.com ke saya	23/12/15 📩 🔹 💌
	Trigger: Operational status was changed on <mark>ENS202EXT</mark> interface ath0 Trigger status: OK Trigger severity: Information Trigger URL:	
	Item values:	
	 Operational status of interface ath0 (ENS202EXT:ifOperStatus[ath0]): up (1) "UNKNOWN" ("UNKNOWN":"UNKNOWN"): "UNKNOWN" "UNKNOWN" ("UNKNOWN":"UNKNOWN"): "UNKNOWN" 	
	Original event ID: 64144	

Gambar 4.73 Port Access Point Terdeteksi On pada Email

Sedangkan pesan pemberitahuan email masuk yang mengindikasikan bahwa

port access point tersebut off pada Gambar 4.74.

Gambar 4.74 Port Access Point Terdeteksi Off pada Email

f) Muncul Grafik Saat Incoming

Status perangkat muncul grafik saat *incoming*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik berwarna hijau, mengindikasikan bahwa terjadi *incoming traffic* pada Gambar 4.75.

Gambar 4.75 Muncul Grafik Saat Incoming pada Web

g) Muncul Grafik Saat Outgoing

Status perangkat muncul grafik saat *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik berwarna biru, mengindikasikan bahwa terjadi *outgoing traffic* pada Gambar 4.76.

Gambar 4.76 Muncul Grafik Saat Outgoing pada Web

h) Muncul Waktu Saat Incoming dan Outgoing

Status perangkat muncul waktu saat *incoming* dan *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat pada bawah grafik, mengindikasikan bahwa muncul waktu saat terjadi *incoming* dan *outgoing traffic* pada Gambar 4.77.

Gambar 4.77 Muncul Waktu Saat Incoming dan Outgoing pada Web

i) Muncul Tanggal Saat Incoming dan Outgoing

Status perangkat muncul tanggal saat *incoming* dan *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat

diantara waktu pada bawah grafik, mengindikasikan bahwa terjadi *incoming* dan *outgoing traffic* pada Gambar 4.78.

Gambar 4.78 Muncul Tanggal Saat Incoming dan Outgoing pada Web

j) Muncul Bandwidth Saat Incoming dan Outgoing

Status perangkat muncul *bandwidth* saat *incoming* dan *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat pada bawah waktu, mengindikasikan bahwa muncul *bandwidth* saat terjadi *incoming* dan *outgoing traffic* pada Gambar 4.79.

k) Terdeteksi Port Access Point (ath0)

Status perangkat *port access point (ath0)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port access point (ath0)* pada Gambar 4.80.

Gambar 4.80 Terdeteksi Port Access Point (ath0) pada Web

I) Terdeteksi Port Access Point (br-lan)

Status perangkat *port access point (br-lan)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port access point (br-lan)* pada Gambar 4.81.

	¢.																EN	52(02E	хт	: Tra	affi	ic o	n in	nter	face	e bi	r-lar	n (1	h)																			
1.2 bps																																																	
1.0 bps																																																	
0.8 bps																																																	
0.6 bps																																																	
0.4 bps																																																	
0.2 bps																																																	
0 bps	8 8	34	35	37	80	39	-41	142	64 F	45	: 46	47	49	20	21	3 5	2	55	20	- 22	80	50	8	0 0	3 6	5	:02	8	01	6 6	8	E.	8 8	14	13	8	1 81	19	50	- 12	5	8 8	5 12	26		. 28	N 8	31	32
	.01 06 06	90	0 0	0	8	ð ö	õ	õ	õč	5 8	0	ŏŏ	ŏ	8	8	8 8	5 8	8	ő	ő	8	8	01	6 6	5 8	60	6	6 1	6 8	5 6	10	6	6 6	6	0	6 6	5 6	6	0	0	6	6 6	5 6	6	6	0 0	5 6	0	0.107
	8								la	st	m	in	a	va	m	iax																																	8
Incoming Outgoing	g trai g tra	ffic o ffic o	n inte n int	erfac erfac	e br	-lan -lan	[av	/g] /g]	0 b 0 b	ps ps	0 b 0 b	ps ps	01	ops	0 0	bps bps																																	

Gambar 4.81 Terdeteksi Port Access Point (br-lan) pada Web

m) Terdeteksi Port Access Point (eth0)

Status perangkat *port access point (eth0)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port access point (eth0)* pada Gambar 4.82.

Gambar 4.82 Terdeteksi Port Access Point (eth0) pada Web

n) Terdeteksi Port Access Point (ip6tnl0)

Status perangkat *port access point (ip6tnl0)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port access point (ip6tnl0)* pada Gambar 4.83.

Gambar 4.83 Terdeteksi Port Access Point (ip6tnl0) pada Web

o) Terdeteksi Port Access Point (lo)

Status perangkat *port access point (lo)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port access point (lo)* pada Gambar 4.84.

Gambar 4.84 Terdeteksi Port Access Point (lo) pada Web

p) Terdeteksi Port Access Point (sit0)

Status perangkat *port access point (sit0)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port access point (sit0)* pada Gambar 4.85.

Gambar 4.85 Terdeteksi Port Access Point (sit0) pada Web

q) Terdeteksi Port Access Point (wifi0)

Status perangkat *port access point (wifi0)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port access point (wifi0)* pada Gambar 4.86.

Gambar 4.86 Terdeteksi Port Access Point (sit0) pada Web

r) Terdeteksi Last Traffic Bandwidth

Status *last traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* terakhir pada Gambar 4.87.

Gambar 4.87 Terdeteksi Last Traffic Bandwidth

s) Terdeteksi Min Traffic Bandwidth

Status *min traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* terendah pada Gambar 4.88.

Gambar 4.88 Terdeteksi Min Traffic Bandwidth

t) Terdeteksi Max Traffic Bandwidth

Status *max traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* tertinggi pada Gambar 4.89.

Gambar 4.89 Terdeteksi Max Traffic Bandwidth

u) Terdeteksi Avg Traffic Bandwidth

Status *avg traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* rata-rata pada Gambar 4.90.

Gambar 4.90 Terdeteksi Avg Traffic Bandwidth

4.1.3.2 Monitoring Access Point EnGenius ENS200EXT

c) Terdeteksi Access Point On/Off

Status perangkat *access point* terdeteksi *on/off*, bisa dilihat melalui *web* dan melalui *email*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berwarna hijau, mengindikasikan bahwa *switch* tersebut *on* dan dapat di *monitoring* dengan SNMP pada Gambar 4.91.

Enabled Z 👬 III Pil

Gambar 4.91 Access Point Terdeteksi On pada Web

Sedangkan tampilan pemberitahuan berwarna merah, mengindikasikan perangkat tersebut *off* atau perangkat tersebut belum bisa di *monitoring* menggunakan SNMP pada Gambar 4.92.

Enabled Z 🏭 III Pil

Gambar 4.92 Access Point Terdeteksi Off pada Web

Pada *email* dapat dilihat berupa, pesan pemberitahuan *email* masuk yang mengindikasikan bahwa perangkat tersebut *on* pada Gambar 4.93.

OK: (Dperational status was changed on AP_RuangRapat interface ath0 Kota	k Masuk x	ē Ø
+	zabbix.unj@gmail.com ke saya ∵	1 Jan (7 hari yang lalu) 📩 🦱	-
	Trigger: Operational status was changed on <mark>AP_RuangRapat</mark> interface ath0 Trigger status: OK Trigger severity: Information Trigger URL:		
	Item values:		
	Operational status of interface ath0 (AP_RuangRapat:ifOperStatus[ath0]): up (1) "UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN* "UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN*		
	Original event ID: 76573		

Gambar 4.93 Access Point Terdeteksi On pada Email

Sedangkan pesan pemberitahuan email masuk yang mengindikasikan bahwa

perangkat tersebut off pada Gambar 4.94.

Gambar 4.94 Access Point Terdeteksi Off pada Email

d) Terdeteksi Port Access Point Backbond

Status perangkat terdeteksi *port access point backbond*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan grafik *incoming* lebih besar dari pada *outgoing* pada Gambar 4.95. Selain itu peneliti juga mengecek langsung pada perangkat tersebut.

Gambar 4.95 Port Access Point Backbond Terdeteksi pada Web

e) Terdeteksi Port Access Point On/Off

Status perangkat *port access point on/off*, bisa dilihat melalui *web* dan melalui *email*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa *access point* tersebut *on* pada Gambar 4.96.

Gambar 4.96 Port Access Point Terdeteksi On pada Web

Sedangkan tampilan pemberitahuan tidak terdapat grafik, mengindikasikan perangkat tersebut *off* pada Gambar 4.97.

	\$															AP_	Ru	ang	Rap	at:	Tra	fic	on	int	erfa	ice	ath	D (1	h)																			
1.2 bps																																																
1.0 bps																																																
0.8 bps																																																
0.6 bps																																																
0.4 bps																																																
0.2 bps																																																
0 bps -							-	-								-					-0								-											-						-		
0000	00:10 00:10	0102	1010	01:02	0.10	01:0	01:00	01:10	11:10	01:10	0110	01:15	01.16	01:10	01:10	01:20	01:21	01.22	7710	01.2	01:26	01:27	01:28	0120	0131	01:32	01:33	56-LO	01:36	01:37	01:36	01:40	01:41	01:42	01:43	01:44	94-10	01.47	01:45	01:45	01:50	01:51	01.52	01-54	01.5	01:56	01:57	SCI0 10.58
Incoming) traffic traffic	on in on in	terfac terfac	e athi e athi		[no [no	data data	1	last	n	nin	avg	<u>,</u>	max																																		8

Gambar 4.97 Port Access Point Terdeteksi Off pada Web

Pada email dapat dilihat berupa, pesan pemberitahuan email masuk yang

mengindikasikan bahwa port access point tersebut on pada Gambar 4.98.

Gambar 4.98 Port Access Point Terdeteksi On pada Email

Sedangkan pesan pemberitahuan email masuk yang mengindikasikan bahwa

port access point tersebut off pada Gambar 4.99.

Gambar 4.99 Port Access Point Terdeteksi Off pada Email

f) Muncul Grafik Saat Incoming

Status perangkat muncul grafik saat *incoming*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik berwarna hijau, mengindikasikan bahwa terjadi *incoming traffic* pada Gambar 4.100.

Gambar 4.100 Muncul Grafik Saat Incoming pada Web

g) Muncul Grafik Saat Outgoing

Status perangkat muncul grafik saat *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik berwarna biru, mengindikasikan bahwa terjadi *outgoing traffic* pada Gambar 4.101.

Gambar 4.101 Muncul Grafik Saat Outgoing pada Web

h) Muncul Waktu Saat Incoming dan Outgoing

Status perangkat muncul waktu saat *incoming* dan *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat pada bawah grafik, mengindikasikan bahwa muncul waktu saat terjadi *incoming* dan *outgoing traffic* pada Gambar 4.102.

Gambar 4.102 Muncul Waktu Saat Incoming dan Outgoing pada Web

i) Muncul Tanggal Saat Incoming dan Outgoing

Status perangkat muncul tanggal saat *incoming* dan *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat diantara waktu pada bawah grafik, mengindikasikan bahwa terjadi *incoming* dan *outgoing traffic* pada Gambar 4.103.

Gambar 4.103 Muncul Tanggal Saat Incoming dan Outgoing pada Web

j) Muncul Bandwidth Saat Incoming dan Outgoing

Status perangkat muncul *bandwidth* saat *incoming* dan *outgoing*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat pada bawah waktu, mengindikasikan bahwa muncul *bandwidth* saat terjadi *incoming* dan *outgoing traffic* pada Gambar 4.104.

Gambar 4.104 Muncul Bandwidth Saat Incoming dan Outgoing pada Web

k) Terdeteksi Port Access Point (ath0)

Status perangkat *port access point (ath0)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port access point (ath0)* pada Gambar 4.105.

Gambar 4.105 Terdeteksi Port Access Point (ath0) pada Web

1) Terdeteksi Port Access Point (br-lan)

Status perangkat *port access point (br-lan)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port access point (br-lan)* pada Gambar 4.106.

Gambar 4.106 Terdeteksi Port Access Point (br-lan) pada Web

m) Terdeteksi Port Access Point (eth0)

Status perangkat *port access point (eth0)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port access point (eth0)* pada Gambar 4.107.

Gambar 4.107 Terdeteksi Port Access Point (eth0) pada Web

n) Terdeteksi Port Access Point (ath1)

Status perangkat *port access point (ath1)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port access point (ath1)* pada Gambar 4.108.

Gambar 4.108 Terdeteksi Port Access Point (ath1) pada Web

o) Terdeteksi Port Access Point (lo)

Status perangkat *port access point (lo)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port access point (lo)* pada Gambar 4.109.

Gambar 4.109 Terdeteksi Port Access Point (lo) pada Web

p) Terdeteksi Port Access Point (eth1)

Status perangkat *port access point (eth1)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port access point (eth1)* pada Gambar 4.110.

Gambar 4.110 Terdeteksi Port Access Point (eth1) pada Web

q) Terdeteksi Port Access Point (wifi0)

Status perangkat *port access point (wifi0)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa tulisan dibagian atas, mengindikasikan bahwa itu *port access point (wifi0)* pada Gambar 4.111.

Gambar 4.111 Terdeteksi Port Access Point (wifi0) pada Web

r) Terdeteksi Last Traffic Bandwidth

Status *last traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* terakhir pada Gambar 4.112.

Gambar 4.112 Terdeteksi Last Traffic Bandwidth

s) Terdeteksi Min Traffic Bandwidth

Status *min traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* terendah pada Gambar 4.113.

Gambar 4.113 Terdeteksi Min Traffic Bandwidth

t) Terdeteksi Max Traffic Bandwidth

Status *max traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah

waktu, mengindikasikan bahwa tercatat *traffic bandwidth* tertinggi pada Gambar 4.114.

Gambar 4.114 Terdeteksi Max Traffic Bandwidth

u) Terdeteksi Avg Traffic Bandwidth

Status *avg traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* rata-rata pada Gambar 4.115.

Gambar 4.115 Terdeteksi Avg Traffic Bandwidth

4.1.4 Hasil Pengambilan Data Utilitas Personal Computer

Melakukan *monitoring* dengan menggunakan terhadap perangkat *personal computer* yang berada di jaringan Universitas Negeri Jakarta, khususnya pada kelas di Pustikom. Terdapat satu jenis *personal computer* yang di *monitoring* pada jaringan ini, yaitu:
4.1.4.1 Monitoring Personal Computer Pustikom-B08

a) Terdeteksi Personal Computer On/Off

Status perangkat *personal computer* terdeteksi *on/off*, bisa dilihat melalui *web* dan melalui *email*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berwarna hijau, mengindikasikan bahwa *personal computer* tersebut *on* dan dapat di *monitoring* dengan *agent* pada Gambar 4.116.

Enabled Z # III PI

Gambar 4.116 Personal Computer Terdeteksi On pada Web

Sedangkan tampilan pemberitahuan berwarna merah, mengindikasikan perangkat tersebut *off* atau perangkat tersebut belum bisa di *monitoring* menggunakan *agent* pada Gambar 4.117.

Enabled Z 🔡 III. III

Gambar 4.117 Personal Computer Terdeteksi Off pada Web

Pada *email* dapat dilihat berupa, pesan pemberitahuan *email* masuk yang mengindikasikan bahwa perangkat tersebut *on* tapada Gambar 4.118.

Gambar 4.118 Personal Computer Terdeteksi On pada Email

Sedangkan pesan pemberitahuan *email* masuk yang mengindikasikan bahwa

perangkat tersebut off pada Gambar 4.119.

OK:	Zabbix agent on Pustikom-B08 is unreachable for 5 minutes Kotak Masuk ×	- B
•	zabbix.unj@gmail.com ke saya	15.34 (0 menit yang lalu) 🖄 🖌 🝷
	Trigger: Zabbix agent on <mark>Pustikom-B08</mark> is unreachable for 5 minutes Trigger status: OK Trigger severity: Average Trigger URL:	
	Item values:	
	1. Agent ping (<mark>Pustikom-B08</mark> :agent.ping): Up (1) 2. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN* 3. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN*	
	Original event ID: 89804	

Gambar 4.119 Personal Computer Terdeteksi Off pada Email

b) Terdeteksi Warning pada Personal Computer

Status perangkat terdeteksi *warning* pada *personal computer*, bisa dilihat melalui *web* dan melalui *email*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berwarna kuning, mengindikasikan bahwa *personal computer* tersebut bermasalah pada Gambar 4.120.

 Pustikom-B08
 Free disk space is less than 20% on volume F:
 2016-01-08 15:52:08
 2h 9m 31s
 No
 1

Gambar 4.120 Personal Computer Terdeteksi Warning pada Web

Pada *email* dapat dilihat berupa, pesan pemberitahuan *email* masuk yang mengindikasikan bahwa perangkat tersebut *on* tapada Gambar 4.121.

Gambar 4.121 Personal Computer Terdeteksi Warning pada Email

c) Terdeteksi CPU Load

Status perangkat terdeteksi CPU *load*, bisa dilihat melalui *web*.Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi CPU *load* pada Gambar 4.122.

Gambar 4.122 Personal Computer Terdeteksi CPU Load pada Web

d) Terdeteksi Disk Space Usage C

Status perangkat terdeteksi *disk space usage* C, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi *disk space usage* C pada Gambar 4.123.

d) Terdeteksi Disk Space Usage D

Status perangkat terdeteksi *disk space usage* D, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi *disk space usage* D pada Gambar 4.124.

Gambar 4.124 Personal Computer Terdeteksi Disk Space Usage D pada Web

e) Terdeteksi Disk Space Usage F

Status perangkat terdeteksi *disk space usage* F, bisa dilihat melalui *web*.Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi *disk space usage* F pada Gambar 4.125.

f) Terdeteksi Memory Usage

Status perangkat terdeteksi *memory usage*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi *memory usage* pada Gambar 4.126.

g) Terdeteksi Microsoft ISATAP Adapter

Status perangkat terdeteksi *Microsoft ISATAP Adapter*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi *Microsoft ISATAP Adapter* pada Gambar 4.127.

Gambar 4.127 Personal Computer Terdeteksi Microsoft ISATAP Adapter pada Web

h) Terdeteksi RAS Async Adapter

Status perangkat terdeteksi *RAS Async Adapter*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi *RAS Async Adapter* pada Gambar 4.128.

Gambar 4.128 Personal Computer Terdeteksi RAS Async Adapter pada Web

i) Terdeteksi Realtek PCIe FE Family Controller

Status perangkat terdeteksi *Realtek PCIe FE Family Controller*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi *Realtek PCIe FE Family Controller* pada Gambar 4.129.

Gambar 4.129 Personal Computer Terdeteksi Realtek PCIe FE Family Controller pada Web

j) Terdeteksi *Realtek PCIe FE Family Controller*QoS Packet Scheduler*0000*

Status perangkat terdeteksi *Realtek PCIe FE Family Controller*QoS Packet* Scheduler*0000, bisa dilihat melalui web. Pada web dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa *terdeteksi Realtek PCIe FE* Family Controller*QoS Packet Scheduler*0000 pada Gambar 4.130.

Gambar 4.130 Personal Computer Terdeteksi Realtek PCIe FE Family Controller*QoS Packet Scheduler*0000 pada Web

k) Terdeteksi Realtek PCIe FE Family Controller-WFP LightWeight Filter-0000

Status perangkat terdeteksi *Realtek PCIe FE Family Controller-WFP LightWeight Filter-0000*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi

Realtek PCIe FE Family Controller-WFP LightWeight Filter-0000 pada Gambar

4.131.

Gambar 4.131 Personal Computer Terdeteksi Realtek PCIe FE Family Controller-WFP LightWeight Filter-0000 pada Web

l) Terdeteksi WAN Miniport (IKEv2)

Status perangkat terdeteksi *WAN Miniport (IKEv2)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi *WAN Miniport (IKEv2)* pada Gambar 4.132.

Gambar 4.132 Personal Computer Terdeteksi WAN Miniport (IKEv2) pada Web

m) Terdeteksi WAN Miniport (IP)

Status perangkat terdeteksi *WAN Miniport (IP)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi *WAN Miniport (IP)* pada Gambar 4.133.

Gambar 4.133 Personal Computer Terdeteksi WAN Miniport (IP) pada Web

n) Terdeteksi WAN Miniport (IP)-QoS Packet Scheduler-0000

Status perangkat terdeteksi WAN Miniport (IP)-QoS Packet Scheduler-0000, bisa dilihat melalui web. Pada web dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi WAN Miniport (IP)-QoS Packet Scheduler-0000 pada Gambar 4.134.

Gambar 4.134 Personal Computer Terdeteksi WAN Miniport (IP)-QoS Packet Scheduler-0000 pada Web

o) Terdeteksi WAN Miniport (IPv6)

Status perangkat terdeteksi *WAN Miniport (IPv6)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi *WAN Miniport (IPv6)* pada Gambar 4.135.

Gambar 4.135 Personal Computer Terdeteksi WAN Miniport (IPv6) pada Web

p) Terdeteksi WAN Miniport (IPv6)-QoS Packet Scheduler-0000

Status perangkat terdeteksi WAN Miniport (IPv6)-QoS Packet Scheduler-0000, bisa dilihat melalui web. Pada web dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi WAN Miniport (IPv6)-QoS Packet Scheduler-0000 pada Gambar 4.136.

Gambar 4.136 Personal Computer Terdeteksi WAN Miniport (IPv6)-QoS Packet Scheduler-0000 pada Web

q) Terdeteksi WAN Miniport (L2TP)

Status perangkat terdeteksi *WAN Miniport (L2TP)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi *WAN Miniport (L2TP)* pada Gambar 4.137.

Gambar 4.137 Personal Computer Terdeteksi WAN Miniport (L2TP) pada Web

r) Terdeteksi WAN Miniport (Network Monitor)

Status perangkat terdeteksi WAN Miniport (Network Monitor), bisa dilihat melalui web. Pada web dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi WAN Miniport (Network Monitor) pada Gambar 4.138.

Gambar 4.138 Personal Computer Terdeteksi WAN Miniport (Network Monitor) pada Web

s) Terdeteksi WAN Miniport (Network Monitor)-QoS Packet Scheduler-0000

Status perangkat terdeteksi WAN Miniport (Network Monitor)-QoS Packet Scheduler-0000, bisa dilihat melalui web. Pada web dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi WAN Miniport (Network Monitor)-QoS Packet Scheduler-0000 pada Gambar 4.139.

Gambar 4.139 Personal Computer Terdeteksi WAN Miniport (Network Monitor)-QoS Packet Scheduler-0000 pada Web

t) Terdeteksi WAN Miniport (PPPOE)

Status perangkat terdeteksi *WAN Miniport (PPPOE)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi *WAN Miniport (PPPOE)* pada Gambar 4.140.

Gambar 4.140 Personal Computer Terdeteksi WAN Miniport (PPPOE) pada Web

u) Terdeteksi WAN Miniport (PPTP)

Status perangkat terdeteksi *WAN Miniport (PPTP)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi *WAN Miniport (PPTP)* pada Gambar 4.141.

Gambar 4.141 Personal Computer Terdeteksi WAN Miniport (PPTP) Pada Web

v) Terdeteksi WAN Miniport (SSTP)

Status perangkat terdeteksi *WAN Miniport (SSTP)*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdeteksi *WAN Miniport (SSTP)* pada Gambar 4.142.

Gambar 4.142 Personal Computer Terdeteksi WAN Miniport (SSTP) Pada Web

w) Muncul Grafik Saat Processor Load

Status perangkat muncul grafik saat *processor load*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik berwarna biru, mengindikasikan bahwa terjadi *outgoing traffic* pada Gambar 4.143.

Gambar 4.143 Muncul Grafik Saat Processor Load

x) Muncul Waktu Saat Processor Load

Status perangkat muncul waktu saat *processor load*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat pada bawah grafik, mengindikasikan bahwa muncul waktu saat *processor load* pada Gambar 4.144.

Gambar 4.144 Muncul Waktu Saat Processor Load pada Web

y) Muncul Tanggal Saat Processor Load

Status perangkat muncul tanggal saat *processor load*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat diantara waktu pada bawah grafik, mengindikasikan bahwa muncul tanggal saat *processor load* pada Gambar 4.145.

Gambar 4.145 Muncul Tanggal Saat Processor Load pada Web

z) Muncul Besaran Pemakaian Saat Processor Load

Status perangkat muncul besaran pemakaian saat *processor load*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat pada

bawah besaran pemakaian, mengindikasikan bahwa muncul besaran pemakaian saat *processor load* pada Gambar 4.146.

aa) Muncul Grafik Saat Total Disk Space

Status perangkat muncul grafik saat *total disk space*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdapat *total disk space* pada Gambar 4.147.

Gambar 4.147 Muncul Grafik pada Total Disk Space

bb)Muncul Grafik Saat Free Disk Space

Status perangkat muncul grafik saat *free disk space*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa terdapat *free disk space* pada Gambar 4.148.

Gambar 4.148 Muncul Grafik pada Free Disk Space

cc) Muncul Value Saat Total Disk Space

Status perangkat muncul *value* saat *total disk space*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat *value*, mengindikasikan bahwa terdapat *total disk space* pada Gambar 4.149.

Gambar 4.149 Muncul Value pada Total Disk Space

dd) Muncul Value Saat Free Disk Space

Status perangkat muncul *value* saat *free disk space*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat *value*, mengindikasikan bahwa terdapat *free disk space* pada Gambar 4.150.

Gambar 4.150 Muncul Value pada Free Disk Space

ee) Muncul Grafik Saat Free Memory

Status perangkat muncul grafik saat *free memory*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat grafik, mengindikasikan bahwa muncul grafik saat *free memory* pada Gambar 4.151.

Gambar 4.151 Muncul Grafik pada Free Memory

ff) Muncul Waktu Saat Free Memory

Status perangkat muncul waktu saat *free memory*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat pada bawah grafik, mengindikasikan bahwa muncul waktu saat *free memory* pada Gambar 4.152.

Gambar 4.152 Muncul Waktu Saat Free Memory pada Web

gg) Muncul Tanggal Saat Free Memory

Status perangkat muncul tanggal saat *free memory*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat diantara waktu pada bawah grafik, mengindikasikan bahwa muncul tanggal saat *free memory* pada Gambar 4.153.

Gambar 4.153 Muncul Tanggal Saat Free Memory pada Web

hh)Muncul Besaran Pemakaian Saat Free Memory

Status perangkat muncul besaran pemakaian saat *free memory*, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan terdapat pada bawah besaran pemakaian, mengindikasikan bahwa muncul besaran pemakaian saat *free memory* pada Gambar 4.154.

Gambar 4.154 Muncul Besaran Pemakaian Saat Free Memory pada Web

ii) Terdeteksi Last Traffic Bandwidth

Status *last traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* terakhir pada Gambar 4.155.

Gambar 4.155 Terdeteksi Last Traffic Bandwidth

jj) Terdeteksi Min Traffic Bandwidth

Status *min traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* terendah pada Gambar 4.156.

Gambar 4.156 Terdeteksi Min Traffic Bandwidth

kk) Terdeteksi Max Traffic Bandwidth

Status *max traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* tertinggi pada Gambar 4.157.

Gambar 4.157 Terdeteksi Max Traffic Bandwidth

II) Terdeteksi Avg Traffic Bandwidth

Status *avg traffic bandwidth* pada perangkat, bisa dilihat melalui *web*. Pada *web* dapat dilihat berupa, tampilan pemberitahuan berupa angka dibagian bawah waktu, mengindikasikan bahwa tercatat *traffic bandwidth* rata-rata pada Gambar

4.158.

Gambar 4.158 Terdeteksi Avg Traffic Bandwidth

Lampiran 3. Pengambilan Data System Status Saat Terjadi Masalah pada Perangkat

System status								
Host group	Disaster	High	Average	Warning	Information	Not classified		
Access Point	0	0	0	0	0	0		
Personal Computer	0	0	18	8	0	0		
Switch	0	0	0	0	2	0		
Zabbix servers	0	0	1	0	0	0		
Updated: 18:31:41								

System Status" List per Day"

Keterangan "*Disaster*" akan berwarna merah terang yang menandakan kerusakan besar diperangkat. Keterangan "*High*" akan berwarna merah terang yang menandakan kerusakan pada salah satu sistem diperangkat.Keterangan "*Average*" akan berwarna orange menandakan rata-rata masalah yang terjadi diperangkat pada tabel *System Status*:

^{13/01/2016}

Host	Issue	Age	Info	Ack	Actions
Pustikom-B14	Zabbix agent on Pustikom-B14 is unreachable for 5 minutes	10m 42s		<u>No</u>	Ok
Pustikom-B03	Zabbix agent on Pustikom-B03 is unreachable for 5 minutes	17h 21m 12s		No	Ok
Pustikom-B17	Zabbix agent on Pustikom-B17 is unreachable for 5 minutes	1d 23h 19m		No	Ok
Pustikom-B18	Zabbix agent on Pustikom-B18 is unreachable for 5 minutes	2d 52m		No	Ok
Pustikom-B07	Zabbix agent on Pustikom-B07 is unreachable for 5 minutes	2d 1h 2m		No	Ok
Pustikom-B12	Zabbix agent on Pustikom-B12 is unreachable for 5 minutes	2d 1h 11m		No	Ok
Pustikom-B20	Zabbix agent on Pustikom-B20 is unreachable for 5 minutes	2d 1h 19m		No	Ok
Pustikom-B04	Zabbix agent on Pustikom-B04 is unreachable for 5 minutes	4d 20h 4m		No	Ok
Pustikom-B16	Zabbix agent on Pustikom-B16 is unreachable for 5 minutes	4d 20h 15m		No	Ok
Pustikom-B13	Zabbix agent on Pustikom-B13 is unreachable for 5 minutes	5d 1h 47m		No	Ok
Pustikom-B02	Zabbix agent on Pustikom-B02 is unreachable for 5 minutes	5d 2h 35m		No	Ok
Pustikom-B11	Zabbix agent on Pustikom-B11 is unreachable for 5 minutes	5d 2h 36m		No	Ok
Pustikom-B10	Zabbix agent on Pustikom-B10 is unreachable for 5 minutes	5d 20h 33m		No	Ok
Pustikom-B05	Zabbix agent on Pustikom-B05 is unreachable for 5 minutes	6d 19h 22m		No	Ok
Pustikom-B01	Zabbix agent on Pustikom-B01 is unreachable for 5 minutes	6d 19h 59m		No	Ok
Pustikom-B09	Zabbix agent on Pustikom-B09 is unreachable for 5 minutes	6d 20h 11m		<u>No</u>	Ok
Pustikom-B15	Zabbix agent on Pustikom-B15 is unreachable for 5 minutes	6d 22h 7m		No	Ok
Pustikom-B06	Zabbix agent on Pustikom-B06 is unreachable for 5 minutes	9d 25m		<u>No</u>	Ok
Pustikom-B19	Zabbix agent on Pustikom-B19 is unreachable for 5 minutes	24d 22h 28m		No	Ok

Keterangan "*Warning*" akan berwarna kuning menandakan peringatan untuk berhati-hati karna ada sistem yang bermasalah diperangkat pada tabel *System Status*:

Host	Issue	Age	Info	Ack	Actions
Pustikom-B18	Free disk space is less than 20% on volume F:	4d 20h 17m	?	No	Ok
Pustikom-B08	Free disk space is less than 20% on volume F:	5d 2h 26m	?	No	Ok
Pustikom-B01	Free disk space is less than 20% on volume F:	6d 22h 26m	?	No	Ok
Pustikom-B11	Free disk space is less than 20% on volume F:	6d 22h 37m	?	No	Ok
Pustikom-B11	Free disk space is less than 20% on volume E:	6d 22h 39m	?	No	Ok
Pustikom-B06	Free disk space is less than 20% on volume F:	9d 40m	?	No	Ok
Pustikom-B03	Free disk space is less than 20% on volume I:	15d 22h 25m	?	No	Ok
Pustikom-B07	Free disk space is less than 20% on volume H:	22d 19h 19m	?	No	Ok

Keterangan "Information" akan berwarna biru muda menandakan pemberitahuan informasi sistem diperangkat pada tabel *System Status*:

Host	Issue	Age	Info	Ack	Actions
AT-FS750/48	Operational status was changed on AT-FS750/48 interface physical port 02 on physical unit 2	30s		No	Ok
AT-FS750/48	Operational status was changed on AT-FS750/48 interface physical port 05 on physical unit 3	1m 29s		No	Ok

Keterangan "*Not Classified*" akan berwarna abu-abu yang menandakan kerusakan sistem yang diketahi diperangkat.

Lampiran 4. Pengambian Data *Host Status* Saat Terjadi Masalah pada Perangkat

Host Status"List per Day"

13/01/2016

Host status							
Host group	Without problems	With problems	Total				
Access Point	2	0	2				
Personal Computer	0	20	20				
Switch	7	1	8				
Zabbix servers	0	1	1				
Updated: 18:31:41							

Keterangan "With Problems" yang berwarna merah pada tabel Host Status:

Host	Disaster	High	Average	Warning	Information	Not classified
Pustikom-B01	0	0	1	1	0	0
Pustikom-B02	0	0	1	0	0	0
Pustikom-B03	0	0	1	1	0	0
Pustikom-B04	0	0	1	0	0	0
Pustikom-B05	0	0	1	0	0	0
Pustikom-B06	0	0	1	1	0	0
Pustikom-B07	0	0	1	1	0	0
Pustikom-B08	0	0	0	1	0	0
Pustikom-B09	0	0	1	0	0	0
Pustikom-B10	0	0	1	0	0	0
Pustikom-B11	0	0	1	2	0	0
Pustikom-B12	0	0	1	0	0	0
Pustikom-B13	0	0	1	0	0	0
Pustikom-B14	0	0	1	0	0	0
Pustikom-B15	0	0	1	0	0	0
Pustikom-B16	0	0	1	0	0	0
Pustikom-B17	0	0	1	0	0	0
Pustikom-B18	0	0	0	1	0	0
Pustikom-B19	0	0	1	0	0	0
Pustikom-B20	0	0	1	0	0	0

Host	Disaster	High	Average	Warning	Information	Not classified
AT-FS750/48	0	0	0	0	2	0

Keterangan "With Problems" yang berwarna biru muda pada tabel Host Status:

Lampiran 5. Pengambilan Data Last 20 Issues Saat Terjadi Masalah pada

Perangkat

Last 20 Issues" List per Day"

13/01/2016

Last 20 issu	es									
Host	Issue	Last change	Age	Info	Ack	Actions				
AT-FS750/48	Operational status was changed on AT-FS750/48 interface physical port 02 on physical unit 2	2016-01-13 18:31:11	4m 30s	?	<u>No</u>	1				
AT-FS750/48	Operational status was changed on AT-FS750/48 interface physical port 05 on physical unit 3	2016-01-13 18:30:12	5m 29s	?	<u>No</u>	1				
Pustikom-B14	Zabbix agent on Pustikom-B14 is unreachable for 5 minutes	2016-01-13 18:06:00	29m 41s		<u>No</u>	1				
Pustikom-B03	Zabbix agent on Pustikom-B03 is unreachable for 5 minutes	2016-01-13 00:55:30	17h 40m 11s		<u>No</u>	1				
Pustikom-B17	Zabbix agent on Pustikom-B17 is unreachable for 5 minutes	2016-01-11 18:57:00	1d 23h 38m		No	1				
Pustikom-B07	Zabbix agent on Pustikom-807 is unreachable for 5 minutes	2016-01-11 17:14:00	2d 1h 21m		<u>No</u>	1				
Pustikom-B12	Zabbix agent on Pustikom-B12 is unreachable for 5 minutes	2016-01-11 17:05:00	2d 1h 30m		No	1				
Pustikom-B20	Zabbix agent on Pustikom-B20 is unreachable for 5 minutes	2016-01-11 16:57:30	2d 1h 38m		<u>No</u>	1				
Zabbix server	Zabbix unreachable poller processes more than 75% busy	2016-01-08 22:27:50	4d 20h 7m		No	1				
Pustikom-B04	Zabbix agent on Pustikom-B04 is unreachable for 5 minutes	2016-01-08 22:12:00	4d 20h 23m		<u>No</u>	1				
Pustikom-B18	Free disk space is less than 20% on volume F:	2016-01-08 22:01:16	4d 20h 34m	?	No	1				
Pustikom-B16	Zabbix agent on Pustikom-B16 is unreachable for 5 minutes	2016-01-08 22:01:00	4d 20h 34m		<u>No</u>	1				
Pustikom-B13	Zabbix agent on Pustikom-B13 is unreachable for 5 minutes	2016-01-08 16:29:00	5d 2h 6m		<u>No</u>	1				
Pustikom-B08	Free disk space is less than 20% on volume F:	2016-01-08 15:52:08	5d 2h 43m	?	<u>No</u>	1				
Pustikom-B02	Zabbix agent on Pustikom-B02 is unreachable for 5 minutes	2016-01-08 15:41:30	5d 2h 54m		<u>No</u>	1				
Pustikom-B11	Zabbix agent on Pustikom-B11 is unreachable for 5 minutes	2016-01-08 15:40:30	5d 2h 55m		<u>No</u>	1				
Pustikom-B10	Zabbix agent on Pustikom-B10 is unreachable for 5 minutes	2016-01-07 21:43:30	5d 20h 52m		<u>No</u>	1				
Pustikom-B05	Zabbix agent on Pustikom-B05 is unreachable for 5 minutes	2016-01-06 22:54:30	6d 19h 41m		<u>No</u>	1				
Pustikom-B01	Zabbix agent on Pustikom-B01 is unreachable for 5 minutes	2016-01-06 22:17:30	6d 20h 18m		<u>No</u>	1				
Pustikom-B09	Zabbix agent on Pustikom-809 is unreachable for 5 minutes	2016-01-06 22:05:30	6d 20h 30m		No	1				
			20	of 29 i	ssues	are shown				
Updated: 18:	Updated: 18:35:42									

Time	Status	Duration	Age	Ack
2016-01-13 18:31:11	PROBLEM	4m 30s	4m 30s	No
2016-01-13 18:30:13	ок	58s	5m 28s	No
2016-01-13 18:29:11	PROBLEM	1m 2s	6m 30s	No
2016-01-13 17:34:12	ок	54m 59s	1h 1m 29s	No
2016-01-13 17:33:11	PROBLEM	1m 1s	1h 2m 30s	No
2016-01-13 17:17:12	ок	15m 59s	1h 18m 29s	No
2016-01-13 17:16:12	PROBLEM	1m	1h 19m 29s	No
2016-01-04 22:24:12	ок	8d 18h 52m	8d 20h 11m	No
2016-01-04 22:23:12	PROBLEM	1m	8d 20h 12m	No
2016-01-04 22:20:12	ок	3m	8d 20h 15m	No
2016-01-04 22:19:11	PROBLEM	1m 1s	8d 20h 16m	No
2015-12-28 17:26:12	ок	7d 4h 52m	16d 1h 9m	No
2015-12-28 17:24:11	PROBLEM	2m 1s	16d 1h 11m	No
2015-12-22 00:55:11	ок	6d 16h 29m	22d 17h 40m	No
2015-12-22 00:54:13	PROBLEM	58s	22d 17h 41m	No
2015-12-21 23:39:11	ок	1h 15m 2s	22d 18h 56m	No
2015-12-21 23:37:13	PROBLEM	1m 58s	22d 18h 58m	No
2015-12-21 19:50:11	ок	3h 47m 2s	22d 22h 45m	No
2015-12-21 19:49:12	PROBLEM	59s	22d 22h 46m	No
2015-12-21 19:48:12	ок	1m	22d 22h 47m	No

Keterangan "Issue" yang berwarna biru muda pada tabel Last 20 Issues:

Time	Status	Duration	Age	Ack
2016-01-13 18:06:00	PROBLEM	31m 41s	31m 41s	No
2016-01-13 17:13:50	ок	52m 10s	1h 23m 51s	No
2016-01-11 18:21:00	PROBLEM	1d 22h 52m	2d 16m	No
2016-01-11 16:56:03	ок	1h 24m 57s	2d 1h 41m	No
2016-01-08 22:29:00	PROBLEM	2d 18h 27m	4d 20h 8m	No
2016-01-08 21:24:42	ок	1h 4m 18s	4d 21h 12m	No
2016-01-07 21:43:00	PROBLEM	23h 41m 42s	5d 20h 54m	No
2016-01-07 20:54:22	ок	48m 38s	5d 21h 43m	No
2016-01-07 17:23:00	PROBLEM	3h 31m 22s	6d 1h 14m	No
2016-01-07 16:57:48	ок	25m 12s	6d 1h 39m	No
2016-01-06 22:57:00	PROBLEM	18h 48s	6d 19h 40m	No
2016-01-06 19:25:55	ок	3h 31m 5s	6d 23h 11m	No
2016-01-06 18:58:00	PROBLEM	27m 55s	6d 23h 39m	No
2016-01-06 15:11:38	ок	3h 46m 22s	7d 3h 26m	No
2016-01-06 01:39:00	PROBLEM	13h 32m 38s	7d 16h 58m	No
2016-01-05 17:55:58	ок	7h 43m 2s	8d 41m	No
2016-01-05 17:41:00	PROBLEM	14m 58s	8d 56m	No
2016-01-05 15:41:37	ок	1h 59m 23s	8d 2h 56m	No
2016-01-04 18:46:00	PROBLEM	20h 55m 37s	8d 23h 51m	No
2016-01-04 18:34:43	ок	11m 17s	9d 2m	No

Keterangan "Issue" yang berwarna merah pada tabel Last 20 Issues:

Keterangan "Issue" yang berwarna kuning pada tabel Last 20 Issues:

Time	Status	Duration	Age	Ack
2016-01-08 22:01:16	PROBLEM	4d 20h 37m	4d 20h 37m	No
2016-01-06 19:52:16	ок	2d 2h 9m	6d 22h 46m	No

Keterangan "Last Change" yang berwarna biru muda pada tabel Last 20 Issues:

Time C	Description	Status	Severity	Duration	Ack	Actions
2016-01-13 18:31:11	Operational status was changed on AT-FS750(48 interface physical port 02 on physical unit 2	PROBLEM	Information	16m 38s	No	Ok
2016-01-13 18:30:13	Operational status was changed on AT-FS/750/48 interface physical port 02 on physical unit 2	ок	Information	58s	<u>No</u>	Ok
2016-01-13 18:29:11	Operational status was changed on AT-FS730/48 interface physical port 02 on physical unit 2	PROBLEM	Information	1m 2s	No	Ok

Keterangan "Last Change" yang berwarna merah pada tabel Last 20 Issues:

Time	Description	Status	Severity	Duration	Ack	Actions
2016-01-13 18:06:00	Zabbix agent on Pustikom-814 is unreachable for 5 minutes	PROBLEM	Average	43m 41s	No	Ok

Keterangan "Last Change" yang berwarna kuning pada tabel Last 20 Issues:

Time	Description	Status	Severity	Duration	Ack	Actions
2016-01-08 22:01:16	Free disk space is less than 20% on volume Fr	PROBLEM	Warning	4d 20h 49m	<u>No</u>	Ok

Lampiran 6. Pengambilan Data Notifikasi *Email* Saat Terjadi Masalah pada Perangkat

Notifikasi Email" List per Day"

13/01/2016

0 1/2	saya	OK: Operational status was changed on AT-FS750/48 interface physical port 05 on physica Trigger: Operational status was	11.47
0 1	saya	OK: Pustikom-B12 has just been restarted - Trigger. Pustikom-B12 has just been restarted Trigger status: OK Trigger seventy: Avi	11.47
0 1	saya	PROBLEM: Pustikom-B12 has just been restarted - Trigger: Pustikom-B12 has just been restarted Trigger status: PROBLEM Trig	11.46
	saya	OK: Zabbix agent on Pustikom-B12 is unreachable for 5 minutes - Trigger: Zabbix agent on Pustikom-B12 is unreachable for 5 r	11.46
□ Å	saya	OK: Operational status was changed on AT-FS750/48 interface physical port 02 on physica Trigger. Operational status was	11.46
	saya	OK: Operational status was changed on AT-FS750/48 interface physical port 07 on physica Trigger: Operational status was	11.46
	saya	PROBLEM: Operational status was changed on AT-F\$750/48 interface physical port 07 on ph Trigger: Operational status v	11.46
	saya	PROBLEM: Zabbix agent on Pustikom-B18 is unreachable for 5 minutes - Trigger: Zabbix agent on Pustikom-B18 is unreachable	11.32
	saya	OK: Pustikom-B18 has just been restarted - Trigger. Pustikom-B18 has just been restarted Trigger status: OK Trigger severity: Aw	11.26
	saya	PROBLEM: Pustikom-B18 has just been restarted - Trigger. Pustikom-B18 has just been restarted Trigger status: PROBLEM Trig	11.26
□ Å	saya	OK: Zabbix agent on Pustikom-B18 is unreachable for 5 minutes - Trigger: Zabbix agent on Pustikom-B18 is unreachable for 5 r	11.26
	saya	PROBLEM: Operational status was changed on AT-FS750/48 interface physical port 02 on ph Trigger: Operational status v	11.25
	saya	PROBLEM: Operational status was changed on AT-FS750/48 interface physical port 05 on ph Trigger: Operational status v	11.24
	saya	OK: Operational status was changed on AT-FS750/48 interface physical port 02 on physica Trigger. Operational status was	11.24
	saya	PROBLEM: Operational status was changed on AT-FS750/48 interface physical port 02 on ph Trigger: Operational status v	11.23

Keterangan "Kontak Masuk Email" yang menerangkan bahwa port switch sedang

menyala pada tabel Akun *Email*:

OK: Kotak	Operational status was changed on AT-FS750/48 interface physical port 05 $_{\mbox{Masuk}}$ \times	on physical unit 3 🛛 🖶 🛛	7
+	zabbix.unj@gmail.com ke saya	18.53 (0 menit yang lalu) 📩 🔺 🗣	,
	Trigger: Operational status was changed on AT-FS750/48 interface physical port 05 on physical unit 3 Trigger status: OK Trigger severity: Information Trigger URL:		
	Item values:		
	1. Operational status of interface physical port 05 on physical unit 3 (AT-FS750/48:ifOperStatus[physic 2. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN* 3. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN*	al port 05 on physical unit 3]): down (2):	
	Original event ID: 99666		

Keterangan "Kontak Masuk Email" yang menerangkan bahwa sedang menyala

pada tabel Akun *Email*:

tabel Akun *Email*:

OK:	Pustikom-B12 has just been restarted Kotak Masuk x		ē	2
•	zabbix.unj@gmail.com ke saya	18.53 (0 menit yang lalu) 📩 🤸		•
	Trigger: Pustikom-B12 has just been restarted Trigger status: OK Trigger severity: Average Trigger URL:			
	Item values:			
	1. System uptime (Pustikom-B12:system.uptime): 00:01:07 2. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN* 3. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN*			
	Original event ID: 100052			

Keterangan "Kontak Masuk Email" yang menerangkan bahwa PC sedang restart

PRC	BLEM: Pustikom-B12 has just been restarted	Kotak Masuk x	2
+	zabbix.unj@gmail.com ke saya	18.52 (0 menit yang lalu) 📩 🔺	Ŧ
	Trigger: Pustikom-B12 has just been restarted Trigger status: PROBLEM Trigger severity: Average Trigger URL:		
	Item values:		
	1. System uptime (Pustikom-B12:system.uptime): 00:00:28 2. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN* 3. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN*		
	Original event ID: 100052		

Keterangan "Kontak Masuk Email" yang menerangkan bahwa PC tidak menyala

menyala pada tabel Akun Email:

OK:	Zabbix agent on Pustikom-B12 is unreachable for 5 minutes Kotak Masuk	x 🖶 🖻
-	zabbix.unj@gmail.com ke saya	18.52 (0 menit yang lalu) 📩 🗾 🖛 🝷
	Trigger: Zabbix agent on Pustikom-B12 is unreachable for 5 minutes Trigger status: OK Trigger severity: Average Trigger URL:	
	Item values:	
	1. Agent ping (Pustikom-B12:agent.ping): Up (1) 2. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN* 3. *UNKNOWN* (*UNKNOWN*:*UNKNOWN*): *UNKNOWN*	
	Original event ID: 97372	

No	Tanggal	Perangkat	00:00-	02:00-	04:00-	06:00-	08:00-	10:00-	12:00-	14:00-	16:00-	18:00-	20:00-	22:00-
			02:00	04:00	06:00	08:00	10:00	12:00	14:00	16:00	18:00	20:00	22:00	23:59
1.	Senin, 4	AP_Ruang	0 user	0 user	0 user	0 user	4 user	7 user	9 user	8 user	8 user	6 user	2 user	0 user
	Januari	Rapat												
	2016	AP_Ruang	0 user	0 user	0 user	0 user	2 user	6 user	8 user	6 user	7 user	4 user	4 user	0 user
		Magang												
2.	Selasa, 5	AP_Ruang	0 user	0 user	0 user	0 user	3 user	8 user	7 user	9 user	7 user	3 user	1 user	0 user
	Januari	Rapat												
	2016	AP_Ruang	0 user	0 user	0 user	0 user	3 user	5 user	7 user	7 user	6 user	6 user	4 user	0 user
		Magang												
3.	Rabu, 6	AP_Ruang	0 user	0 user	0 user	0 user	4 user	7 user	9 user	8 user	8 user	6 user	1 user	0 user
	Januari	Rapat												
	2016	AP_Ruang	0 user	0 user	0 user	0 user	2 user	6 user	8 user	6 user	7 user	4 user	4 user	0 user
		Magang												
4.	Senin, 11	AP_Ruang	0 user	0 user	0 user	0 user	3 user	8 user	7 user	9 user	7 user	3 user	0 user	0 user
	Januari	Rapat												
	2016	AP_Ruang	0 user	0 user	0 user	0 user	2 user	6 user	7 user	7 user	6 user	2 user	2 user	0 user
		Magang												
5.	Selasa,	AP_Ruang	0 user	0 user	0 user	0 user	3 user	8 user	7 user	7 user	9 user	3 user	3 user	0 user
	12	Rapat												
	Januari	AP_Ruang	0 user	0 user	0 user	0 user	6 user	9 user	11 user	7 user	3 user	3 user	3 user	0 user
	2016	Magang												
6.		AP_Ruang	0 user	0 user	0 user	0 user	3 user	8 user	7 user	9 user	7 user	3 user	2 user	0 user
		Rapat												

Lampiran 7. Analisis Data yang Didapat

No	Tanggal	Perangkat	00:00-	02:00-	04:00-	06:00-	08:00-	10:00-	12:00-	14:00-	16:00-	18:00-	20:00-	22:00-
			02:00	04:00	06:00	08:00	10:00	12:00	14:00	16:00	18:00	20:00	22:00	23:59
	Rabu, 13	AP_Ruang	0 user	0 user	0 user	0 user	5 user	6 user	9 user	7 user	6 user	6 user	4 user	0 user
	Januari	Magang												
	2016													
7.	Senin, 18	AP_Ruang	0 user	0 user	0 user	0 user	3 user	8 user	7 user	9 user	7 user	3 user	1 user	0 user
	Januari	Rapat												
	2016	AP_Ruang	0 user	0 user	0 user	0 user	6 user	9 user	8 user	9 user	11 user	7 user	5 user	0 user
		Magang												
8.	Selasa,	AP_Ruang	0 user	0 user	0 user	0 user	3 user	5 user	7 user	7 user	5 user	6 user	4 user	0 user
	19	Rapat												
	Januari	AP_Ruang	0 user	0 user	0 user	0 user	6 user	11 user	10 user	12 user	9 user	7 user	4 user	0 user
	2016	Magang												
9.	Rabu, 20	AP_Ruang	0 user	0 user	0 user	0 user	4 user	5 user	5 user	6 user	5 user	3 user	2 user	0 user
	Januari	Rapat												
	2016	AP_Ruang	0 user	0 user	0 user	0 user	7 user	9 user	10 user	9 user	10 user	5 user	5 user	0 user
		Magang												

Tabel 4.1 Data Grafik Perangkat Access Point

Berdasarkan hasil tabel 4.1 diatas dapat ditarik kesimpulan bahwa perangkat AP_RuangRapat memiliki hasil 53,70% kapasitas pemakaian bandwidth < 1 Mbps, 29,63% kapasitas pemakaian bandwidth 1-10 Mbps, dan 16,67% kapasitas pemakaian bandwidth > 10 Mbps. Sedangkan perangkat AP_RuangMagang memiliki hasil 64,82% kapasitas pemakaian bandwidth < 1 Mbps, 25% kapasitas pemakaian bandwidth 1-10 Mbps, dan 10,75% kapasitas pemakaian bandwidth > 10 Mbps.

Kapasitas pemakaian bandwidth < 1 Mbps memiliki presentase tertinggi dikarenakan waktu akses oleh user berada pada luar jam kerja yang telah ditentukan (22.00-08.00). Kapasitas pemakaian bandwidth 1-10 Mbps dan > 10 Mbps memiliki presentase sedang dan kecil dikarenakan waktu akses oleh user berada pada jam kerja yang telah ditentukan (08.00-22.00).

Selain dipengaruhi waktu akses oleh user, kapasitas pemakaian bandwidth juga dipengaruhi oleh jumlah user yang berada pada waktu akses tersebut. Pada waktu akses oleh user yang berada diluar jam kerja (22.00-08.00), tidak ada user yang memakai akses internet tersebut

sehingga kapasitas pemakaian bandwidth < 1 Mbps. Waktu akses oleh user berada pada jam kerja (08.00-22.00), terdapat 2-12 user yang memakai akses internet tersebut sehingga kapasitas pemakaian bandwidth 1-10 Mbps dan > 10 Mbps.

Waktu akses oleh user berada pada jam kerja (08.00-22.00), jumlah user yang memakai berbeda-beda dan kapasitas pemakaian bandwidth setiap waktunya berbeda pula sehingga kita belum bisa memastikan saat dimana kapasitas pemakaian bandwidth 1-10 Mbps dan saat dimana kapasitas pemakaian bandwidth > 10 Mbps dikarenakan setiap user memiliki port akses yang sedang dijalan berbeda-beda pula sehingga jumlah kapasitas pemakaian bandwidthnya berbeda-beda pula. Dalam hal ini, peneliti belum bisa memonitoring port apa saja yang diakses oleh user sehingga peneliti belum bisa memastikan saat dimana kapasitas pemakaian bandwidth > 10 Mbps. Untuk itu peneliti menyarankan diperlukan penelitian lebih lanjut tentang monitoring port yang diakses agar dapat mengetahui saat dimana kapasitas pemakaian bandwidth 1-10 Mbps.

No	Tanggal	Nama Perangkat	Waktu	Waktu On	Durasi	Durasi
			Off		Pemberitahuan	Pemberitahuan
					Pada Web	Pada Email
1.	Jumat, 22	AP_RuangRapat	12:10:02	12:12.47	105 detik	109 detik
	Januari	AP_RuangMagang	12:16:08	12:18:53	101 detik	105 detik
	2016	Switch_Sartika_Lantai01	12:35:18	12:37:48	93 detik	96 detik
		Switch_Sartika_Lantai02	12:58:03	13:00:33	95 detik	99 detik
		Switch_Sartika_Lantai03	13:16:08	13:18:38	97 detik	102 detik
		Switch_Sartika_Lantai04	13:37:22	13:39:52	94 detik	97 detik
	Switch_Sartika_Lantai05	13:56:19	13:58:49	99 detik	105 detik	
--	-------------------------	----------	----------	----------	-----------	
	Switch_Sartika_Lantai06	14:13:38	14:16:08	91 detik	96 detik	
	Switch_Sartika_Lantai07	14:37:04	14:39:34	95 detik	100 detik	
	Switch_Sartika_Lantai08	14:59:45	15:02:15	97 detik	101 detik	
	Switch_Sartika_Lantai09	15:16:08	15:18:38	92 detik	96 detik	
	Switch_Sartika_Lantai10	15:25:04	15:27:34	96 detik	104 detik	
	Switch_Pustikom_KelasA	15:47:25	15:49:25	94 detik	97 detik	
	Switch_Pustikom_KelasB	16:12:34	16:14:34	93 detik	98 detik	
	Switch_Pustikom_KelasC	16:36:17	16:38:17	98 detik	109 detik	
	Switch_Pustikom_KelasD	16:53:29	16:55:29	95 detik	99 detik	
	Switch_Pustikom_KelasE	17:18:44	17:20:44	91 detik	94 detik	

Tabel 4.2 Data Durasi Waktu Pemberitahuan Perangkat

Berdasarkan hasil tabel 4.2 diatas, dapat ditarik kesimpulan bahwa selisih waktu pemberitahuan pada web dan email memiliki perbedaan interval tertinggi sebesar 11 detik dan terendah sebesar 3 detik. Perbedaan interval 7 detik ini termasuk lama, jika dilihat dari dampak dan kerugian yang dihasilkan saat jaringan tersebut mati dalam waktu selama itu. Maka dari itu, pemberitahuan dengan notifikasi email ini kurang pas diterapkan pada organisasi yang besar apalagi mencakup sistem jaringan yang luas.

TENTANG PENULIS

Aditya Nugroho, lahir pada tanggal 19 Agustus 1993 di Jakarta. Anak tunggal dari pasangan Bapak Imam Isai dan Ibu Sumartinah. Riwayat pendidikan yang telah ditempuh penulis sebagai berikut: pada tahun 1999 – 2005 menempuh jenjang pendidikan sekolah dasar di SDN Makasar 07 Pagi Jakarta, pada tahun 2005 – 2008 menempuh jenjang

pendidikan sekolah menengah pertama di SMPN 20 Bulak Rantai Jakarta, pada tahun 2008 – 2011 menempuh jenjang pendidikan sekolah menengah akhir di SMA Uswatun Hasanah Pinang Ranti Jakarta.

Pada tahun 2011 diterima sebagai mahasiswa di Universitas Negeri Jakarta, Fakultas Teknik, Jurusan Teknik Elektro, Program Studi Pendidikan Teknik Informatika dan Komputer melalui jalur mandiri (PENMABA UNJ 2011). Penulis mengikuti program PKL (praktik Kerja Lapangan) di Pusat Teknologi Informasi dan Komputer (Pustikom) Universitas Negeri Jakarta. Penulis juga mengikuti program PKM (Praktik Keterampilan Mengajar) di SMK Negeri 22 Condet Jakarta.