PEWARNAAN PELANGI ANTIAJAIB PADA GRAF PRISMA, GRAF ULAR SEGITIGA, DAN GRAF ULAR SEGITIGA GANDA

DIMAS YAHYA, . (2023) PEWARNAAN PELANGI ANTIAJAIB PADA GRAF PRISMA, GRAF ULAR SEGITIGA, DAN GRAF ULAR SEGITIGA GANDA. Sarjana thesis, UNIVERSITAS NEGERI JAKARTA.

[img] Text
1. COVER.pdf

Download (820kB)
[img] Text
2. BAB 1.pdf

Download (246kB)
[img] Text
3. BAB 2.pdf
Restricted to Registered users only

Download (554kB) | Request a copy
[img] Text
4. BAB 3.pdf
Restricted to Registered users only

Download (262kB) | Request a copy
[img] Text
5. BAB 4.pdf
Restricted to Registered users only

Download (467kB) | Request a copy
[img] Text
6. BAB 5.pdf
Restricted to Registered users only

Download (263kB) | Request a copy
[img] Text
8. DAFTAR PUSTAKA.pdf

Download (225kB)
[img] Text
9. LAMPIRAN.pdf
Restricted to Registered users only

Download (1MB) | Request a copy

Abstract

Teori graf adalah cabang matematika yang berhubungan dengan studi graf, yang merupakan struktur matematika yang mewakili hubungan antar objek. Teori graf pada konektivitas sudah banyak memberikan hasil yang kuat dan elegan, salah satunya adalah pewarnaan pelangi anti-ajaib. Pewarnaan pelangi anti-ajaib (rainbow anti-magic coloring) adalah konsep dalam teori graf yang berfokus pada pewarnaan sisi graf. Di dalam tulisan ini akan di bahas beberapa teorema baru beserta pembuktian koneksi pelangi (rainbow connection) dan pewarnaan pelangi anti-ajaib (rainbow anti-magic coloring) pada graf prisma, graf ular segitiga, dan graf ular segitiga ganda. Dalam memecahkan masalah, penelitian ini akan menggunakan metode deduktif yaitu metode yang berlaku dalam logika matematika dengan menggunakan aksioma atau teorema yang telah ada dan terbukti untuk memecahkan masalah. Hasil dari penelitian ini adalah 5 teorema yang terdiri dari : teorema pewarnaan pelangi anti-ajaib pada graf prisma yang terbagi dalam 8 kasus, secara umum ⌈n/2⌉ + m − 1 ≤ rc_A(Pr_{n,m}) ≤ ⌈n/2⌉ + 2m − 1, teorema koneksi pelangi pada graf ular segitiga yaitu rc(S(T_n)) = n − 1, teorema pewarnaan pelangi anti-ajaib pada graf ular segitiga yaitu rc_A(S(T_n)) = n + 1, teorema koneksi pelangi pada graf ular segitiga ganda yaitu rc(D(T_n)) = n, dan teorema pewarnaan pelangi anti-ajaib pada graf ular segitiga ganda yang terbagi dalam 2 kasus yaitu rc_A(D(T_2)) = 4 dan rc_A(D(T_n)) = n + 3, untuk n ≥ 3. ***** Graph theory is a branch of mathematics that deals with the study of graphs, which are mathematical structures that represent relationships between objects. Graph theory on connectivity has provided many powerful and elegant results, one of which is anti-magic rainbow coloring. Rainbow anti-magic coloring is a concept in theory a graph that focuses on coloring the edges of the graph. In this paper, several new theorems will be discussed along with the proof of rainbow connections and anti-magic rainbow coloring on prism graphs, triangular snake graphs, and double triangular snake graphs. In solving problems, this research will use the deductive method, which is a method that applies in mathematical logic by using existing and proven axioms or theorems to solve problems. The results of this research are 5 theorems consisting of: rainbow anti-magic coloring theorem on prism graphs which is divided into 8 cases, in general is ⌈n/2⌉+m−1 ≤ rc_A(Pr_{n,m}) ≤ ⌈n/2⌉+ 2m−1, rainbow connection theorem on triangular snake graphs that is rc(S(T_n)) = n − 1, rainbow anti-magic coloring theorem on triangular snake graphs that is rc_A(S(T_n)) = n+1, rainbow connection theorem on double triangular snake graphs that is rc(D(T_n)) = n, and the rainbow anti-magic coloring theorem on double triangular snake graph which is divided into 2 cases that is rc_A(D(T_2)) = 4 and rc_A(D(T_n)) = n + 3, for n ≥ 3.

Item Type: Thesis (Sarjana)
Additional Information: 1). Ibnu Hadi, M.Si. ; 2). Devi Eka Wardani Meganingtyas, S.Pd., M.Si.
Subjects: Sains > Matematika
Divisions: FMIPA > S1 Matematika
Depositing User: Users 18950 not found.
Date Deposited: 07 Sep 2023 04:32
Last Modified: 07 Sep 2023 04:32
URI: http://repository.unj.ac.id/id/eprint/41310

Actions (login required)

View Item View Item