PENGEMBANGAN SISTEM DETEKSI OBJEK PADA RUANG LABORATORIUM ELEKTRONIKA

FAZA AL WAHDANY, . (2026) PENGEMBANGAN SISTEM DETEKSI OBJEK PADA RUANG LABORATORIUM ELEKTRONIKA. Sarjana thesis, UNIVERSITAS NEGERI JAKARTA.

[img] Text
COVER.pdf

Download (3MB)
[img] Text
BAB I.pdf

Download (911kB)
[img] Text
BAB II.pdf
Restricted to Registered users only

Download (622kB)
[img] Text
BAB III.pdf
Restricted to Registered users only

Download (3MB)
[img] Text
BAB IV.pdf
Restricted to Registered users only

Download (629kB)
[img] Text
BAB V.pdf
Restricted to Registered users only

Download (787kB)
[img] Text
DAFTAR PUSTAKA.pdf

Download (641kB)
[img] Text
LAMPIRAN.pdf
Restricted to Registered users only

Download (2MB)

Abstract

Pada penelitian ini dikembangkan alat monitoring dengan menggunakan Raspberry Pi 5 sebagai sistem kendali dan kamera webcam Eyesec. Sistem deteksi objek adalah suatu instrumen yang sangat berguna dalam berbagai bidang. Dengan alat sistem deteksi objek, dapat mencapai tujuan yang diinginkan dengan lebih efektif dan efisien. Tujuan dari penelitian ini adalah untuk mengembangkan sistem deteksi objek secara efektif, efisien, dan mendukung pengembangan teknologi deteksi objek sehingga berguna bagi kegiatan pada laboratorium elektronika yaitu pencatatan penggunaan trainer elektronika. Penelitian ini dilakukan dengan menggunakan metode penelitian pengembangan research and development (R&D) dengan model pengembangan model V dengan tahapan penelitian yaitu tahap requirement analysis, tahap system design, tahap architectural design, tahap module design, tahap coding phase, unit testing, integration tetsting, system testing, dan acceptance testing. Hasil penelitian yang dilakukan berhasil mendeteksi objek trainer sensor PLC, trainer Teknik Elektronika Dasar, trainer Miktrokontroler Dasar, trainer PLC Application Modul, wajah mahasiswa yang data citra gambarnya diambil menggunakan kamera webcam EYESEC kemudian diolah dengan algortima pendeteksian objek YOLO yang kemudian data hasil pencatatan penggunaan trainernya diunggah ke dalam Google Sheets. Hasil pengujian sistem deteksi objek dan unggahan data ke Google Sheets telah bekerja dengan baik. Hasil akhir penelitian yang dilakukan dengan menguji coba alat menunjukkan bahwa sistem deteksi objek pada ruang elektronika telah mencapai spesifikasi parameter dan skenario yang telah ditentukan. Kata Kunci: YOLO, Google Sheets, Deteksi Objek, Webcam, Raspberry Pi ***** In this study, a monitoring device was developed using a Raspberry Pi 5 as the control system and an EYESEC webcam as the camera. The object detection system is a highly useful instrument in various fields. With such a system, desired goals can be achieved more effectively and efficiently. The purpose of this research is to develop an effective and efficient object detection system that supports the advancement of object detection technology, making it beneficial for activities in the electronics laboratory, particularly for recording the use of electronic trainers.This research was conducted using a research and development (R&D) method with the V model development, consisting of severalstages: requirement analysis, system design, architectural design, module design, coding phase, unit testing, integration testing, system testing, acceptance testing. The results of the study successfully detected various electronic trainer objects such as the PLC sensor trainer, Basic Electronics Engineering trainer, Basic Microcontroller trainer, and PLC Application Module trainer, as well as students’ faces whose image data were captured using the Eyesec webcam. The images were processed using the YOLOv8 object detection algorithm, and the recorded trainer usage data were uploaded to Google Sheets. The testing results showed that both the object detection system and the data upload to Google Sheets functioned properly. The final testing of the device demonstrated that the object detection system in the electronics laboratory met the specified parameter and scenario requirements.

Item Type: Thesis (Sarjana)
Additional Information: 1). Dr. Baso Maruddani, M.T. ; 2). Dr. Aodah Diamah, M.Eng.
Subjects: Teknologi dan Ilmu Terapan > Teknik Elektronika
Divisions: FT > S1 Pendidikan Teknik Elektronika
Depositing User: Users 32490 not found.
Date Deposited: 03 Feb 2026 09:31
Last Modified: 03 Feb 2026 09:31
URI: http://repository.unj.ac.id/id/eprint/64799

Actions (login required)

View Item View Item