DETEKSI PELANGGARAN KENDARAAN LAWAN ARAH BERBASIS CITRA VIDEO MENGGUNAKAN ALGORITMA YOU ONLY LOOK ONCE (YOLO)

SALMA MARDHIYAH, . (2025) DETEKSI PELANGGARAN KENDARAAN LAWAN ARAH BERBASIS CITRA VIDEO MENGGUNAKAN ALGORITMA YOU ONLY LOOK ONCE (YOLO). Sarjana thesis, UNIVERSITAS NEGERI JAKARTA.

[img] Text
COVER.pdf

Download (1MB)
[img] Text
BAB 1.pdf

Download (303kB)
[img] Text
BAB 2.pdf
Restricted to Registered users only

Download (1MB) | Request a copy
[img] Text
BAB 3.pdf
Restricted to Registered users only

Download (1MB) | Request a copy
[img] Text
BAB 4.pdf
Restricted to Registered users only

Download (1MB) | Request a copy
[img] Text
BAB 5.pdf
Restricted to Registered users only

Download (263kB) | Request a copy
[img] Text
Daftar Pustaka.pdf

Download (277kB)
[img] Text
Lampiran.pdf
Restricted to Registered users only

Download (314kB) | Request a copy

Abstract

Jalan merupakan prasarana penting untuk mobilitas atau distribusi barang oleh masyarakat umum. Akan tetapi, penggunaan jalan tanpa pengelolaan dan pengawasan yang baik dapat membahayakan keselamatan pengguna. Berdasarkan data Badan Pusat Statistik (BPS) (2022) angka kecelakaan lalu lintas di Indonesia meningkat 34%, dari 103.645 kasus (2021) menjadi 139.258 kasus (2022). Penyebab utama kecelakaan adalah perilaku dan keterampilan pengemudi, salah satunya pengendara melawan arah lalu lintas. Oleh karena itu, dibutuhkan sistem pengawasan otomatis yang terintegrasi dalam Intelligent Transportation System (ITS) guna meningkatkan efisiensi dan efektivitas pengawasan. Penelitian ini bertujuan mengembangkan sistem deteksi pelanggaran kendaraan lawan arah yang efektif berbasis citra video dengan memanfaatkan model deteksi objek dan segmentasi dari YOLOv11 versi nano, metode peningkatan citra CLAHE, dan metode pelacakan ByteTrack. Dengan memanfaatkan rekaman CCTV dari berbagai lokasi dan dataset publik, pelatihan model YOLOv11n menghasilkan performa tinggi dengan mAP 97,2% (bounding box) dan 95,9% (mask) untuk segmentasi jalan serta mAP 91,6% untuk deteksi kendaraan. Model pelatihan YOLOv11n diterapkan sebagai penyegmentasi area jalan dan pendeteksi kendaraan di area jalan tersebut. Deteksi pelanggaran dilakukan dengan cosine similarity dan Euclidean distance antara vektor gerak kendaraan dan vektor arah dominan lalu lintas dengan ambang batas cosine similarity sebesar 0,7 dan Euclidean distance > 5 piksel. Uji coba menunjukkan sistem mampu mendeteksi pelanggaran secara akurat, terutama pada siang hari dengan FPS 17,40, akurasi 99,70%, recall 99%, dan FPR 0,49%. Pada malam hari, akurasi menurun menjadi 98,93%, recall menjadi 92,24% dengan FPR naik menjadi 2,5% akibat pencahayaan rendah. Hasil ini menunjukkan bahwa sistem mampu melakukan deteksi pelanggaran lawan arah dengan tingkat kesalahan rendah dan performa tinggi sehingga dapat diandalkan untuk mendukung pengawasan lalu lintas otomatis. ***** Roads serve as crucial infrastructure for public mobility and goods distribution. However, unmanaged and poorly supervised road usage can jeopardize user safety. According to data from Statistics Indonesia (BPS) in 2022, traffic accidents in Indonesia increased by 34%, from 103,645 cases in 2021 to 139,258 in 2022. The primary causes of these accidents are driver behavior and skill, including driving in the wrong direction. Therefore, an automated surveillance system integrated within an Intelligent Transportation System (ITS) is required to enhance the efficiency and effectiveness of traffic monitoring. This study aims to develop an effective wrong-way vehicle violation detection system based on video imagery by utilizing object detection and segmentation models from YOLOv11 nano version, CLAHE image enhancement, and the ByteTrack tracking method. CCTV recordings from various locations and public datasets were used for training. The YOLOv11n model achieved high performance with a mean Average Precision (mAP) of 97.2% (bounding box) and 95.9% (mask) for road segmentation, and 91.6% for vehicle detection. Violation detection was conducted using cosine similarity and Euclidean distance between the vehicle motion vectors and the dominant traffic direction vector, with thresholds of 0.7 for cosine similarity and a minimum Euclidean distance of 5 pixels. Experimental results show that the system accurately detects violations, particularly during daytime, achieving 17.40 FPS, 99.70% accuracy, 99% recall, and 0.49% FPR. At night, accuracy decreased to 98.93% and recall 92,24% with an FPR of 2.5% due to poor lighting conditions. These results indicate that the developed system can reliably detect wrong-way driving violations with low error rates and high performance, making it suitable to support automated traffic surveillance.

Item Type: Thesis (Sarjana)
Additional Information: 1). Dr.rer.nat. Bambang Heru Iswanto, M.Si. ; 2). Med Irzal, S.Kom., M.Kom.
Subjects: Sains > Fisika
Divisions: FMIPA > S1 Fisika
Depositing User: Salma Mardhiyah .
Date Deposited: 13 Aug 2025 07:11
Last Modified: 13 Aug 2025 07:11
URI: http://repository.unj.ac.id/id/eprint/60657

Actions (login required)

View Item View Item