SKRIPSI SARJANA TERAPAN

PEMODELAN DAN PERHITUNGAN ULANG RENCANA ANGGARAN BIAYA STRUKTUR DENGAN SOFTWARE BERBASIS BUILDING INFORMATION MODELLING

(STUDI KASUS GEDUNG BUSINESS CENTER PROYEK RESEARCH & TECHNOLOGY CENTER TERINTEGRASI PERTAMINA)

Mencerdaskan dan Memartabatkan Bangsa

ESA ARYO KUNCORO

1506520043

SARJANA TERAPAN TEKNOLOGI REKAYASA KONSTRUKSI BANGUNAN GEDUNG

FAKULTAS TEKNIK

UNIVERSITAS NEGERI JAKARTA

HALAMAN PENGESAHAN I LEMBAR PENGESAHAN UJIAN SKRIPSI SARJANA TERAPAN

LEMBAR PENGESAHAN UJIAN SKRIPSI SARJANA TERAPAN

Judul: Pemodelan Dan Perhitungan Ulang Rencana Anggaran BiayaStruktur Dengan Software Berbasis Building Information Modelling
(Studi Kasus Gedung Bisnis Center Proyek Research & Technology
Center Terintegrasi Pertamina)Penyusun: Esa Aryo KuncoroNIM: 1506520043Tanggal Ujian : 10 Juli 2024

Disetujui oleh:

Pembimbing I,

NIP. 197341719990320001

Lenggoggeni,.M.T

Pembimbing II,

Rezi Berliana Yasinta, M.T NIP. 199608302022032013

Mengetahui,

Koordinator Program Studi Sarjana Terapan Teknologi Rekayasa Konstruksi Bangunan Gedung

nome, M.T. Ad

NIP. 197609082001121004

HALAMAN PENGESAHAN II LEMBAR PENGESAHAN SKRIPSI SARJANA TERAPAN

HALAMAN PENGESAHAN SKRIPSI SARJANA TERAPAN

Pemodelan dan Perhitungan Ulang Rencana Anggaran Biaya Struktur Judul dengan Software Berbasis Building Information Modelling (Studi Kasus Gedung Business Center Proyek Research & Technology

Center Terintegrasi Pertamina)

Penyusun : NIM

:

Esa Aryo Kuncoro 1506520043

Disctujui oleh:

Pembimbing II.

Lenggogeni,M.T. NIP. 197304171999032001

Pembimbing I.

Rezi Berliana Yasinta, M.T. NIP. 199608302022032013

Pengesahan Panitia Ujian Skripsi Sarjana Terapan:

Ketua Penguji,

Anggota Penguji I.

Anggota Penguji II.

x

Dr. Ir. Irika Widiasanti, M.T. NIP. 196505301991032001

1. Ir. Erna Septiandini, M.T. NIP. 196309021993032001

mo, M.T. NIP. 197609082001121004

Mengetahui, Koordinator Program Studi Sarjana Terapan Teknologi Rekayasa Konstruksi Bangunan Gedung

Adhi M.T. NIP. 197609082001121004

HALAMAN PERNYATAAN LEMBAR PERNYATAAN

HALAMAN PERNYATAAN

LEMBAR PERNYATAAN

Dengan ini saya menyatakan bahwa:

- Skripsi Sarjana Terapan ini merupakan Karya asli dan belum pernah diajukan untuk mendaparkan gelar akademik sarjana, baik di Universitas Negeri Jakarta maupun di Perguruan Tinggi lain.
- Skripsi Sarjana Terapan ini belum dipublikasikan, kecuali secara tertulis dengan jelas dicantumkan sebagai acuan dalam naskah dengan disebutkan nama pengarang dan dicantumkan dalam daftar pustaka.
- 3. Pernyataan ini saya buat dengan sesungguhnya dan apabila di kemudian hari terdapat penyimpangan dan ketidakbenaran, maka saya bersedia menerima sanksi akademik berupa pencabutan gelar yang telah diperoleh, serta sanksi lainnya sesuai dengan norma yang berlaku di Universitas Negeri Jakarta.

Jakarta, 30 Maret 2024 Yang membuat

Esa Aryo Kuncoro No. Reg. 1506520043

LEMBAR PERNYATAAN PERSETUJUAN PUBLIKASI KARYA ILMIAH UNTUK KEPENTINGAN AKADEMIS

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN UNIVERSITAS NEGERI JAKARTA UPT PERPUSTAKAAN

Jalan Rawamangun Muka Jakarta 13220 Telepon/Faksimili: 021-4894221 Laman: <u>lib.unj.ac.id</u>

LEMBAR PERNYATAAN PERSETUJUAN PUBLIKASI KARYA ILMIAH UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademika Universitas Negeri Jakarta, yang bertanda tangan di bawah ini, saya:

Nama	: Esa Aryo Kuncoro
NIM	: 1506520043
Fakultas/Prodi	: Teknik/Sarjana Terapan Teknologi Rekayasa Konstruksi Bangunan gedung
Alamat email	: esaaryo88@gmail.com

Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada UPT Perpustakaan Universitas Negeri Jakarta, Hak Bebas Royalti Non-Eksklusif atas karya ilmiah:

Skripsi 🗆 Tesis 🗆 Disertasi 🗀 Lain-lain (.....)

yang berjudul :

Pemodelan Dan Perhitungan Ulang Rencana Anggaran Biaya Struktur Dengan Software Berbasis Building Information Modeling (Studi Kasus Gedung Business Center Proyek Research And Technologhy Center Terintegrasi Pertamina)

Dengan Hak Bebas Royalti Non-Ekslusif ini UPT Perpustakaan Universitas Negeri Jakarta berhak menyimpan, mengalihmediakan, mengelolanya dalam bentuk pangkalan data (*database*), mendistribusikannya, dan menampilkan/mempublikasikannya di internet atau media lain secara *fulltext* untuk kepentingan akademis tanpa perlu meminta ijin dari saya selama tetap mencantumkan nama saya sebagai penulis/pencipta dan atau penerbit yang bersangkutan.

Saya bersedia untuk menanggung secara pribadi, tanpa melibatkan pihak Perpustakaan Universitas Negeri Jakarta, segala bentuk tuntutan hukum yang timbul atas pelanggaran Hak Cipta dalam karya ilmiah saya ini.

Demikian pernyataan ini saya buat dengan sebenarnya.

Jakarta, 6 Agustus 2024

Penulis

KATA PENGANTAR

Puji serta syukur kami panjatkan kehadirat tuhan yang Maha Esa, karena dengan rahmat, karunia dan kehendak-nya, penulis dapat menyelasikan skripsi ini yang berjudul "Pemodelan Dan Perhitungan Ulang Rencana Anggaran Biaya Struktur Dengan Software Berbasis *Building Information Modelling* (Studi Kasus Gedung Business Center Proyek *Research & Technology Center* Terintegrasi Pertamina)" dengan baik dan maksimal. Skripsi ini ditujukan untuk memenuhi salah satu syarat kelulusan sarjana terapan jurusan teknologi rekayasa konstruksi bangunan gedung universitas negeri jakarta.

Pada kesempatan ini penulis ingin menyampaikan rasa hormat dan terima kasih sebesar – besarnya kepada pihak – pihak yang telah membantu penulis dalam menyelesaikan skripsi ini, yaitu kepada:

- 1. Kedua orang tua saya tercinta yang telah memberikan dukungan dan doa agar saya dapat menyelesaikan studi saya.
- 2. Bapak Adhi Purnomo,S.T.,M.T. selaku ketua prodi sarjana terapan teknologi rekaysa konstruksi bangunan gedung
- 3. Ibu lenggogeni,M.T. dan Ibu Rezi Berliana Yasinta,M.T. selaku dosen pembimbing skripsi yang telah memberikan bimbingan dan evaluasi
- Bapak Henriyanto, bapak Reza Yaren dan mba Ike selaku project manager dan staff engineering proyek Research Technology Center Terintegrasi (RTCT) Pertamina yang telah memberikan izin untuk melakukan magang dan penelitian di proyek tersebut.
- 5. Teman teman kelompok magang saya yang telah memberikan dukungan sistem dan berjuan bersama dalam bentuk magang dan penelitian.

Akhir kata, penulis berharap dari penelitian yang dituangkan kedalam skripsi ini dapat memberikan referensi yang berguna untuk kemajuan proyek dan kosntruksi di indonesia dan tentunya terdapat beberapa hal yang harus ditambah kembali dalam skripsi ini. Oleh karena itu, kritik dan saran dari pembaca akan sangat bermanfaat bagi kami. Jakarta, 30 Maret 2024

penulis

ABSTRAK

Esa Aryo Kuncoro, Lenggogeni, Rezi Berliana Yasinta (2024). "Pemodelan Dan Perhitungan Ulang Rencana Anggaran Biaya Struktur dengan Software Berbasis Building Information Modeling (Pada Studi Kasus Gedung Business Center Proyek Research & Technologhy Terintegrasi Pertamina)" Skripsi. Jakarta: Program Studi Sarjana Terapan Teknologi Rekayasa Bangunan Gedung, Fakultas Teknik, Universitas Negeri Jakarta. Perkembangan teknologi pada dunia konstruksi khususnya di negara Indonesia dapat diterapkan dengan penuh tantangan. Teknologi yang sedang diminati saat ini adalah Building Information Modelling (BIM) dengan adanya kebijakan pemerintah yang mengatur dalam penerapan BIM. Penerapan BIM dilakukan karena pada proyek terjadi perubahan desain yang sering dan juga diperlukan perhitungan volume yang lebih detail dan akurat.Pada proyek Research Technology Center Terintegrasi (RTCT) Pertamina khususnya pembangunan gedung Business Center penerapan BIM yang digunakan untuk visualisasi desain gedung saja. Maka penelitian ini bertujuan untuk membuat pemodelan dan perencanaan ulang rencana anggaran biaya struktur gedung dengan menggunakan autodesk revit. Penggunaan autodesk revit dapat mempermudah dalam perubahan desain yang terjadi dan juga perhitungan volume secara realtime. Metode penelitian yang digunakan yaitu dengan metode RnD jenis model 4D (Define, Design, Develop, dan Disseminate). Bentuk dari analisis data yang digunakan adalah deskriptif statistik dengan menerapkan model Miles Huberman. Pengambilan data dilakukan dengan mendokumentasikan data dari gambar rencana (DED) dan juga daftar pekerjaan struktur, kemudian juga melakukan diskusi dengan staff engineer pada proyek. Pemodelan 3D modeling struktur digunakan dalam perhitungan volume untuk perhitungan RAB struktur yang didapatkan hasil dari biaya pekerjaan struktur adalah Rp.10.433.416.482,-.

Kata Kunci: 3D Modelling Struktur, Rencana Anggaran Biaya Struktur, BIM

ABSTRACT

Esa Aryo Kuncoro, Lenggogeni, Rezi Berliana Yasinta (2024). "Modeling and Recalculating Structure Cost Budget Plans with Building Information Modeling Based Software (In the Case Study of the Pertamina Integrated Research & Technology Project Business Center Building)" Thesis. Jakarta: Bachelor of Applied Building Engineering Technology Study Program, Faculty of Engineering, Jakarta State University. Technological developments in the world of construction, especially in Indonesia, can be implemented with challenges. The technology that is currently in demand is Building Information Modeling (BIM) with the existence of government policies that regulate the implementation of BIM. The application of BIM was carried out because in the project there were frequent design changes and more detailed and accurate volume calculations were also required. In the Pertamina Integrated Research Technology Center (RTCT) project, especially the construction of the Business Center building, BIM was applied only for visualization of the building design. So this research aims to model and re-plan the building structure cost budget plan using Autodesk Revit. Using Autodesk Revit can make it easier to make design changes and also calculate volumes in real time. The research method used is the RnD method, 4D model type (Define, Design, Develop) and Disseminate). The form of data analysis used is descriptive statistics by applying the Miles Huberman model. Data collection was carried out by documenting data from the plan drawing (DED) and also the structural work list, then also holding discussions with the engineer staff on the project. 3D structural modeling is used in volume calculations for calculating the RAB of the structure. The results obtained from the cost of the structural work are Rp. 10,433,416,482,-.

Keywords: 3D Modeling Structure, Structure Cost Budget Plan, BIM

DAFTAR ISI

HALAMAN PENGESAHAN I	i
HALAMAN PENGESAHAN II	ii
HALAMAN PERNYATAAN LEMBAR PERNYATAAN	iii
LEMBAR PER <mark>NYATAAN PERSETUJUAN PUBLIKASI KARYA</mark> ILI	MIAH
UNTUK KEPENTINGAN AKADEMIS	iv
KATA PENGANTAR	V
ABSTRAK	vii
DAFTAR ISI	viii
DAFTAR TABEL	x
DAFTAR GAMBAR	xi
BAB I PENDAHULUAN	1
1.1 Latar Belakang Masalah	1
1.2 Fokus Penelitian	4
1.3 Rumusan Masalah	5
1.4 Tujuan Penelitian	5
1.5 Manfaat Penelitian	5
BAB II KAJIAN PUSTAKA	6
2.1 Kerangka Teoritik	6
2.1.1 Kondisi Proyek Tempat Magang	6
2.1.2 Building Information Modelling (BIM)	7
2.1.3 Pemodelan Struktur Bangunan Gedung Autodesk Revit	12
2.1.4 Manejemen Konstruksi	14
2.1.5 Pembahasan Metode Penelitian	<mark></mark> 21
2.2 Produk yang Dikembangkan	<mark> 27</mark>
2.2.1 Produk Modelling Struktur Dengan <i>Autodesk Revit</i> 2024	27
2.2.2 Produk RAB Struktur dengan <i>Autodesk Revit</i>	31
BAB III METODE PENELITIAN	32
3.1 Tempat, dan waktu penelitian	32
3.1.1 Tempat Pelaksanaan Penelitian	32
3.1.2 Waktu Pelaksanaan Penelitian	32

3.2 Metode Pengembangan Produk	33
3.3 Bahan dan/atau Peralatan yang Digunakan	37
3.3.1 Bahan Yang digunakan	37
3.3.2 Peralatan yang digunakan	38
3.4 Rancangan Metode Pengambangan	39
3.4.1 Analisis Kebutuhan	39
3.4.2 Sasaran Produk	40
3.4.3 Rancangan Produk	41
3.5 Instrumen	45
3.5.1 Kisi – Kisi Instrumen	45
3.5.2 Validasi Instrumen	47
3.6 Teknik Pengumpulan data	48
3.7 Teknik Analisis Data	50
3.7.2 Tahapan Metode Penelitian	52
BAB IV HASIL DESAIN/RANCANG BANGUN (PROTOTYPE)/ PROD	OUK
(ALAT/DOKUMEN/SUBJEK)	54
4.1 Hasil Pengembangan Desain/Prototype/Produk	54
4.1.1 Define	54
4.1.2 Design	60
4.2 Kelayakan Produk	120
4.2.1 Validasi Produk	121
4.3 Pembahasan Produk	125
4.3.1 Pemodelan 3D Struktur	125
4.3.2 Perhitungan volume RAB Struktur	131
4.3.3 Hasil Final Produk	137
4.3.4 Produk 3D Modeling Struktur	137
4.3.5 Produk RAB Struktur	138
4.3.6 Dessiminate (Penyebarluasan)	141
BAB V Kesimpulan Dan Saran	143
5.1 Kesimpulan	143
5.2 Saran	143
DAFTAR PUSTAKA	i
DAFTAR LAMPIRAN	iv
LAMPIRAN 1 INSTRUMEN PENELITIAN	iv

LAMPIRAN 2 PRODUK FINAL	X
LAMPIRAN 3 BUKU PEDOMAN PENGGUNA	xviii

DAFTAR TABEL

Nomor	Judul Tabel	Halaman
Tabel 2. 1 Per	bedaan Produk dari penelitian sebelumnya	
Tabel 3. 1 Kis	si – Kisi Instrumen	45
Tabel 4. 1 daf	tar tipe pondasi	56
Tabel 4. 2 Ha	sil Validasi Produk 3D Modeling struktur	123
Tabel 4. 3 Ha	sil Validasi Produk RAB Struktur	124
Tabel 4. 4 Tal	oel Revisi	125
Tabel 4. 5 Inf	ormasi jenis pelat lantai	129
Tabel 4. 6 Ha	sil rekapitulasi QTO pelat lantai	130
Tabel 4. 7 Tal	bel Rekapitulasi Hasil QTO Pelat lantai	131
Tabel 4. 8 Tal	bel Rekapitulasi Analisis Clash Detaction	132
Tabel 4. 9 Tal	bel Laporan Clash detaction bidang struktur dan arsitektur	136
Tabel 4. 10 T	abel Laporan Clash Detaction Bidang Struktur Arsitektur D	an MEP
		136
Tabel 4. 11 Ta	abel Rekapitulasi RAB Struktur Gedung Business Center	139

DAFTAR GAMBAR

Nomor	Judul Tabel	Halaman
Gambar 2. 1	Kondisi Proyek	7
Gambar 2. 2	Skema Harga Satuan Pekerjaan	18
Gambar 3. 1	Langkah – Langkah Penerapan Model 4D	37
Gambar 3. 2	(a).Logo AutoCAD 2023, (b) Logo Autodesk Revit 2024, (c	e) Logo
	Autodesk Rendering Beta 360, (d) Logo Microsoft Excel 36	5 39
Gambar 3.3	Gambar Langkah – Langkah Pembuatan 3D Modelling struktu	ır 42
Gambar 3. 4	Flowchart Pembuaran Rencana Anggaran Biaya Struktur	44
Gambar 3.5	Flowchart Metode Penelitian	53
Gam <mark>bar 4. 11</mark>	Denah site plan	55
Gambar 4. 2	Denah Pondasi	56
Gambar 4.3	Denah Balok	57
Gambar 4. 4	Denah kolom	58
Gambar 4. 5	gambar daftar pekerjaan	59
Gambar 4. 6	harga satuan pekerjaan	59
Gambar 4. 7	Tampilan membuka <i>Revit</i>	61
Gambar 4.8	Tampilan Project Default Matric	61
Gambar 4.9	Worksheet Revit	62
Gambar 4. 10) Mengatur satuan units	62
Gambar 4. 11	Titik BM (X,Y,Z)	63
Gambar 4. 12	2 Memasukkan Titik Koordinat Pada Survey Point	63
Gambar 4. 13	Memasukkan Titik Koordinat Pada Base Point	64
Gambar 4. 14	4 Membuat Grid	65
Gambar 4. 15	5 Mengatur Grid Vertikal dan Horizontal	65
Gambar 4. 16	5 Membuat <i>Grid</i> sesuai gambar kerja	66
Gambar 4. 17	7 Mengatur Elevasi Level tiap lantai	66
Gambar 4. 18	3 Family Metric Structural Foundation	67
Gambar 4. 19	Membuat Ukuran Pondasi dan pilecap	67
Gambar 4. 20) Garis Extrusion spun pile dan Pilecap	68
Gambar 4. 21	Pemodelan 3D spun pile dan Pile Cap	<u>68</u>
Gambar 4. 22	2 Memasukkan Load Family Pondasi	<mark> 69</mark>
Gambar 4. 23	3 Menempatkan Pondasi dan Pile Cap sesuai AS	69
Gambar 4. <mark>2</mark> 4	Pemodelan 3D pembuatan pondasi spun pile dan pilecap	70
Gambar 4. 2	5 Structure Floor	70
Gambar 4. 26	6 Menentukan Tipe Plat	71
Gambar 4. 27	7 Mengatur Ketebalan Plat	71
Gambar 4. 28	8 Menempatkan Plat Lantai sesuai gambar kerja	72
Gambar 4. 29	Pemodelan 3D Pelat Lantai	72
Gambar 4. 30) Family Metric Structural Column	73
Gambar 4. 3	l Lembar Kerja <i>Family</i> Kolom	73
Gambar 4. 32	2 Garis Extrusion Pembuatan Kolom	74

Gambar 4. 33 Menentukan Ketinggian Kolom	74
Gambar 4. 34 Pemodelan 3D Kolom	75
Gambar 4. 35 Memasukkan Load Family Kolom	75
Gambar 4. 36 Peletakkan Kolom pada Garis AS	76
Gambar 4. 37 Pemodelan 3D Kolom	76
Gambar 4. 38 Metric Structural Beam and Braces	77
Gambar 4. 39 Lembar Kerja Pada Template Family Balok	77
Gambar 4. 40 Menentukan Ukuran Balok	78
Gambar 4. 41 Membuat Balok dengan Garis Extrusion	78
Gambar 4. 42 Menentukan Tinggi dari Balok	79
Gambar 4. 43 Memasukkan Load Family Balok	79
Gambar 4. 44 Meletakkan Balok Sesuai dengan garis ASnya	80
Gambar 4. 45 Pemdodelan 3D Balok	80
Gambar 4. 46 Pemilihan Structure Wall	81
Gambar 4. 47 Menentukan Bnetuk dan Ukuran Shearwall	81
Gambar 4. 48 Untuk Mengatur Ketebalan Shear Wall	82
Gambar 4. 49 Meletakkan Shear wall Sesuai gambar Kerja	82
Gambar 4. 50 Pemodelan 3D Shear wall	83
Gambar 4. 51 ToolBar Architecture Stair	83
Gambar 4. 52 Mengatur Struktur Tangga dengan Edit Type	84
Gambar 4. 53 Mengatur Ketinggian Tangga	84
Gambar 4. 54 Peletakkan Tangga Sesuai dengan Gambar Kerja	85
Gambar 4. 55 Pemodelan 3D Tangga.	85
Gambar 4. 56 Isolate Elemants Pondasi dan Pile Cap	86
Gambar 4. 57 Tampilan Isolated Pondasi dan Pile Cap	86
Gambar 4. 58 Memasukkan Family Rebar	87
Gambar 4. 59 Membuat garis Section	87
Gambar 4. 60 Memilih rebar untuk pondasi	88
Gambar 4. 61 Tulangan Spiral Pondasi	88
Gambar 4. 62 Edit type Diameter tulangan Spiral	89
Gambar 4. 63 Tulangan Utama Pondasi Spun Pile	89
Gambar 4. 64 Edit type Diameter Tulangan Utama	90
Gambar 4. 65 Pemodelan 3D Pembesian Pondasi Spun Pile	90
Gambar 4. 66 Tab Section dan Rebar Shape	91
Gambar 4. 67 Penempatan Tulangan Bawah Pile Cap	91
Gambar 4. 68 Penempatan Tulangan Atas Pile Cap	92
Gambar 4. 69 Tulangan Memanjang Pile Cap	92
Gambar 4. 70 Mengatur jarak antar Tulangan	93
Gambar 4. 71 Edit type Diameter Tulangan Pile Cap	93
Gambar 4. 72 Pemodelan 3D Pembesian Pile Cap	94
Gambar 4. 73 Isolate elements Kolom	94
Gambar 4. 74 Membuat garis Section Kolom	95
Gambar 4. 75 Penulangan Kolom menggunakan Rebar	95
Gambar 4. 76 Pemodelan Tulangan Sengkang pada Kolom	96
Gambar 4. 77 Penempatan Tulangan Sengkang Kolom	96

Gambar 4. 78 Edit type Diameter tulangan kolom	. 97
Gambar 4. 79 Pemodelan Tulangan Utama pada Kolom	. 97
Gambar 4. 80 Penempatan Tulangan Utama Kolom	. 98
Gambar 4. 81 Pemodelan 3D Pembesian kolom	. 98
Gambar 4. 82 Isolate element Balok	. 99
Gambar 4. 83 Membuat Garis Section pada Balok	. 99
Gambar 4. 84 Penulangan Balok menggunakan Rebar	100
Gambar 4. 85 Pemodelan Tulangan Sengkang pada Balok	100
Gambar 4. 86 Penempatan Tulangan Sengkang Balok	101
Gambar 4. 87 Edit type Diameter Tulangan Balok	101
Gambar 4. 88 Pemodelan Tulangan Utama pada Balok	102
Gambar 4. 89 Penempatan Tulangan Utama Balok	102
Gambar 4. 90 Pemodelan 3D Pembesian Balok	102
Gambar 4. 91 Isolate Element Pelat lantai	103
Gambar 4. 92 Penulangan Pelat menggunakan menubar Area	104
Gambar 4. 93 Edit type diamter tulangan pelat lantai	104
Gambar 4. 94 Boundery Line Plat Lantai	105
Gambar 4. 95 Centang Hijau untuk finishing pembesian Plat	105
Gambar 4. 96 Pemodelan 3D Pembesian Pelat lantai	105
Gambar 4. 97 Membuat Garis Section Tangga	106
Gambar 4. 98 Tab garis section Tangga	106
Gambar 4. 99 Penulangan Tangga menggunakan Rebar 1	107
Gambar 4. 100 Pemodelan Tulangan memanjang pada Tangga 1	107
Gambar 4. 101 Pembentukan Tulangan sesuai dengan bentuk Tangga 1	108
Gambar 4. 102 Edit Type Diameter dan jarak antar Tulangan	108
Gambar 4. 103 Pemodelan Tulangan Anak Tangga	109
Gambar 4. 104 Penempatan Tulangan Anak Tangga	109
Gambar 4. 105 Pemodelan 3D Pembesian Tangga	110
Gambar 4. 106 Modeling sawage pit	110
Gambar 4. 107 Modeling sump pit	110
Gambar 4. 108 Modeling struktur <i>lift</i>	111
Gambar 4. 109 Modeling Akses perawatan <i>lift</i>	111
Gambar 4. 110 Modeling GWT, STP & PH	111
Gambar 4. 111 menu collaborate dan interference check	112
Gambar 4. 112 Run interference check	112
Gambar 4. 113 komponen <i>check</i>	113
Gambar 4. 114 select komponen	114
Gambar 4. 115 hasil interference report	115
Gambar 4. 116 Contoh <i>interference check</i>	115
Gambar 4. 117 mark dari komponen	117
Gambar 4. 118 Schedule quantity	117
Gambar 4. 119 gambat <i>new schedule</i>	118
Gambar 4. 120 Menu <i>filter</i>	118
Gambar 4. 121 hasil volume	119
Gambar 4. 122 <i>export</i> ke <i>csv</i>	119

Gambar 4. 123 hasil volume format excel	120
Gambar 4. 124 Memasukkan instrumen penelitian	121
Gambar 4. 125 Gambar Presentasi Produk	122
Gambar 4. 126 Gambar diskusi dengan validator	122
Gambar 4. 127 Gambar Parameter tanpa informasi	126
Gambar 4. 128 Gambar kode WBS	126
Gambar 4. 129 Gambar lokasi grid	127
Gambar 4. 130 Gambar parameter terisi informasi	127
Gambar 4. 131 Gambar <i>Quantity Take Off</i> (QTO) Kolom	128
Gambar 4. 132 Gambar QTO Balok	128
Gambar 4. 133 (a) modeling pelat lantai, (b) hasil QTO pelat lantai	129
Gambar 4. 134 (a) Gambar modeling pelat lantai (b) hasil QTO Pelat lantai	130
Gambar 4. 135 Gambar pembagian zona pengecoran	131
Gambar 4. 136 Gambar Bentrokan Komponen	132
Gambar 4. 137 Gambar Hasil bentrokan komponen format HTML	132
Gambar 4. 138 (a) Barcode akses, (b) Render modeling struktur	138
Gambar 4. 139 (a) Barcode akses, (b) Render Modeling struktur	138
Gambar 4. 140 Barcode Akses	141
Gambar 4. 141 Poster Penyebarluasan Produk	142