PEMODELAN JUMLAH KASUS MALARIA DI INDONESIA MENGGUNAKAN GENERALIZED LINEAR MODEL

ABI WIYONO, . (2021) PEMODELAN JUMLAH KASUS MALARIA DI INDONESIA MENGGUNAKAN GENERALIZED LINEAR MODEL. Sarjana thesis, UNIVERSITAS NEGERI JAKARTA.

[img] Text
COVER.pdf

Download (604kB)
[img] Text
BAB 1.pdf

Download (279kB)
[img] Text
BAB 2.pdf
Restricted to Registered users only

Download (425kB) | Request a copy
[img] Text
BAB 3.pdf
Restricted to Registered users only

Download (582kB) | Request a copy
[img] Text
BAB 4.pdf
Restricted to Registered users only

Download (461kB) | Request a copy
[img] Text
BAB 5.pdf
Restricted to Registered users only

Download (253kB) | Request a copy
[img] Text
DAFTAR PUSTAKA.pdf

Download (256kB)
[img] Text
LAMPIRAN.pdf
Restricted to Registered users only

Download (491kB) | Request a copy

Abstract

Generalized Linear Model (GLM) telah banyak digunakan untuk memodelkan berbagai macam tipe data dimana distribusi dari variabel respon merupakan distribusi yang termasuk dalam distribusi keluarga eksponensial. Contoh umum dari distribusi keluarga eksponensial adalah distribusi Poisson dan Binomial. Model regresi GLM mendeskripsikan struktur dari variabel prediktor, sedangkan fungsi penghubung secara khusus mendeskripsikan hubungan antara model regresi dengan nilai ekspektasi dari variabel respon. Metode Maximum Likelihood Estimation digunakan untuk mencari estimasi dari nilai parameter regresi model. Terdapat 3 variabel prediktor yang berpengaruh signifikan terhadap jumlah kasus positif malaria di Indonesia, yaitu persentase rumah tangga yang memiliki akses sanitasi layak, jumlah kabupaten/kota yang menyelenggarakan tatanan kawasan kesehatan dan jumlah kabupaten/kota yang melakukan pengendalian vektor terpadu. Kata kunci : Generalized Linear Model, Distribusi keluarga eksponensial, Fungsi penghubung, Maximum Likelihood Estimation. ************** Generalized Linear Model (GLM) has been used for modelling various types of data where the distribution of response variables is an exponential family. Common examples include those for for Binomial and Poisson response data. The GLM regression model determines the structure of the explanatory variable or covariate information, where the link function specifically determines the relationship between the regression model and the expected value of the observation. Estimating the regression model parameters is done by using Maximum Likelihood Estimation. There are 3 predictor variables that have significant value on the regression model, that is proper sanitation access, healthy zoning and integrated vector control. Keywords : Generalized Linear Model, Exponential family distribution, Link function, Maximum Likelihood Estimation.

Item Type: Thesis (Sarjana)
Additional Information: 1) Drs. Sudarwanto, M.Si., DEA. ; 2) Vera Maya Santi, M.Si.
Subjects: Sains > Matematika
Divisions: FMIPA > S1 Matematika
Depositing User: Users 10090 not found.
Date Deposited: 20 Mar 2021 06:04
Last Modified: 20 Mar 2021 06:04
URI: http://repository.unj.ac.id/id/eprint/15094

Actions (login required)

View Item View Item