SALMA FAIDA AMALIASARI, . (2025) UJARAN KEBENCIAN PADA AKUN TIKTOK NAJWA SHIHAB PASCA-PILPRES 2024. Sarjana thesis, UNIVERSITAS NEGERI JAKARTA.
![]() |
Text
COVER.pdf Download (1MB) |
![]() |
Text
BAB 1.pdf Download (312kB) |
![]() |
Text
BAB 2.pdf Restricted to Registered users only Download (363kB) | Request a copy |
![]() |
Text
BAB 3.pdf Restricted to Registered users only Download (315kB) | Request a copy |
![]() |
Text
BAB 4.pdf Restricted to Registered users only Download (524kB) | Request a copy |
![]() |
Text
BAB 5.pdf Restricted to Registered users only Download (281kB) | Request a copy |
![]() |
Text
DAFTAR PUSTAKA.pdf Download (251kB) |
![]() |
Text
LAMPIRAN.pdf Restricted to Registered users only Download (1MB) | Request a copy |
Abstract
Penelitian yang dilakukan ini bertujuan untuk mengidentifikasi bentuk, makna, dan jenis ujaran kebencian terhadap Najwa Shihab dalam komentar warganet di platform TikTok pasca-Pemilihan Presiden 2024. Penelitian ini menggunakan metode deskriptif kualitatif dengan pendekatan linguistik forensik dan semantik berdasarkan teori makna semantik, berupa leksikal dan kontekstual dari Abdul Chaer. Teknik pengumpulan data dilakukan melalui dokumentasi, observasi, dan pencatatan terhadap 24 komentar dari delapan unggahan video TikTok pada periode 18–21 Oktober 2024. Hasil penelitian menunjukkan bahwa ditemukan bentuk ujaran meliputi kata kasar, stereotip rasial, serangan terhadap identitas, dan ajakan kebencian. Analisis semantik menunjukkan adanya unsur eksplisit dan implisit dari ujaran. Terdapat tujuh kategori ujaran kebencian, yaitu penghinaan (23 data), penistaan (1 data), provokasi (6 data), penghasutan (4 data), penyebaran hoaks (2 data), pencemaran nama baik (1 data), dan perbuatan tidak menyenangkan (3 data). Seluruh data mengandung potensi pelanggaran terhadap Pasal 315 KUHP, Pasal 27 ayat (3) dan Pasal 28 ayat (2) UU No. 11 Tahun 2008 tentang Informasi dan Transaksi Elektronik, serta beberapa yang melanggar Pasal 156 dan Pasal 160 KUHP. Penelitian ini menegaskan bahwa media sosial merupakan ruang yang rawan terhadap penyebaran ujaran kebencian, terutama terhadap tokoh yang vokal secara politik dan sosial. ***** This research aims to identify the forms, meanings, and types of hate speech directed at Najwa Shihab in TikTok user comments following the 2024 Indonesian Presidential Election. The study employs a qualitative descriptive method with a forensic linguistics and semantics approach, based on Abdul Chaer’s theory of semantic meaning, comprising lexical and contextual meaning. Data were collected through documentation, observation, and note-taking of 24 comments from eight TikTok video posts between 18–21 October 2024. The findings reveal various forms of hate speech, including vulgar language, racial stereotypes, attacks on identity, and incitements to hatred. The semantic analysis indicates the presence of both explicit and implicit elements within the speech acts. Seven categories of hate speech were identified: insults (23 data), blasphemy (1 data), provocation (6 data), incitement (4 data), dissemination of hoaxes (2 data), defamation (1 data), and acts of unpleasant conduct (3 data). All data potentially violate Article 315 of the Indonesian Criminal Code, Article 27 paragraph (3) and Article 28 paragraph (2) of Law No. 11 of 2008 on Electronic Information and Transactions, as well as several cases violating Article 156 and Article 160 of the Criminal Code. This study affirms that social media constitutes a vulnerable space for the spread of hate speech, particularly against figures who are politically and socially outspoken.
Item Type: | Thesis (Sarjana) |
---|---|
Additional Information: | 1). Drs. Krisanjaya, M.Hum. ; 2). Asisda Wahyu Asri Putradi, M.Hum. |
Subjects: | Bahasa dan Kesusastraan > Linguistik Bahasa dan Kesusastraan > Bahasa Indonesia |
Divisions: | FBS > S1 Sastra Indonesia |
Depositing User: | Users 30849 not found. |
Date Deposited: | 19 Aug 2025 03:23 |
Last Modified: | 19 Aug 2025 03:23 |
URI: | http://repository.unj.ac.id/id/eprint/61604 |
Actions (login required)
![]() |
View Item |