RANCANG BANGUN PROTOTYPE VENTILATOR MEDIS BERBASIS MIKROKONTROLER ESP32

JEFRI JONATAN, . (2025) RANCANG BANGUN PROTOTYPE VENTILATOR MEDIS BERBASIS MIKROKONTROLER ESP32. Sarjana thesis, UNIVERSITAS NEGERI JAKARTA.

[img] Text
COVER.pdf

Download (1MB)
[img] Text
BAB I.pdf

Download (232kB)
[img] Text
BAB II.pdf
Restricted to Registered users only

Download (732kB) | Request a copy
[img] Text
BAB III.pdf
Restricted to Registered users only

Download (587kB) | Request a copy
[img] Text
BAB IV.pdf
Restricted to Registered users only

Download (819kB) | Request a copy
[img] Text
BAB V.pdf
Restricted to Registered users only

Download (227kB) | Request a copy
[img] Text
DAFTAR PUSTAKA.pdf

Download (233kB)
[img] Text
LAMPIRAN.pdf
Restricted to Registered users only

Download (364kB) | Request a copy

Abstract

Penelitian ini bertujuan untuk merancang dan membangun sebuah prototipe ventilator medis berbasis mikrokontroler ESP32 sebagai solusi alternatif dalam penanganan gangguan pernapasan, terutama pada kondisi darurat atau di wilayah dengan keterbatasan akses alat medis. Sistem yang dikembangkan mengintegrasikan sensor MAX30100 untuk mengukur kadar oksigen (SpO₂) dan denyut jantung (BPM), sensor MAX6675 untuk pengukuran suhu, serta photodioda untuk mendeteksi keberadaan masker pada wajah pasien. Data hasil pengukuran ditampilkan pada LCD 20x4 dan dikirimkan secara real-time ke perangkat Android melalui aplikasi Telegram, memungkinkan pemantauan jarak jauh berbasis Internet of Things (IoT). Metode penelitian yang digunakan adalah Research and Development (R&D) dengan pendekatan V-Model, yang mencakup tahapan analisis kebutuhan, perancangan sistem, implementasi, pengujian, dan evaluasi. Hasil pengujian menunjukkan bahwa seluruh komponen sistem bekerja secara optimal dan terintegrasi dengan baik. Sensor MAX30100 memiliki rata-rata error sebesar 2,2% pada pengukuran BPM dan 2,5% pada SpO₂, sensor MAX6675 memiliki tingkat error sebesar 2,59%, dan photodioda menunjukkan tingkat error 0% dalam mendeteksi keberadaan masker. Dengan desain yang portabel, ekonomis, dan mudah digunakan, prototipe ini berpotensi menjadi solusi aplikatif dalam penyediaan alat bantu pernapasan di berbagai kondisi darurat maupun wilayah terbatas. Kata kunci: ESP32, MAX6675, sensor MAX30100, Telegram, Ventilator medis. ************************************************************ This study aims to design and develop a prototype of a medical ventilator based on the ESP32 microcontroller as an alternative solution for respiratory disorder treatment, particularly in emergency situations or in areas with limited access to medical equipment. The developed system integrates the MAX30100 sensor to measure oxygen saturation (SpO₂) and heart rate (BPM), the MAX6675 sensor for temperature measurement, and a photodiode to detect the presence of a mask on the patient's face. Sensor data is displayed on a 20x4 LCD and transmitted in real-time to an Android device via the Telegram application, enabling remote monitoring through the Internet of Things (IoT). The research method employed is Research and Development (R&D) using the V-Model approach, which includes stages of requirements analysis, system design, implementation, testing, and evaluation. Test results show that all system components function optimally and are well-integrated. The MAX30100 sensor recorded an average error of 2.2% for BPM and 2.5% for SpO₂ readings, the MAX6675 sensor showed an error rate of 2.59%, and the photodiode achieved 0% error in detecting the presence of a mask. With its portable, cost-effective, and user-friendly design, this prototype has the potential to be an applicable solution for providing respiratory support devices in various emergency conditions or in resource-limited settings. Keywords: ESP32, MAX30100 sensor, MAX6675, Medical Ventilator, Telegram

Item Type: Thesis (Sarjana)
Additional Information: 1). Rafiuddin Syam, S.T, M.Eng, Ph.D ; 2). Dr. Arum Setyowati, S.Pd., M.T
Subjects: Teknologi dan Ilmu Terapan > Teknik Elektronika
Divisions: FT > S1 Pendidikan Teknik Elektronika
Depositing User: Jefri Jonatan .
Date Deposited: 08 Aug 2025 02:44
Last Modified: 08 Aug 2025 02:44
URI: http://repository.unj.ac.id/id/eprint/58967

Actions (login required)

View Item View Item